Pressure in stationary and moving fluid

Lab-On-Chip: Lecture 2

Lecture plan

- what is pressure and how it's distributed in static fluid
- water pressure in engineering problems
- buoyancy and archimedes law; stability of floating bodies
- fluid kinematics. $2^{\text {nd }}$ Newton law for fluid particles.
- Bernoulli equation and its application

Fluid Statics

- No shearing stress
- No relative movement between adjacent fluid particles, i.e. static or moving as a single block

Pressure at a point

Question: How pressure depends on the orientation of the plane?

Newton's second law:
$\sum F_{y}=p_{y} \delta x \delta z-p_{s} \delta x \delta \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y}$

$$
\sum F_{z}=p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{z_{z}^{2}} a_{z}
$$

$$
\delta y=\delta s \cos \theta \quad \delta z=\delta s \sin \theta
$$

$$
p_{y}-p_{s}=p a_{y} \frac{\delta y}{2}
$$

$$
p_{z}-p_{s}=\left(p a_{z}+\rho g\right) \frac{\delta z}{2}
$$

$$
\text { if } \delta x, \delta y, \delta z \rightarrow 0, p_{y}=p_{s}, p_{z}=p_{s}
$$

- Pascal's law: pressure doesn't depend on the orientation of plate (i.e. a scalar number) as long as there are no shearing stresses

Basic equation for pressure field

Question: What is the pressure distribution in liquid in absence shearing stress variation from point to point

- Forces acting on a fluid

$$
\left|p+\frac{\partial p}{\partial z} \frac{\delta z}{2}\right| \delta x \delta y
$$ element::

- Surface forces (due to pressure)
- Body forces (due to weight)

$$
\begin{aligned}
& \text { Surface forces: } \\
& \delta F_{y}=\left(p-\frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z-\left(p+\frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z \\
& \delta F_{y}=-\frac{\partial p}{\partial y} \delta y \delta x \delta z \\
& \delta F_{x}=-\frac{\partial p}{\partial x} \delta y \delta x \delta z \\
& \delta F_{z}=-\frac{\partial p}{\partial z} \delta y \delta x \delta z
\end{aligned}
$$

Basic equation for pressure field

Resulting surface force in vector form: $\quad \delta \vec{F}=-\left(\frac{\partial p}{\partial x} \vec{i}+\frac{\partial p}{\partial y} \vec{j}+\frac{\partial p}{\partial z} \vec{k}\right) \delta y \delta x \delta z$
If we define a gradient as: $\quad \nabla=\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial}{\partial z} \vec{k} \quad \frac{\delta \vec{F}}{\delta y \delta x \delta z}=-\nabla p$

The weight of element is: $\quad-\delta W \vec{k}=-\rho g \delta y \delta x \delta z \vec{k}$

Newton's second law:

$$
\begin{aligned}
& \delta \vec{F}-\delta W \vec{k}=\delta m \vec{a} \\
& -\nabla p \delta y \delta x \delta z-\rho g \delta y \delta x \delta z \vec{k}=-\rho g \delta y \delta x \delta z \vec{a}
\end{aligned}
$$

General equation of motion for a fluid w/o

$$
-\nabla p-\rho g \vec{k}=-\rho g \vec{a}
$$ shearing stresses

Pressure variation in a fluid at rest

- At rest $\mathrm{a}=0 \quad-\nabla p-\rho g \vec{k}=0$

$$
\frac{\partial p}{\partial x}=0 \quad \frac{\partial p}{\partial y}=0 \quad \frac{\partial p}{\partial z}=-\rho g
$$

Free surface (pressure $=p_{0}$)

- Incompressible fluid

$$
p_{1}=p_{2}+\rho g h
$$

Fluid statics

Same pressure much higher force!

Fluid equilibrium

Transmission of fluid pressure, e.g. in hydraulic lifts

- Pressure depends on the depth in the solution not on the lateral coordinate

Compressible fluid

- Example: let's check pressure variation in the air (in atmosphere) due to compressibility:
- Much lighter than water, $1.225 \mathrm{~kg} / \mathrm{m}^{3}$ against $1000 \mathrm{~kg} / \mathrm{m}^{3}$ for water
- Pressure variation for small height variation are negligible
- For large height variation compressibility should be taken into account:
$p=\frac{n R T}{V}=\rho R T$
$\frac{d p}{d z}=-\rho g=-\frac{g p}{R T}$
assuming $T=$ const $\Rightarrow p_{2}=p_{1} \exp \left[\frac{g\left(z_{1}-z_{2}\right)}{R T_{0}}\right] ; p(h)=p_{0} e^{-h / H}$

Measurement of pressure

- Pressures can be designated as absolute or gage (gauge) pressures

Absolute zero reference

$$
\begin{array}{r}
p_{\text {atm }}=\gamma h+p_{\text {vapor }} \\
\text { very small! }
\end{array}
$$

Hydrostatic force on a plane surface

- For fluid in rest, there are no shearing stresses present and the force must be perpendicular to the surface.
- Air pressure acts on both sides of the wall and will cancel.

