Chapter 2 – Molecular Modeling

Small Molecules
Part 2:
Analysis & Interactions
Molecular Electrostatic Potentials

- Critical for interaction / reactions
 - Initial interaction (longest distance)
 - Noncovalent

1. Electrostatic: charge / dipole
2. Induced dipole
3. Dispersion (van der Waals)

- Represented by energy grid
 - Electron / proton energy

\[E = \frac{1}{4\pi\varepsilon} \frac{q}{r^2} \]
Calculating MEP

• Atomic point charges
 • X-ray, QM \rightarrow Electron density \rightarrow Partial charge
 1. Topological calculations
 • Electro negativity
 • Bonds (connectivity, not structure)
 o Gasteiger-Hückel method (σ + delocalized π)
 • New groups of molecules must be tested by QM
 2. Quantum mechanics
 • Semiimperical or ab initio $\rightarrow \psi$
 1. Mulliken population analysis: Atomic orbital occupancy (oldest)
 2. ESP fit method: Atomic charge fit to electron density

• Test: Dipole moment of rigid molecules
Visualising MEP

- Protons electrostatic energy in MEP
- QM: Proton and molecules wavefunction

- Isocontour: (2D) Nifedipine
Visualising MEP

Isopotential surface

Connolly surface colour plot
MEP Superimposition

- Ligands share MEP traits
- MEP superimposition > atom – atom fit
Molecular Interaction Fields

- Noncovalent interaction (docking)
 - Interaction energy > vdw repulsion \rightarrow binding
- Target – probe interaction energy (grid) - GRID
 - Water, hydroxyl, ions etc.
 - $E_{\text{tot}} = E_{\text{vdw}} + E_{\text{et}} + E_{\text{hb}}$
 - van der Waal: Dispersion + electron overlap
 - Electrostatic: Coulomb (ε-dependent)
 - HB: Electrostatic but orientation-sensitive!

Protein Physics - A Course of Lectures: Alexei V. Finkelstein & Oleg B. Ptitsyn
MIF Investigation: GRID

- Probe parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Methyl probe</th>
<th>Hydroxyl probe</th>
<th>Carboxyl probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals radius (Å)</td>
<td>1.950</td>
<td>1.650</td>
<td>1.600</td>
</tr>
<tr>
<td>Effective number of electrons</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Polarizability (Å³)</td>
<td>2.170</td>
<td>1.200</td>
<td>2.140</td>
</tr>
<tr>
<td>Electrostatic charge</td>
<td>0.000</td>
<td>-0.100</td>
<td>-0.450</td>
</tr>
<tr>
<td>Optimal hydrogen bond energy (kcal mol⁻¹)</td>
<td>0.000</td>
<td>-3.500</td>
<td>-3.500</td>
</tr>
<tr>
<td>Hydrogen bonding radius (Å)</td>
<td>–</td>
<td>1.400</td>
<td>1.400</td>
</tr>
<tr>
<td>Number of hydrogen bonds donated</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Number of hydrogen bonds accepted</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hydrogen bonding type</td>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

- Metal ion coordination
- Ligands (same receptor): Common IF
MIF Investigation: GRID

Hydroxyl: -3.5 kcal mol$^{-1}$
Methyl: -1.4 kcal mol$^{-1}$
Isopotential on nifedipine
Hydrophobic Interactions

- No simple calculation
- Arises from increased entropy of solvent
- \(G = H - TS \)
- Emperical: \(\log P_{\text{oct/wat}} = \log \left(\frac{[\text{solute}]_{\text{octanol}}}{[\text{solute}]_{\text{un-ionized}}^{\text{water}}} \right) \)
- Smaller molecules \(\rightarrow \) \(\log(P_{\text{compound}}) \)
- \(\log(P) \) (1D) \(< \) Hydrophobic field (3D)

Protein Physics - A Course of Lectures: Alexei V. Finkelstein & Oleg B. Ptitsyn
Hydrophobic Field: HINT & MOLCAD

