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Abstract. The modulation of the electronic structure of cobalt islands on
Cu(111) by the Moiré pattern of an Ag overlayer is investigated. Acquisition of
tunneling spectroscopy maps reveals a local modification of both the energy and
the amplitude of the cobalt-related d-states on the length scale of the periodicity
of the Moiré superstructure. The modulation of the energy can be rationalized
by the spatially varying hybridization of the cobalt atoms with the silver
sp-bands. We propose that Moiré modulated d-states at metal interfaces with
a periodicity of a few nanometers may provide a novel route to manipulate the
chemical reactivity of surfaces and might serve as a template which modulates
magnetic properties such as the spin density.

The ability to precisely control the electronic structure of solids and their surfaces is crucial
for the engineering of materials and devices with properties and functionalities tailored to
specific needs. A number of strategies have been developed in the past to tune the electronic
structure of metal surfaces globally and locally [1], including the growth of pseudomorphic
thin films [2] and bimetallic surface alloys [3]. The reactivity of a transition metal surface
is strongly dependent on the energetic position, relative to the Fermi level, of the localized
d-states [4]. Whereas flat metallic films lead to an overall shift of the electronic states [2],
alloying creates sites where the reactivity is locally enhanced, e.g. sees molecules preferentially
adsorbing at specific sites of the alloy [3]. The latter thus represents a structured surface with
an atomically varying local electronic structure across the surface. Many surfaces in nature
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show large-scale reconstructions, either in their clean state or during growth. In heteroepitaxial
growth this restructuring is driven by strain often inducing complex patterns of ordered surface
dislocations or Moiré structures [5, 6]. At these surfaces, bonding and diffusion energies
change on a much larger length scale than for individual atomic sites. The periodically
patterned surfaces can thus serve as nanotemplates to guide nanostructure formation via
predefined nucleation sites or energetic sinks. The directed self-ordering growth strategy has
very successfully been used for the fabrication of highly ordered nanostructure arrays [7]–[11].
Surprisingly, the spatial modulation of the electronic structure that inherently must accompany
the structural inhomogeneity of the interface has only been studied for non-metallic systems so
far [9], [11]–[15]. In this paper, we demonstrate how a silver adlayer, forming a Moiré pattern,
modulates the electronic structure of an underlying cobalt layer on the nanometer scale. The
local electronic structure is measured using scanning tunneling spectroscopy and the analysis of
spectroscopic maps acquired over areas on the order of 10 × 10 nm2. A prominent feature from
a d-derived surface state is tracked over the unit cell of the Moiré pattern to detect local changes
in the electronic structure. To this end, we have investigated silver-capped cobalt islands on a
Cu(111) surface.

The growth of silver on bilayer cobalt nanoislands on Cu(111) has recently been investi-
gated [16]. It was found that at room temperature silver preferentially nucleates on top of
cobalt islands and that these are either completely capped with 1 ML Ag or remain uncovered.
Thus cobalt islands with a closed Ag cap layer can be investigated. It was furthermore
found that the low-energy electron diffraction pattern of Ag/Co/Cu(111) shows the same
symmetry as Ag/Cu(111), evidence of a similar reconstruction or Moiré pattern due to the
lattice mismatch between the silver overlayer and the cobalt island to that between Ag and
Cu(111) [17]. The growth and electronic structure of cobalt on Cu(111) are well known: cobalt
grows pseudomorphic on Cu(111) and forms triangular islands of bilayer height [20, 21].
The cobalt islands exhibit a very pronounced electronic feature in the local density of states,
which can be easily probed by tunneling spectroscopy. This feature has been characterized both
experimentally [22, 23] and theoretically [22, 24] and has been shown to be a spin-polarized
state related to the d-states of cobalt. The cobalt islands are found to expose a stable out-of-
plane magnetization at 14 K [23].

Scanning tunneling microscopy (STM) measurements have been performed in a purpose-
built low-temperature ultra-high vacuum (UHV) STM which operates at 6 K. Tunneling spectra
have been acquired with an open feedback loop recording the dI/dV signal from a lock-in
amplifier (frequency 3.8 kHz and 3 mV modulation). For spectroscopic maps, spectra have been
taken on a regular grid at each point of the grid. The tip–sample distance has been stabilized at
each point and the spectrum has been measured after opening the feedback loop. The Cu(111)
single-crystal substrate has been prepared by cycles of argon sputtering and annealing to 800 K.
Silver and cobalt have been evaporated from a commercial electron-beam heated evaporator.
To prevent ions from the deposition source from hitting the sample and damaging it, either a
counter-voltage or a high voltage on a deflection shield has been applied.

