
Lecture 4

Differential Analysis of Fluid Flow
Navier-Stockes equation



A jet of fluid deflected by an 
object puts a force on the object. 
This force is the result of the 
change of momentum of the fluid 
and can happen even though the 
speed (magnitude of velocity) 
remains constant. 

Newton second law and conservation of 
momentum & momentum-of-momentum
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A=0.06 m2

V1=10 m/s

Example: Linear momentum
Determine anchoring forces required to keep the vane stationary vs angle Q. 
Neglect gravity and viscosity.
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Linear momentum: comments

• Linear momentum is a vector
• As normal vector points outwards, momentum flow inside a 

CV involves negative V·n product and moment flow outside 
of a CV involves a positive V·n product.

• The time rate of change of the linear momentum of the 
contents of a nondeforming CV is zero for steady flow

• Forces due to atmospheric pressure on the CV may need 
to be considered



Example: Linear momentum – taking into account weight, 
pressure and change in speed

• Determine the anchoring force required to hold in place a conical nozzle 
attached to the end of the laboratorial sink facet. The water flow rate is 0.6 
l/s, nozzle mass 0.1kg. The pressure at the section (1) is 464 kPa.   



Example: Linear momentum – taking into account weight, 
pressure and change in speed
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Moment-of-Momentum Equation

The net rate of flow of moment-of-momentum through a control surface equals the net 
torque acting on the contents of the control volume.
Water enters the rotating arm of a lawn sprinkler along the axis of rotation with no 
angular momentum about the axis. Thus, with negligible frictional torque on the rotating 
arm, the absolute velocity of the water exiting at the end of the arm must be in the radial 
direction (i.e., with zero angular momentum also). Since the sprinkler arms are angled 
"backwards", the arms must therefore rotate so that the circumferential velocity of the 
exit nozzle (radius times angular velocity) equals the oppositely directed circumferential 
water velocity.



The Energy Equation
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• The First Law of thermodynamics
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Power transfer due to normal and tangential stress

• Work transfer rate (i.e. power) can be transferred 
through a rotating shaft (e.g. turbines, propellers etc)

• or through the work of 
normal stress

shaft shaftW T w= where Tshaft – torque and w – angular velocity

normal normal
stress stress

W F V n A V pV n Aδ δ σ δ δ= ⋅ = ⋅ = − ⋅on a single particle:

integrating: normal
stress CS

W pV ndA= − ⋅∫
tangential stress: tangential tangential

stress stress
0W F Vδ δ= ⋅ =



Power transfer due to normal and tangential stress

• The first law of themrodynamics can be 
expressed now as:
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• so, we can obtain the energy equation



Application of energy equation
• Let’s consider a steady (in the 

mean, still can be cyclical) flow 
and take a one stream

• Product V·n is non-zero only 
where liquid crosses the CS; if 
we have only one stream 
entering and leaving control 
volume:
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Example: Temperature change at a water fall

• find the temperature 
change after a water 
fall, cwater=4.19 kJ/kg·K
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Energy equation vs Bernoulli equation
• Let’s return to our one-stream volume, steady flow (also no 

shaft power)
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Energy transfer

Work must be done on the device shown to turn it over because the system gains 
potential energy as the heavy (dark) liquid is raised above the light (clear) liquid. This 
potential energy is converted into kinetic energy which is either dissipated due to friction 
as the fluid flows down the ramp or is converted into power by the turbine and then 
dissipated by friction. The fluid finally becomes stationary again. The initial work done in 
turning it over eventually results in a very slight increase in the system temperature 



Second law of thermodynamics

• Let’s apply “stream line energy equation” to an infinitesimally thin volume
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Example: Fan Efficiency
• An axial-flow 

ventilating fan is 
driven by the 0.4kW 
motor and producing 
12m/s speed in a 
0.6m diameter 
channel. Determine 
the useful effect and 
efficiency. Air density 
is 1.23 kg/m3.

2 2

shaft
net in 2 2

out out in in
out in

p V p Vw loss gz gz
ρ ρ

⎛ ⎞ ⎛ ⎞
− = + + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

shaft
net in

shaft
net in

W
w

m
=



Differential analysis of Fluid Flow

• The aim: to produce differential equation 
describing the motion of fluid in detail



Fluid Element Kinematics

• Any fluid element motion can be represented 
as consisting of translation, linear deformation, 
rotation and angular deformation



Velocity and acceleration field

• Material derivative
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Linear motion and deformation
• Let’s consider stretching of a fluid element under velocity 

gradient in one direction
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Angular motion and deformation

Fluid elements located in a moving fluid move with the fluid and generally 
undergo a change in shape (angular deformation).
A small rectangular fluid element is located in the space between concentric 
cylinders. The inner wall is fixed. As the outer wall moves, the fluid element 
undergoes an angular deformation. The rate at which the corner angles change 
(rate of angular deformation) is related to the shear stress causing the 
deformation



Angular motion and deformation

• Rotation is defined as the average of those velocities:
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Angular motion and deformation

• Vorticity is defined as twice the rotation vector
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Angular motion and deformation

• Rate of shearing strain (or rate of angular 
deformation) can be defined as sum of fluid element 
rotations:
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Conservation of mass
• As we found before: 0Sys
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Conservation of mass
• Incompressible flow
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• Incompressible flow in cylindrical coordinates



Stream function
• 2D incompressible flow
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Stream function

• Flow between streamlines
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Description of forces

Forces

Body forces – distributed 
through the element, e.g. 
Gravity

mδ δ=F g

Surface forces – result 
of interaction with the 
surrounding elements: 
e.g. Stress

Linear forces: Surface tension

Normal stress

Shearing stresses



Stress acting on a fluidic element

• normal stress
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Stresses: double subscript notation
• normal stress: xxσ

• shearing stress: xy xzτ τ

normal to 
the plane

direction 
of stress

sign convention: positive stress is directed in positive axis 
directions if surface normal is pointing in the positive direction



Stress tensor
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• To define stress at a point we need to define “stress vector”
for all 3 perpendicular planes passing through the point
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Force on a fluid element
• To find force in each direction we need to sum all  forces 

(normal and shearing) acting in the same direction



Problems
• 6.2 A certain flow field is given by equation:

Determine expression for local and convective components of 
the acceleration in x and y directions

2(3 1) 6V x i xyj= + −

• 5.102 Water flows steadily down 
the inclined pump. Determine: 
– The pressure difference, p1-p2;
– The loss between sections 1 and 2
– The axial force exerted on the pipe 

by water



Problems

• 6.22 The stream function for an 
incompressible flow

sketch the streamline passing through the 
origin; determine of flow across the strait 
path AB

• 6.4 The components of the velocity in the flow field are given 
by:

• Determine the volumetric dilation rate and interpret the results. 
• Determine the expression for the rotation vector. Is the flow 

irrotational?
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