
3 Thermodynamics of interfaces

In this chapter we introduce the basic thermodynamics of interfaces. The purpose is to present
some important equations, learn to apply them, provide a broader base of understanding, and
point out some of the difficulties. For a thorough understanding, further reading is certainly
necessary (see for example Ref. [6]).

3.1 The surface excess

The presence of an interface influences generally all thermodynamic parameters of a system.
To consider the thermodynamics of a system with an interface, we divide that system into
three parts: The two bulk phases with volumes Va and V^, and the interface a.

Gibbs ideal interface Guggenheim

Figure 3.1: Left: In Gibbs convention the two phases a and (3 are separated by an ideal interface
a which is infinitely thin. Right: Guggenheim explicitly treated an extended interphase with a
volume.

In this introduction we adhere to the Gibbs1 convention [241]. In this convention the two
phases a and /? are thought to be separated by an infinitesimal thin boundary layer, the Gibbs
dividing plane. This is of course an idealization and the Gibbs dividing plane is also called an
ideal interface. There are alternative models. Guggenheim, for example, takes the extended
interfacial region, including its volume, explicitly into account [41,42]. We use the Gibbs
model because in most applications it is more practical.

In the Gibbs model the interface is ideally thin (Va — 0) and the total volume is

V = Va + V13 (3.1)

Josiah Willard Gibbs, 1839-1903. American mathematician and physicist, Yale College.
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All other extensive quantities can be written as a sum of three components: one of bulk
phase a, one of bulk phase /?, and one of the interfacial region <j. Examples are the inter-
nal energy U, the number of molecules of the xth substance TV^, and the entropy S:

U = U0i + U(3 + U° (3.2)

Ni = N? + N? + TVf (3.3)

S = Sa + S? + Sa . (3.4)

The contributions of the two phases and of the interface are derived as follows. Let ua and iiP
be the internal energies per unit volume of the two phases. The internal energies ua and u^
are determined from the homogeneous bulk regions of the two phases. Close to the interface
they might be different. Still, we take the contribution of the volume phases to the total energy
of the system as uaVa + u13 V&. The internal energy of the interface is

Ua = U - uaVa - u^VP (3.5)

At an interface, the molecular constitution changes. The concentration (number of molecules
per unit volume) of the ith material is, in the two phases, respectively cf and cf. The addi-
tional quantity that is present in the system due to the interface is

N? = TV, - cfVa - c/fvP (3.6)

With Eq. (3.6) it is possible to define something like a surface concentration, the so called
interfacial excess:

N°r< = -f (3.7)
A

A is the interfacial area. The interfacial excess is given as a number of molecules per unit area
(m~2) or in mol/m2.

In the Gibbs model of an ideal interface there is one problem: where precisely do we
position the ideal interface? Let us therefore look at a liquid-vapor interface of a pure liquid
more closely. The density decreases continuously from the high density of the bulk liquid to
the low density of the bulk vapor (see Fig. 3.2). There could even be a density maximum in
between since -it should in principle be possible to have an increased density at the interface.
It is natural to place the ideal interface in the middle of the interfacial region so that F = 0. In
this case the two dotted regions, left and right from the ideal interface, are equal in size. If the
ideal interface is placed more into the vapor phase the total number of molecules extrapolated
from the bulk densities is higher than the real number of molecules, TV < caVa + c^V^.
Therefore the surface excess is negative. Vice versa: if the ideal interface is placed more into
the liquid phase, the total number of molecules extrapolated from the bulk densities is lower
than the real number of molecules, TV > caVa + cPV&, and the surface excess is positive.

Let us now turn to two- or multi-component liquids such as a solvent with dissolved sub-
stances. Substituting Va = V — V@ we can write

N? = JVk - c?V + (c? - cf ) V? (3.8)
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Figure 3.2: Dependence of the
surface excess F on the position of
the Gibbs dividing plane.

for the first component which is taken to be the solvent. For all other components we get
similar equations.

(3.9)

All quantities on the right side of the equations, except V^, do not depend on the position
of the dividing plane and are measurable quantities. Only V^, depends on the choice of the
dividing plane. We can eliminate V& by multiplying Eq. (3.8) by (cf — cf)/(cf — Cjj and
subtracting Eq. (3.8) form Eq. (3.9):

=Ni- cV - (3.10)
- C

The right side of the equation does not depend on the position of the Gibbs dividing plane and
thus, also, the left side is invariant. We divide this quantity by the surface area and obtain the
invariant quantity

(3.11)
ra J3
Cl ~ Cl

It is called relative adsorption of component i with respect to component 1. This is an
important quantity because it can be determined experimentally! As we shall see later it can
be measured by determining the surface tension of a liquid versus the concentration of the
solute.
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Q Example 3.1. To show how our choice of the position of the Gibbs dividing plane influ-
ences the surface excess , we consider an equimolar mixture of ethanol and water (p. 25
of Ref. [43]). If the position of the ideal interface is such that F//2o = 0, one finds exper-
imentally that FEthanol = 9-5 x 10~7 mol/m2. If the interface is placed 1 nm outward,
then we obtain FEthanol — — 130 x 10~7 mol/m2.