A typical topography after deposition of a sub-monolayer coverage of cobalt and
subsequently silver at room temperature is shown in figure 1. The Ag-capped Co island exhibits
a Moiré pattern due to the lattice mismatch between the silver overlayer and the cobalt island.
The apparent corrugation of the Moiré pattern amounts to 0.4 Å at a bias of 100 mV, but varies
only a little in the range ±1 V around the Fermi level. Three distinct points of high symmetry
can be found as marked in figure 2(b). By comparison with the Moiré pattern formed by
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Figure 1. (a) Overview STM topography (54 × 54 nm2) showing triangular
cobalt islands either capped with Ag (A) or free of Ag (B). Ag directly on
Cu(111) (C) can also be seen next to the islands. (b) Close-up image of an
Ag-covered bilayer high Co island on Cu(111) acquired with a bias voltage of
50 mV [25]. (c) Line cut through the topography in (b) with an atomic model
of the Moiré pattern along the same cut. The model is a sketch to illustrate the
positions of the atoms and some of the atoms are therefore omitted for clarity.

silver on Cu(111), as well as by symmetry arguments, we can assign these to the silver atoms
sitting in fcc, hcp and on-top sites of the underlying cobalt island. Calculations for the Moiré
pattern of Ag on Cu(111) [26, 27] reveal in agreement with experiments [17] that the vertical
positions of the silver atoms above the substrate are modulated with the periodicity of the Moiré
pattern, i.e. the surface is reconstructed. It turns out that the silver atoms in on-top sites of the
substrate are the ones that exhibit the strongest displacement towards the surface and are also
imaged with the smallest apparent height by STM. The silver-covered cobalt islands expose a
strong spectroscopic feature in tunneling spectroscopy similar to that of bare cobalt islands on
Cu(111) [22]. This feature is shown in comparison with that of an uncovered cobalt island in
figure 2(a). The peak position shifts towards the Fermi energy when going from a bare cobalt
island to a silver-covered one and the peak energy depends on where in the Moiré pattern the
spectrum is measured; fcc, hcp or on-top. This can be seen from the point spectra in figure 2(b).
The designation of the positions is explained in the model in figure 1(c) and defines whether
the Ag atoms of the overlayer reside in on-top, fcc or hcp positions of the two cobalt layers.
Furthermore, a second peak (labelled peak B in figure 2(b)) appears with lower or comparable
amplitude depending on the position in the Moiré pattern. It becomes evident that the two
peaks exhibit their maximum amplitude at different locations. No similarly position-dependent
feature is found on the Moiré pattern formed by silver on Cu(111), where only the onset of the

New Journal of Physics 11 (2009) 113051 (http://www.njp.org/)

http://www.njp.org/


4

−750 −500 −250 0 250 500 750

5

10

15

Bias (mV)

dI
/d

V
 (

a.
u.

)

(a)

x3
 

 Co/Cu(111)
Ag/Co/Cu(111)
Ag/Cu(111)
Cu(111)

−200 −150 −100 −50 0
0

2

4

Bias (mV)

dI
/d

V
 (

a.
u.

)

(b)

A B X X X

h
cp fc

c

o
n

−t
o

p

Figure 2. (a) Spectra acquired on the bare Cu(111) surface, on Ag-covered
Cu(111) on cobalt islands on Cu(111) and on an Ag-covered cobalt island
on Cu(111) in the on-top site. The spectra are normalized at −800 mV, the
spectra for Cu(111) and Ag/Cu(111) are stretched vertically by a factor of 3
and the spectra for Co/Cu(111) and Ag/Co/Cu(111) are vertically displaced.
(b) Spectra on the fcc, hcp and on-top positions in the Moiré pattern formed by
the silver cap layer on a cobalt island on Cu(111).

delocalized two-dimensional (2D) surface state of Cu(111) is shifted towards the Fermi energy
by the silver overlayer, as can be seen in figure 2(a) [17]–[19]. Thus we conclude that both
features stem from the cobalt island underneath the silver layer.

In order to gain insight into the local modifications of the electronic structure and the
origin of the two peaks, we have acquired spectroscopic maps of the silver-covered cobalt
islands. For the spectroscopic maps, spectra have been taken at each point of a grid of
64 × 64 lattice points. These maps, consisting of ≈4000 spectra, allow a detailed analysis
of the behavior of the two features as a function of position in the Moiré pattern. We
used a set point bias value of +50 mV to stabilize the tip in each position. In this region
above the Fermi level there is only very little corrugation in the local density of states
(LDOS) across the unit cell, which could otherwise influence the amplitude distribution of
the spectra across the surface. For the analysis, we have fitted the two peaks by the sum
of two Lorentzians and a slowly varying background consisting of another two Lorentzians,
which are much wider and have a smaller peak height compared to those describing peaks
A and B (see figure 3(a)). Each spectrum in a map has been fitted by this function, allowing
us to analyze the behavior of the two peaks separately. We have also attempted to describe
the background by a polynomial up to the sixth order, which however did not describe the data
as well.
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Figure 3. (a) An example fit to a spectrum acquired at an fcc site of the
Moiré pattern. The fit function consists of two Lorentzians to describe the
two pronounced peaks at −150 and −180 mV plus two broader Lorentzians to
account for the background. (b) Topographic image of the area in which the
spectroscopic map has been acquired from which the following maps have been
extracted. (c) Map of the amplitude of the lower energy peak (A) as extracted
from the spectra acquired at each position in the shown area. (d) Map of the
energy position and (e) of the FWHM. (f) Amplitude of the higher energy
peak (B). The inset in each panel shows a histogram of the respective quantity.
All data maps consist of 64 × 64 points.

