Aggregation of Amphiphilic Molecules Into Micelles, Bilayers, Vesicles And Biological Membranes

Colloids, Chapter 17
Contents

- Equilibrium considerations of amphiphilic structures
- Optimal head-group area
- Geometric packing considerations
- Spherical micelles
- Non-spherical and cylindrical micelles
- Vesicles
- Factors affecting changes from one structure to another
- Curvature elasticity of bilayers and membranes
- Biological membranes
- Membrane lipids
- Membrane proteins and membrane structure
Equilibrium considerations of amphiphilic structures

- Amphiphilic molecules?
 - Can associate into a variety of structures in aqueous solutions
 - Can change from one form to the other according to the exterior conditions, e.g. pH or electrolyte concentration
 - e.g. surfactants, lipids, copolymers, proteins

- Amphiphilic molecules
 - thermodynamics of self-assembly
 - intra-aggregate forces
 - inter-aggregate forces

=> Equilibrium structures of the system
Equilibrium considerations of amphiphilic structures

- Reference to Gibbs phase rule

Amphiphilic structures can be:
- hard and solid-like
- soft or fluid-like
- molecules in thermal motion

1. No definite size or shape
2. No definite size
3. Only distribution about some mean value
4. Equilibrium distribution to peak at more than one value of N (aggregation number)
Equilibrium considerations of Amphiphilic Structures

- Equilibrium distribution can peak at more than one N value
- Small aggregates \rightarrow micelles
- Thermodynamic equilibrium with larger structures
- Vesicles or liposomes
- Not a separate phase
- Structure size does not play a role in the thermodynamic definition of a separate phase
- Two and three phase systems can occur when
 - Monomers, micelles, and vesicles separate out in equilibrium
 - This can take a very long time
Optimal headgroup area

- The major force: hydrophobic attraction (at the hydrocarbon-water interface)
- Two ‘opposing forces’
 - attraction: between hydrocarbon
 - repulsion: between head-group
- Acting region: interfacial region

- Interfacial area \(A \)/molecule
 - attractive force; decrease Interfacial area \(A \)/molecule
 - repulsive force; increase Interfacial area \(A \)/molecule
Optimal head-group area

- Attractive interaction
 - hydrophobic or interfacial tension
 - positive interfacial free energy per unit area
 - (hydrocarbon – water interface $\gamma \approx 50\text{mJ/m}^2$)
 - (headgroup – water interface $\gamma \approx 20\text{mJ/m}^2$)
 - (C=C bonds – water interface $\gamma \approx 50\text{mJ/m}^2$)

- Total interfacial free energy ($\mu_N \circ$)
 - attractive interfacial free energy contribution: γa ($\gamma \approx 20\sim50\text{mJ/m}^2$)
 - repulsive interfacial free energy contribution: K/a
 - Too difficult to formulate explicitly
 - steric contribution, hydration force contribution (mobile headgroups),
 - electrostatic double-layer contribution charged headgroups
 - two-dimensional van der Waals equation of state
 => the first term in any energy expansion $\propto 1/$surface area occupied per headgroup a (cf. pressure $\propto 1/a^2$)
Optimal head-group area

- Total interfacial free energy per molecule in an aggregate can be written to first order as,
 \[\mu^o_n = \gamma a + K/a \] \hspace{1cm} (17.1)

- Minimum energy
 \[\mu^o_n (\text{min}) = 2\gamma a_o, \quad a_o = \sqrt{\frac{k}{\gamma}} \] \hspace{1cm} (17.2)

 (\(a_o \): optimal surface area per molecule)

 \[\mu^o_n = 2\gamma a_o + \frac{\gamma}{a} \left(a - a_o \right)^2 \] \hspace{1cm} (17.3)

 (Unknown constant K: eliminated)

 (\(\gamma \) and \(a_0 \): measurable parameters)
Optimal head-group area

- a_0: optimal surface area per molecule
 - total interfacial energy per lipid molecule is minimum