Force acting on a side wall in rectangular container: $\quad F_{R}=p_{a v} A=\rho g \frac{h}{2} b h$

Example: Pressure force and moment acting on aquarium walls

- Force acting on the wall

$$
F_{R}=\int_{A} \rho g h d A=\int_{0}^{H} \rho g(H-y) \cdot b d y=\rho g \frac{H^{2}}{2} b
$$

- Generally: $F_{R}=\rho g \sin \theta \int y d A=\rho g \sin \theta y_{c} A$

Centroid (first moment of the area)

- Momentum of force acting on the wall

$F_{R} y_{R}=\int_{A} \rho g h y d A=\int_{0}^{H} \rho g(H-y) y \cdot b d y=\rho g \frac{H^{3}}{6} b$
$y_{R}=H / 3$
- Generally, $y_{R}=\frac{\int_{A} y^{2} d A}{y_{c} A}$

Pressure force on a curved surface

Buoyant force: Archimedes principle

- when a body is totally or partially submerged a fluid force acting on a body is called buoyant force

$$
\begin{aligned}
& F_{B}=F_{2}-F_{1}-W \\
& F_{2}-F_{1}=\rho g\left(h_{2}-h_{1}\right) A \\
& F_{B}=\rho g\left(h_{2}-h_{1}\right) A-\rho g\left[\left(h_{2}-h_{1}\right) A-\forall\right] \\
& \quad F_{B}=\rho g \forall
\end{aligned}
$$

(d)
(a)

(c)

(b)

Stability of immersed bodies

- Totally immersed body

Stability of immersed bodies

- Floating body

Stable

Elementary fluid dynamics: Bernoulli equation

Bernuolli equation - "the most used and most abused equation in fluid mechanics"

Assumptions:

- steady flow: each fluid particle that passes through a given point will follow a the same path
- inviscid liquid (no viscosity, therefore no thermal conductivity

Net pressure force + Net gravity force

Streamlines

Streamlines: the lines that are tangent to velocity vector through the flow field

Along the streamline

$\sum \delta F_{s}=m a_{s}=\rho \delta V \frac{\partial v}{\partial s} v \quad \sum \delta F_{s}=\delta W_{s}+\delta F_{p s}=-\rho g \delta V \sin (\theta)-\frac{\partial p}{\partial s} \delta V$

$$
-\rho g \sin (\theta)-\frac{\partial p}{\partial s}=\rho \frac{\partial v}{\partial s} v
$$

Balancing ball

Pressure variation along the streamline

- Consider inviscid, incompressible, steady flow along the horizontal streamline A-B in front of a sphere of radius a. Determine pressure variation along the streamline from point A to point B. Assume:

$$
V=V_{0}\left(1+\frac{a^{3}}{x^{3}}\right)
$$

Equation of motion:

$$
\frac{\partial p}{\partial s}=-\rho v \frac{\partial v}{\partial s}
$$

$$
\begin{aligned}
& v \frac{\partial v}{\partial s}=-3 v_{0}^{2}\left(1+\frac{a^{3}}{x^{3}}\right) \frac{a^{3}}{x^{4}} \\
& \frac{\partial p}{\partial x}=\frac{3 \rho a^{3} v_{0}^{2}}{x^{4}}\left(1+\frac{a^{3}}{x^{3}}\right) \\
& \Delta p=\int_{-\infty}^{-a} \frac{3 \rho a^{3} v_{0}^{2}}{x^{4}}\left(1+\frac{a^{3}}{x^{3}}\right) d x=-\rho v_{0}^{2}\left(\frac{a^{3}}{x^{3}}+\frac{1}{2}\left(\frac{a}{x}\right)^{6}\right)
\end{aligned}
$$

Raindrop shape

The actual shape of a raindrop is a result of balance between the surface tension and the air pressure