The images in figures 3(b)–(f) display the topography and the maps resulting from the
analysis of the spectroscopy map. Figure 3(c) shows the amplitude distribution of the lower
energy peak (peak A) as a function of position within the Moiré pattern. It is evident that the
amplitude of the peak is strongly enhanced in on-top positions. Figures 3(d) and (e) show the
energy position and width of the peak. Both turn out to be correlated with the morphology of
the Moiré pattern. The peak position shifts by up to 10 mV between fcc and on-top positions,
whereas the full-width at half-maximum (FWHM) varies between 24 and 35 mV. The amplitude
map of the higher energy peak (peak B) shown in figure 3(f) also exhibits a modulation with
the periodicity of the Moiré pattern. However, in contrast to the lower energy peak (peak A)
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its maxima appear in positions that correspond to silver atoms in hcp positions of the cobalt
island5. The parameters of the two Lorentzians which describe the background of the tunneling
spectra are only weakly correlated with the topography. The strong peak found in the tunneling
spectrum on bare cobalt islands is a dz2-state of the cobalt [22], hence the strong peaks on
the silver-covered cobalt islands can be assumed to be derived from this dz2-state. This is
supported by the fact that a spectrum on a monolayer of silver on Cu(111), which forms a
very similar Moiré pattern if deposited at low temperature, does not show a similar feature in
the tunneling spectrum (cf the spectra in figure 2(a)). Instead of only one strong peak as on the
cobalt islands we find two peaks on the Ag-covered cobalt islands. The amplitude of the one
at lower energy is directly anti-correlated with the apparent height and shows a huge increase
in the dI/dV signal; by more than a factor of two in on-top sites compared to the adjacent fcc
and hcp regions. The strong increase in amplitude in on-top sites (see figure 3(c)) means that
the wave function extends much further into the vacuum at these sites. It is therefore likely to
have substantial overlap with wave functions of atomic or molecular adsorbates and could play
an important role in bond formation at the surface. The peak is fairly narrow with a FWHM of
only 24–35 mV, which is much narrower than the d-resonance of the bare cobalt island, which
is 100 mV wide [22]. The peak found at higher energy has its maximum amplitude in positions
where the silver atoms occupy hcp sites of the cobalt island. From symmetry arguments, this
amplitude distribution cannot be rationalized by the presence of only two layers, the silver layer
and the upper cobalt layer, where fcc and hcp cannot be defined for the silver atoms. Thus the
difference between the spectra at the two positions as seen in figure 3(f) must be related to
the influence of the lower cobalt layer, i.e. we ascribe this state to the inner interfacial layer
at the Co/Cu interface. Note that a modulation of the morphology does not necessarily lead
to a spatial modulation in the electronic structure. We have also measured spectroscopic maps
on Ag/Cu(111), where a similar Moiré pattern as on Ag/Co/Cu(111) is seen. The electronic
structure across the unit cell shows only very weak variations (roughly an order of magnitude
smaller corrugation in the LDOS), which we mainly attribute to a setpoint effect.

As can be seen from figure 3(d), the lower energy peak is shifting down in energy at
positions where atoms in the silver adlayer are imaged at a lower height, while it is moving
towards higher energies when the topography shows a larger apparent height. This finding
becomes more evident from a two-dimensional histogram (see figure 4(a)), in which the energy
of the peak is plotted against the apparent height from the topography. The darkness of each
pixel in the histogram represents the number of occurrences within the spectroscopic map of
the specific combination of peak energy and height. Although there is some scatter, a clear
trend can be observed. We find a similar correlation between the width of the peak and the
apparent height as that displayed in figure 4(b). For lower apparent height, meaning the silver
atoms are closer to the substrate, we observe a larger width of the peak. We note that also for the
reversed case, cobalt grown on an Ag(111) surface, a Moiré pattern with a similar periodicity but
reversed contrast in the topography is observed [28]. In this case, we see a similar behavior of
the cobalt-related peak [29]. The behavior observed in the correlation plots can be rationalized
by the so-called d-band model originally developed by Ruban et al [2] to explain the reactivity
of bimetallic surfaces. In their model, the d-band center of an adlayer shifts away from the Fermi
energy with increased hybridization, with the bulk sp-bands to maintain a constant occupation