- optimal area should not strongly depend on the chain length or chain number (in fluid hydrocarbon)

- lipid interaction energy between lipids
 - minimum at optimal surface area
 - parabolically vary

- (Eq17.3) ignore three second-order effects
 1. Specific head-group interactions such as ionic bridging
 2. Specific chain-chain interactions (never perfectly fluid hydrocarbon)
 3. The effect of surface curvature on μ_N
Geometric packing considerations

- Geometry or Packing properties
 1. Optimal area : a_0
 2. Volume of hydrocarbon chain or chains : v
 3. Critical chain length : l_c

- Critical chain length l_c
 - How far the chains can extend; smaller extensions are allow?
 - Semi-empirical parameter
 - Saturated hydrocarbon chain (carbon number = n) (by Tanford)

 $$l_c \leq l_{\text{max}} \approx (0.154 + 0.1265n) \text{ nm}$$

 $$v \approx (27.4 + 26.9n) \times 10^{-3} \text{ n m}^3$$

 $$\Rightarrow \text{ Larger n} \ , \ \frac{v}{l_c} \approx 0.21 \text{ n m}^2 \approx \text{ constant} \rightarrow \text{minimum cross-sectional area}$$
Geometric packing considerations

- Optimal surface area a_0, hydrocarbon chain volume v, critical length l_c are determine their packing structures

 ✓ These parameters can be satisfied by a variety of different structures
 ✓ For all these structures μ_{N^0} same. (since a_0 is the same)
 ✓ Entropy favors structure with the smallest aggregation number $N=M$, this structure is unique!
 ✓ Larger structure will be entropically unfavored
 ✓ Smaller structures, packing constraints force a above a_0 energetically unfavoured

- Packing parameter (or shape factor) $- v/ a_0 l_c$

 ✓ $(v/ a_0 l_c < 1/3)$: spherical micelles
 ✓ $(1/3 < v/ a_0 l_c < 1/2)$: non-spherical micelles
 ✓ $(1/2 < v/ a_0 l_c < 1)$: vesicles or bilayers
 ✓ $(1 < v/ a_0 l_c)$: ‘inverted’ structure

- All structures have minimum sized aggregation
Spherical micelles

- Spherical micelles
 - Optimal surface area \((a_0) \) sufficiently large
 - Hydrocarbon volume \(v \) sufficiently small
 - Radius of micelle, \(R < l_c \)

- From simple geometry we have
- For a spherical micelle
- With Radius \(R \) and \(a \)
- Mean aggregation number \(M \)

\[
M = \frac{4\pi R^2}{a_0} = \frac{4\pi R^3}{3v}
\]

\[
R = \frac{3v}{a_0}, \quad \frac{v}{a_0 l_c} < \frac{1}{3}
\]
Spherical micelles

- Example) SDS (12-carbon chain sodium dodecyl sulphate surfactant)
 - $M \approx 74$
 - $n=12 \rightarrow v \approx 0.3502 \, n^3, \, a_0 \approx 0.57 \, n^2, \, l_c \approx 1.67 \, nm, \, R \approx 1.84 \, nm$
 - $v/ a_0 l_c \approx 0.37 > 1/3$
 - ⇒ Just cannot pack into spheres, slightly non-spherical

Standard deviation can be obtained at $N \approx M$, where $a = a_0$

\[
\mu_N^o = \mu_M^o + \frac{\gamma}{a} (a-a_0)^2
\]
\[
N = 4\pi R^2 / a = 4\pi R^3 / 3v = 36\pi v^2 / a^3
\]
\[
\mu_N^o - \mu_M^o = \Lambda (N-M)^2, \quad \Lambda = \gamma a_0 / 9 M^2
\]
\[
\sigma = \sqrt{(9kT / 2\gamma a_0) M}
\]