For the case when component 1 is a solvent in which all other components are dissolved
and thus have a much lower concentration than component 1, we choose the position of the
dividing plane such that FJ = 0 and from Eq. (3.11) we get

r ( J - j T^O" . /O 1 0\i = 1, (3.12)

In Fig. 3.3 the concentration profiles for solute 2 dissolved in liquid 1 are illustrated. We
assume that the solute is enriched at the surface. The area of the dotted region corresponds to
the surface excess Fi ' of solute.

Gibbs dividing
interface

Figure 3.3: Concentration profile of a solute (2) dissolved in a liquid (1). The area of the dotted
(i)region corresponds to the surface excess P(
2 ' of solute.

3.2 Fundamental thermodynamic relations

3.2.1 Internal energy and Helmholtz energy

Let us consider a process in a system with two phases, a and (3, which are divided by an
interface; we could, for instance, do work on that system. As a consequence the state quantities
like the internal energy, the entropy, etc. change. How do they change and how can we d'escribe
this mathematically? In contrast to the usual "bulk" thermodynamics we have to take the
interface into account.

We start the analysis with the internal energy. We first analyze the internal energy, and not
the enthalpy, the Helmholtz energy, or the Gibbs energy, because the internal energy only con-
tains extensive quantities (S, V, TV^, A) as variables. This simplifies the following calculation.
A variation of the internal energy of a two-phase system is, according to the first and second
principle of thermodynamics,

dU = TdS - PdV + ]T HidNi + dW (3.13)
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Here, W is the work done on the system without expansion work PdV. It contains the sur-
face work 7cL4. The sum runs over all components, that means over all substances that are
chemically different. /^ is the chemical potential of the xth substance.

We split the internal energy:

dU = dUa + dUP + dU°

= TdSa + ̂  // fdJVf - PadVa + Td5^ (3.14)

TdSa + //f dWf +

The Td£ terms stands for the change in internal energy, which is caused by an entropy change,
e. g., a heat flow. The ^dNi terms consider the energy change caused by a change in the
composition. Both PdV terms correspond to the volume- work of the two phases. Since the
interface is infinitely thin it cannot perform volume work.

With dV = dVa + dVP => dVa = dV - dV^ and summing up the' entropy terms, the
equation simplifies as:

dU = TdS -PadV - pP - P

Now we consider the Helmholtz energy. In general, the change in Helmholtz energy of a
system is dF — —SdT — PdV + Y^ l^idNi + dW . For a two-phase system with one interface
it follows that

dF = dFa^dF^^dF(T

-SdT - PadV - (pP - P° /

When the temperature and volume are constant (dV = 0, dT = 0) the first two terms are zero.

3.2.2 Equilibrium conditions

In equilibrium Eq. (3.16) can be simplified even further because the chemical potentials in
the three phases are equal. This can easily be demonstrated. We assume that there is no
exchange of material with the outside world (dNi = 0); we have a closed system. Then the
three parameters TVf, TVf, and TVf are not independent because A^ = TVf + TVf + TVf is
constant. Only two at a time, as an example Nj* and N?, can be varied independently. TVf is
then determined by the other two amounts because dN? = —dN^ — dNf. Therefore we can
write:

At equilibrium, with constant volume, temperature, and constant amounts of material, the
Helmholtz energy is minimal. At a minimum the derivatives with respect to all independent
variables must be zero:
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It follows that

P?=tf = 'rf = fr (3.19)

Hence, in equilibrium the chemical potentials are the same everywhere in the system. With
this, we can further simplify Eq. (3.17):

dF = - (p - Pa] dV + 7cL4 (3.20)

This equation allows us to define the surface tension based on thermodynamics:

7JA
= 7 (3-21)

The surface tension tells us how the Helmholtz energy of the system changes when increasing
the surface area while keeping the temperature, the total volume, the volume of phase (3 and
the total amounts of all components constant.

Is this a useful equation? It is not so difficult to control T, V, and Ni but V@ might be
difficult to keep constant. As we shall see later, for planar surfaces (and practically those
which have small curvatures) the condition that V@ has to be kept constant can be dropped.

Question: Why is it not possible, using the same argument, e. g. dF/dA = 0, to conclude
that at equilibrium 7 must be zero? Explanation: The surface area A is not an independent
parameter. Surface A and the volume V@ are related. If the volume of a body changes, in
general its surface area also changes. V@ and A can thus not be varied independently. In fact,
a law of differential geometry says that in general dV/dA = (1/Ri + 1/^2) •

At this point we mention a simple, alternative way of deriving the Young-Laplace equation.
In equilibrium we have dF/dA = 0. It leads to

(322)( JdA~dA dVf dA " dA

Inserting dV^/dA = (1/Ri + l/R2)~
l, taking AP = P^ - Pa, and rearranging the equa-

tion directly leads to the Young-Laplace equation.