5 The pattern could come from the topography as the hcp and fcc sites are imaged with different heights. We made
sure that the same contrast is observed in quantities that do not depend on the setup condition [33].
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Figure 4. (a) 2D histogram of the energy position of peak A against the height
extracted from figures 3(d) and (a), (b) 2D histogram of the FWHM of peak A
against the height extracted from figures 3(e) and (a). (c) Sketch of the model
by Ruban and coworkers [2] for a d-band hybridizing with the sp-states of a
host metal. (d) 2D histogram of the FWHM against the energy position. The
histogram shows a trend consistent with the model by Ruban and coworkers.

of the d-band (cf sketch in figure 4(c)). Specifically, the model proposes a linear relationship
between the energy position of the d-band center and the width of the d-band. Transferred to
our system, we apply the model to the dz2-state which is found in tunneling spectra. If we
hypothesize that the hybridization between the cobalt d-states and the silver sp-states increases
with the silver atoms moving closer to the cobalt layer, as evident from the measured lower
apparent height of the silver adlayer (see figure 1(c)), the peak should get wider due to the
increased hybridization and move further away from the Fermi energy. This is consistent with
the correlation plots displayed in figures 4(a) and (b). To allow a direct comparison, in figure 4(d)
the correlation between energy position and width of state is shown. A trend that is consistent
with the model discussed above is found, where the state shifts away from the Fermi energy
as it becomes wider. Note that the amplitude of the measured spectra does not follow the
model sketch of figure 4(c), where a decrease in amplitude with increasing hybridization is
expected. In figure 3(c) it can be seen that the amplitude increases at the on-top sites where
the hybridization is strongest. Although the LDOS at the Ag–Co interface may behave as in
figure 4(c), the difference to the measured spectra at the surface–vacuum interface could be
explained by a decrease in distance between tip and Co-layer, but also by varying tunneling
matrix elements across the unit cell originating from the varying atomic geometries of the first
layers (see figure 1(c)). These would affect the amplitude but not the energy position or width
of the resonance.
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The formation of Moiré patterns is observed for a number of metallic heteroepitaxial
systems with a lattice mismatch between the substrate and the deposited material (see
e.g. [5, 17, 28]). It can be expected that quite generally a modulation of the electronic
structure occurs in these systems similar to the one reported here. For example, we have also
investigated Co islands on Ag(111) [29], where we have observed similar effects to those
found on Ag/Co/Cu(111). We thus believe that our results can be generalized by varying the
metal adlayer on top of the Co, but also expect to see similar effects in other metallic Moiré
systems. This is also corroborated by the recently observed correlations between morphology
and electronic structure in non-metallic Moiré systems like FeO(111), NaCl/Ag(100), boron
nitride/Rh(111) and graphene/Ru(0001) [9], [11]–[15].

The observed modulation of the cobalt-related d-state invoked by the silver adlayer can be
expected to result in a modulation of the local reactivity at the surface due to the change in the
energy position, but also due to the spill-out of the state towards the vacuum making it more
accessible for adsorbates. It should be mentioned that the observed changes in energy position
on the order of tens of mV are most likely too small to significantly change the reactivity [4], and
the variation in amplitude is therefore expected to be more important for this particular system.
Besides the interesting local modifications of reactivity of these nanostructures, we can expect
to observe modulations of the spin density across the surface. If some of the elements in the
multilayered structures are magnetic and involve spin-polarized electronic states, a variation
in local density of states will lead to a modulation of magnetic properties. The effects of
the modulation can range from a locally modulated spin polarization at the Fermi energy to
complicated spin structures. Such influences on magnetic properties have been discussed in
terms of a modulation of the density of states by quasiparticle scattering from subsurface
defects [30], or by the interaction of an overlayer with a substrate [31]. Since the prominent
resonance found on bare cobalt islands is known both from theory [22] and spin sensitive STM
measurements [23] to be spin polarized and of minority spin character, the magnetic properties
of the cobalt/silver heterostructure will be modulated on a nanometer scale. This might be useful
for the fabrication of novel magnetic phases or the self-assembly of ordered arrays of magnetic
nanostructures or molecules [8, 32].

In conclusion, we have shown how the deposition of a metallic adlayer can modulate
the electronic landscape of a heterostructured interface consisting of Ag/Co/Cu(111). By
spectroscopic mapping of the local density of states we measure the electronic structure of the
silver-capped cobalt nanoislands on Cu(111). We observe a modulation of the energy position,
width and amplitude of the cobalt d-state which is correlated directly with the morphology of the
silver Moiré pattern. Analysis of the amplitude distribution of the electronic states allows us to
relate them to the inner and outer cobalt interface layers. By choosing a different metallic Moiré
system, we expect that it is possible to shape the periodicity of the potential energy landscape.
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