($\gamma \approx 20\sim50 \, mJ/\, m^2$), $a_0 \approx 0.06 \, n^2$

\[
\sigma \approx \sqrt{M}
\]
Non-spherical and cylindrical micelles

- Most spherical micelles forming lipid – **charged head-group** (since large head-group area a_0
- Add salt to Charged head-group lipid
 - partially screens the electrostatic inter-headgroup repulsion
 - reduce headgroup area: $1/3 < \sqrt[2]{a_0 l_c} < 1/2$
 - cannot pack into spherical micelles
 - can form cylindrical (rod-like) micelles

- Rod-like aggregate – unusual properties
 1. Large and polydisperse
 2. $\langle N \rangle = 2\sqrt{C e^{\alpha}}$ above CMC
 => due entirely to ‘end effects’
Non-spherical and cylindrical micelles

- **End effects**
 - At each end the lipids are forced to pack into hemispherical caps with a headgroup area \(a \) determined by \(\frac{v}{a_0 l_c} = \frac{1}{3} \), so that \(a > a_0 \) since \(\frac{v}{a_0 l_c} > \frac{1}{3} \).
 - The unfavourable energy of these end lipids determines the magnitude of the interaction parameter \(a \) in \(\langle N \rangle = 2\sqrt{C e^a} \).

- **Cylindrical micelles**
 - Sensitive to
 - temperature changing
 - chain length
 - ionic strength (for ionic lipids)

- **Toroidal micelles (experimentally not observed yet)**
 - 2D vesicle, end effect minimum
Bilayers

- Bilayer forming lipids
 - \(\frac{1}{2} < v/a_0 l_c < 1 \)
 - small \(a_0 \)
 - too bulky hydrocarbon chain
 - tow chain lipids – almost same \(a_0, l_c \) but \(v \) is twice
 - Twice chain lengths
Membrane
Bilayers

- Doubling of the chains affects other aggregate properties
 1. increase hydrophobicity -> decrease CMC
 - (biologically very important)
 - common micelle forming lipids CMC (10^{-2}~10^{-5}M)
 - bilayer forming lipids CMC (10^{-6}~10^{-10}M)
 2. increasing ‘lifetimes’ (or residence times) τ_r
 - τ_r (micelles) $\sim 55 \times 10^{-9}/10^{-3} \sim 10^{-4} \text{ s}$
 - τ_r (bilayer) $\sim 55 \times 10^{-7}/10^{-10} \sim 10^{+4} \text{ s}$
 - suggests exchange rates should fall a factor of about 4-10 per two CH$_2$ groups added to the chain
 - residence times depend on the individual molecules and not on the structures
 3. ‘transbilayer lipid exchange’
 - ‘flip-flop’ of molecules from one side to the another
 - diffusive exchange process
 - diffusion of lipids around the walls transient pores
Bilayers

- Bilayer is elastically stretched
 - elastic energy
 \[
 \text{elastic energy} = \frac{1}{2} k_a (a-a_o)^2 / a
 \]
 - Compressibility modulus \(k_a \)
 \[
 k_a \approx 2\gamma \quad \text{per monolayer}, \approx 4\gamma \quad \text{per bilayer}
 \]
- Elastic bending or curvature modulus, \(k_b \)
 - \(K_b \) Curved bilayer vesicle

- Fluid-like properties
 - Assume that hydrocarbon chains in micelles and bilayers are in the fluid state
 - Fluid at Room temperature
 - almost micelle forming single-chain surfactant
 - bilayer forming double-chain lipid
 - Fluid at lower temperature : unsaturated or branched chained lipid
* Chain Melting Temperatures T_c