Bernoulli equation

Integrating $\overbrace{\frac{d z}{d s}}^{-\rho g \sin (\theta)-\frac{\partial p}{\partial s}=\rho \frac{\partial v}{\partial s} v}, \mathrm{n}=$ const along streamline

$$
-\rho g \frac{d z}{d s}-\frac{d p}{d s}=\frac{1}{2} \rho \frac{d v^{2}}{d s}
$$

We find

$$
d p+\frac{1}{2} \rho d\left(v^{2}\right)+\rho g d z=0
$$

Along a streamline

Assuming incompressible flow:

$$
p+\frac{1}{2} \rho v^{2}+\rho g z=\text { const }
$$

Along a streamline

Bernoulli equation

Example: Bicycle

- Let's consider coordinate system fixed to the bike. Now Bernoulli equation can be applied to

$$
p_{2}-p_{1}=\frac{1}{2} \rho v_{0}^{2}
$$

Pressure variation normal to streamline

$$
\sum \delta F_{n}=m a_{n}=\rho \delta V \frac{v^{2}}{R} \sum \delta F_{n}=\delta W_{n}+\delta F_{p n}=-\rho g \delta V \cos (\theta)-\frac{\partial p}{\partial n} \delta V
$$

$$
-\rho g \frac{d z}{d n}-\frac{\partial p}{\partial n}=\rho \frac{v^{2}}{R}
$$

$$
p+\rho \int \frac{v^{2}}{R} d n+\rho g z=\text { const }
$$

Across streamlines
compare

$$
p+\frac{1}{2} \rho v^{2}+\rho g z=\text { const }
$$

Free vortex

Example: pressure variation normal to streamline

- Let's consider 2 types of vortices with the velocity distribution as below:

$$
\begin{array}{cc}
\text { as } \frac{\partial}{\partial n}=-\frac{\partial}{\partial r}, \quad \frac{\partial p}{\partial r}=\frac{\rho V^{2}}{r}=\rho C_{1}^{2} r \\
p=\frac{1}{2} \rho C_{1}^{2}\left(r_{0}{ }^{2}-r^{2}\right)+p_{0}
\end{array}
$$

$$
p+\frac{1}{2} \rho v^{2}+\rho g z=\text { const }
$$

Energy Type

Point	Kinetic $\boldsymbol{\rho} \boldsymbol{V}^{\mathbf{2}} / \mathbf{2}$	Potential $\boldsymbol{\gamma}$	Pressure \boldsymbol{p}
1	Small	Zero	Large
2	Large	Small	Zero
3	Zero	Large	Zero

Static, Stagnation, Dynamic and TotalPressure

- each term in Bernoulli equation has dimensions of pressure and can be interpreted as some sort of pressure

hydrostatic pressure, dynamic pressure,

Stagnation pressure

(a)

(b)

On any body in a flowing fluid there is a stagnation point. Some of the fluid flows "over" and some "under" the body. The dividing line (the stagnation streamline) terminates at the stagnation point on the body.
As indicated by the dye filaments in the water flowing past a streamlined object, the velocity decreases as the fluid approaches the stagnation point. The pressure at the stagnation point (the stagnation pressure) is that pressure obtained when a flowing fluid is decelerated to zero speed by a frictionless process

Pitot-static tube

Steady flow into and out of a tank.

$$
\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}
$$

Determine the flow rate to keep the height constant

(a)

(b)

$$
p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g z_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g z_{2}
$$

$$
Q=A_{1} v_{1}=A_{2} v_{2}
$$

Venturi channel

Measuring flow rate in pipes

$$
\begin{aligned}
& p_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\frac{1}{2} \rho v_{2}^{2} \\
& Q=A_{1} v_{1}=A_{2} v_{2}
\end{aligned}
$$

Restriction on use of Bernoulli equation

- Incompressible flow
- Steady flow
- Application of Bernoulli equation across the stream line is possible only in irrotational flow
- Energy should be conserved along the streamline (inviscid flow + no active devices).

Probelms

- 2.43 Pipe A contains gasoline (SG=0.7), pipe B contains oil (SG=0.9). Determine new differential reading of pressure in A decreased by 25 kPa .
- 2.61 An open tank contains gasoline $\rho=700 \mathrm{~kg} / \mathrm{cm}$ at a depth of 4 m . The gate is 4 m high and 2 m wide. Water is slowly added to the empty side of the tank. At what depth h the gate will open.

Problems

- 3.71 calculate h. Assume water inviscid and incompressible.