- Empiric hydrophobic fragment constants
 - Partition experiments
 - Hydrophobicity, hydrophilicity & vdw
- HINT: Hydropathic field
 - Constants, Connolly & distance function
- Empiric data: contour level estimation

- MOLCAD: Lipophilic potential surface
 - Prediction/optimization of: ligand a/o receptor
 - Conformational change (partition)
 - Test molecules must be rigid
Hydrophobic field map

Lipophilic potential (Connolly)

Nifedipine
Pharmacophore Identification

- Pharmacophore \rightarrow (bind) \rightarrow Enzyme/receptor
 - Sterically consistent elements
 - Pharmacophoric elements
 - HB donors & receptors, ringsystems, flexibility...
 - Selection?

- Superimposition
 - Selection
 - Activity
 - Antagonist – agonist
 - Conformation energy
Superimposition

- Atom-by-atom
 - Root-mean-squared minimisation
 - Result sensitive to pharmacophoric element of interest
- Active analog approach
 - Congeneric conformational changes allowed
 - Speed increase with rigidity
 - Only small molecules (subunits)
 - Defines distance span from extremes of rigidity
 - Reduces possible congeneric conformations
Superimposition

- Rapid pairwise superposition (SEAL)
 - Compairs relative distance dissimilar molecules
 - Yields information of global shape
- Other methods
 - Superposition of HB donors/acceptors
 - FlexS
 - Flexible superpositioning
 - Superimposition of molecular fields
 - Charge, hydrophobicity, vdw
 - Grid point weights according to structure-activity relationship
 - Search template: most rigid congener
3D QSAR

(3D Quantitative structure-activity relationship)

- Characterised compounds
 - Structure + Biological activity
- Correlation with field properties
 - vdw, electrostatic, lipophilicity...
- Next-generation compounds
- Biological data
 - *in vitro*
 - Common binding mode
 - Diffusion
 - Inactive compounds
 - Large activity span (3 orders)
Comparative Molecular Field Analysis

- Relies on field properties (grid)
- Steric + electrostatic interactions
- No entropic or hydrophobic effects
 - Knowledge of binding mode is needed
- Statistics
 - Partial Least Square
 - More energies than compounds
 - Some less important
 - Linear combinations
 - Leave-one-out cross validation

Comparative Molecular Field Analysis

- Statistics (LOO)
 - Predicting activity one molecule from set (without it)
 - Square of crossvalidated correlation coefficient:
 - Should be more than 50%
 - Standard deviation of error prediction:
 - Should be ~steady with # variables
 Few variables + Low noise = good

- Scrambling test
 - Set is mixed (activity/molecule)
 - Bad predictions \rightarrow model may be ok

\[
Q^2 = 1 - \frac{\sum (\gamma_{obs} - \gamma_{pred})^2}{\sum (\gamma_{obs} - \gamma_{mean})^2}
\]

\[
SDEP = \sqrt{\frac{\sum (\gamma_{obs} - \gamma_{pred})^2}{N}}
\]
CoMFA related methods

- **Comparative Molecular Similarity Indices Analysis**
 - No field potentials → Gaussian functions
 - Easier interpretation + No cut-off values needed

- **Graphical Retrieval and Information Display – General Optimal Linear PLS Estimation**
 - Classifies variables (energies)
 - Only helpful variables are considered in final run

- **Alignment-independent methods**
 - Inertia, dipole, quadropole moments
3D QSAR

- Short coming: Induced fit
 - Flexible amino acids + Flexible HB donors/acceptors
- Pseudoreceptor models
 - Pharmacophore \rightarrow Optimal binding partners
 - Pseudoreceptor \neq receptor (structure)
- Receptor-based 3D QSAR
 - Docking + CoMFA
 - Good at identifying binding pocket
3D QSAR interpretation & reliability

- Visualisation
 - Recognition of activity specific regions

- Model
 - Must be verified (Q^2 & SDEP)
 - LOO \rightarrow L20%O \rightarrow L50%O
 - Molecules not in training set

- Data quality
 - Noise
 - Reliability