<table>
<thead>
<tr>
<th>Lipid (giving number of carbons per chain)</th>
<th>Headgroup type* and chain melting temperature, T_c (°C)</th>
<th>Melting point of n-alkane with same number of carbon atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilauroyl (12)</td>
<td>-2</td>
<td>-9.6</td>
</tr>
<tr>
<td>Dimyristoyl (14)</td>
<td>23</td>
<td>5.9</td>
</tr>
<tr>
<td>Dipalmitoyl (16)</td>
<td>41</td>
<td>18.2</td>
</tr>
<tr>
<td>Distearoyl (18)</td>
<td>55</td>
<td>28.2</td>
</tr>
<tr>
<td>Unsaturated (cis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioleoyl (18)</td>
<td>-22</td>
<td>-30</td>
</tr>
</tbody>
</table>

* PC: phosphatidylcholine (zwitterionic); PG−: phosphatidylglycerol (negatively charged); PS−: phosphatidylinositol (negatively charged); PE: phosphatidylethanolamine (zwitterionic).

* Structure of Vesicle

Bilayer Vesicle (Closed Uni-Lamellar)

Interior Aqueous Solution

R₁ Chain

R₂ Chain

Hydrophobic Tail

Phospholipid

Hydrophilic Head Group
Vesicles

- Driving force for vesicle formation: elimination of the energetically unfavorable edges

- What determines the radii of vesicles?
 - Packing parameter: \(\frac{v}{a_0 l_c} \)
 - \(1 \rightarrow \) bilayer
 - \(<1 \rightarrow \) vesicles
 - \(>1 \rightarrow \) inverted micellar structure/precipitation

- Critical radius by geometric consideration for \(\frac{1}{2} < \frac{v}{a_0 l_c} < 1 \)
 \[
 R_c \approx l_c \left[\frac{3 + \sqrt{3(4v/a_0 l_c - 1)}}{6(1 - v/a_0 l_c)} \right] \approx \frac{l_c}{(1 - v/a_0 l_c)}
 \]

- Aggregation number
 \[
 N \approx 4\pi \left[R_c^2 + (R_c - t)^2 \right] / a_o \\
 \text{here, } t \approx 2v/a_o
 \] Bilayer hydrocarbon thickness
Table 17.2 Mean (dynamic) packing shapes of lipids and the structures they form

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Critical packing parameter ϕ_{a_0}/ϕ_c</th>
<th>Critical packing shape</th>
<th>Structures formed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-chained lipids (surfactants) with large head-group areas:</td>
<td>$< 1/3$</td>
<td>Cone</td>
<td>Spherical micelles</td>
</tr>
<tr>
<td>SOS in low salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-chained lipids with small head group areas:</td>
<td></td>
<td>Truncated cone</td>
<td>Cylindrical micelles</td>
</tr>
<tr>
<td>$\text{SOS and CTAB in high salt, nonionic lipids}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-chained lipids with large head-group areas, fluid chains:</td>
<td>$1/2 - 1$</td>
<td>Cylinder</td>
<td>Flexible bilayers, vesicles</td>
</tr>
<tr>
<td>$\text{Phosphatidyl choline (lecithin), phosphatidyl serine,}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{phosphatidyl glycerol, phosphatidyl inositol,}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{phosphatidic acid, sphingomyelin, DGDGa,}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{dihexadecyl phosphatide, dialkyl dimethyl ammonium}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-chained lipids with small head-group areas, anionic lipids in high salt, saturated frozen chains:</td>
<td>≈ 1</td>
<td>Cylinder</td>
<td>Inverted micelles</td>
</tr>
<tr>
<td>$\text{Phosphatidyl ethanolamine, phosphatidyl serine + Ca2+}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-chained lipids with small head-group areas, nonionic lipids, poly (cis) unsaturated chains, high T: unsat. phosphatidyl ethanolamine, cardiolipin + Ca2+ phosphatidic acid + Ca2+ cholesterol, MGDGb</td>
<td>> 1</td>
<td>Inverted truncated cone or wedge</td>
<td>Inverted micelles</td>
</tr>
</tbody>
</table>

a DGDG, digalactosyl diglyceride, diglucosyl diglyceride
b MGDG, monogalactosyl diglyceride, monoglucosyl diglyceride.
Factors Affecting Changes from One Structure to Another

I. Headgroup area: small headgroup areas (high $\nu/a_0 l_c$) \rightarrow large vesicles, less-curved bilayers, or inverted micellar phases

II. Chain packing: chain branching and unsaturation \rightarrow reduction of l_c \rightarrow increase of $\nu/a_0 l_c$

III. Temperature: T \rightarrow affecting both a_0 and l_c
 - increase of T \rightarrow reduction of l_c by the hydrocarbon chain motion
 - increase of T \rightarrow hydrophobic group: decrease of a_0, hydrophilic group: increase of a_0

IV. Lipid mixture: The size of vesicles can be conveniently modulated by adding another component (cosurfactant).
Curvature Elasticity of Bilayers & Membranes

- More delicate treatment

- Headgroup repulsion
- Chain repulsion

Additional curvature dependence of μ^0_N on R

$$\Delta E = -2\gamma t D / R^2 = k_b / 2 R^2 \quad \text{per unit area}$$

- Bending modulus k_b
 - headgroup repulsion: $k_b < 0$
 - chain repulsion: $k_b > 0$
Positive Curvature Modulus ($k_b > 0$)

- **Interaction energy** per vesicle of large radius R ($R > R_c$)

\[N \mu_N^0 = N \mu_\infty^0 + \left(\frac{k_b}{R^2} \right) 4\pi R^2 = N \mu_\infty^0 + 2\pi k_b \]

\[\mu_N^0 = \mu_\infty^0 + 2\pi k_b / N, \quad \alpha = 2\pi k_b / kT \]

Mean aggregation number \(M = \sqrt{C e^\alpha} = e^{\pi k_b / kT} \sqrt{C} \)

vesicle distribution \(X_N / N = \text{Const.} e^{-N/M} \)

- In case of dilute lipid concentration $C = 10^{-4}$ moldm$^{-3}$
 - $k_b > 2 \times 10^{-20}$ J \rightarrow vesicles will be large ($M > 10,000$), polydisperse, and $R \propto C^{1/4}$.
 - $k_b < 2 \times 10^{-20}$ J \rightarrow small and monodisperse (No significant effect due to low bending modulus)
Negative Curvature Modulus \((k_b < 0)\)

- Bending of a bilayer right from the start
- Smaller vesicles
- For large repulsive headgroups and shorter hydrocarbon chains \(\rightarrow\) smaller vesicles
- Below a certain chain length \(\rightarrow\) cylindrical or spherical micelles
Biological Membranes

- The most common cellular structure in both animals and plants.

- Various functions such as mobility, food entrapment, energy transduction, immunological recognition, nerve conduction, and biosynthesis.
Membrane Lipids

- **Double-chained** phospholipids or glycolipids with 16 to 18 carbons per chain
- **Properties**
 - Self-assembly of biological lipids into thin bilayer membranes
 - Extremely low CMC
 - Fluid state at physiological temperatures by unsaturation or branching

- Mixture of two different lipids
 - Phosphatidylcholine (PC): cone-shaped ($\nu/a_0l_c < 1$)
 - Phosphatidylethanolamine (PE): wedg-shaped ($\nu/a_0l_c > 1$)
Membrane Proteins and Membrane Structure

- Membrane proteins are long-chained polypeptide polymers consisting of a long string of amino acid residues.
- Protein structures
 - Primary: residue sequence
 - Secondary: α-helical or β-pleated sheets
 - Tertiary: globule

- Incorporation of proteins into a lipid bilayer → stress induction (Boundary lipids)

- Consideration of proteins within a fluid membrane: coexistence of attractive and repulsive forces
Membrane proteins and Membrane Structures

- Both the lipids and the proteins move about rapidly in the plane of the membrane.
- Heterogeneous domains and local clustering of lipids and proteins

Mean packing conformations of mixed lipid and lipid-protein membranes, showing how local packing stresses may cause clustering of specific lipids and/or non-bilayer shapes.