3.2.3 Location of the interface

At this point we should note that, fixing the bending radii, we define the location of the inter-
face. A possible choice for the ideal interface is the one that is defined by the Young-Laplace
equation. If the choice for the interface is different, the value for the surface tension must be
changed accordingly. Otherwise the Young-Laplace equation would no longer be valid. All
this can be illustrated with the example of a spherical drop [44]. We can, for instance, consider
the evaporation or the condensation of liquid from, or to, a drop of radius r. There we have

V ^ , , .4 = ̂  - - (3.3,

If the interface is chosen to be at a radius r7, then the corresponding value for dV^ /dA is
r'/2. The pressure difference P13 — Pa can in principle be measured. This implies that
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Vapor

Figure 3.4: A drop in its vapor phase.

P j - Pa = 27/r and P13 - Pa = 27'/r' are both valid at the same time. This is only
possible if, dependent on the radius, one accepts a different interfacial tension. Therefore we
used 7' in the second equation. In the case of a curved surface, the interfacial tension depends
oh the location of the Gibbs dividing plane! In the case of flat surfaces this problem does
not occur. There, the pressure difference is zero and the surface tension is independent of the
location of the ideal interface.

A possible objection could be that the surface tension is measurable and thus the Laplace
equation assigns the location of the ideal interface. But this is not true. The only quantity
that can be measured is mechanical work and the forces acting during the process. For curved
surfaces it is not possible to divide volume and surface work. Therefore, it is not possible to
measure only the surface tension.

3.2.4 Gibbs energy and definition of the surface tension

In this chapter we introduce a more useful equation for the surface tension. This we do in
two steps. First, we seek an equation for the change in the Gibbs energy. The Gibbs energy
G is usually more important than F because its natural variables, T and P, are constant in
most applications. Second, we have just learned that, for curved surfaces, the surface tension
is not uniquely defined and depends on where precisely we choose to position the interface.
Therefore we concentrate on planar surfaces from now on.

For the Gibbs energy we write

dG = -SdT + VadPa (3.24)

Assuming that the interface is flat (planar) we have the same pressure in both phases Pa =
P3 = P and we get

dG = -SdT + VdP + i + jdA (3.25)

With the help of this equation it is also possible to give a definition of the interfacial tension,
which is equivalent to the previous definition:

dA = 7 (3.26)

The surface tension is the increase in the Gibbs free energy per increase in surface area at
constant T, P, and A^.
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3.2.5 Helmholtz surface energy, interfacial enthalpy, and Gibbs surface
energy

Until now we have considered the total energy quantities of the system. Now we turn to the
interfacial excess quantities. We start with the internal interfacial or internal surface energy

dUa = TdS* -fdA (3.27)

The term PdVa disappears, because the ideal interface has no volume.
In Eq. (3.27) Ua is a homogeneous, linear function of the extensive properties Sa, A, and

all A^'s of the system. It may therefore be integrated, keeping the intensive properties T,
7, and all /Vs constant. Physically this means that it is possible to increase the "size" of the
system by increasing the surface area and in proportion adding matter to the surface in such

.a way that the ratio dN° : dN% ... is the same as in the original (and final) system.
This can be realized by, for instance, tilting a sealed test tube which is partially filled with
a liquid (Fig. 3.5). Mathematically, the integration is possible because of Euler's theorem.
Euler's theorem states that if f ( x , y) is a homogeneous, linear function of the variables x and
y, then / = x • d f / d x y + y - df/dy\x. Application of Euler's theorem to Ua in Eq. (3.27)
with Sa, A, and TVf ' s as variables leads to

7,4 (3.28)

~ />
Figure 3.5: Increasing the surface area
size by tilting a test tube.

For the free energy of the surface we use Fa = Ua — TSa and get

F* = 74

The differential of Fa is:

dFa = -SadT +

= 7 (3.29)

(3.30)

Before turning to the surface enthalpy we would like to derive an important relationship be-
tween the surface entropy and the temperature dependence of the surface tension. The inter-
facial Helmholtz energy is a state function. Therefore we can use the Maxwell relations and
obtain directly an important equation for the surface entropy:

(3.31)
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There are two common and widely used definitions of the interfacial excess enthalpy. We can
argue that enthalpy is equal to the internal energy minus the total mechanical work ̂ A — PVa.
Since in the Gibbs convention PVa = 0 we define

R° = Ua - -yA (3.32)

This definition is recommended by the IUPAC [45]. One consequence is that H = Ha +
Hj + Ha + 7 A The differential is again easily obtained to be

dHa = TdS" + ]T frdN? - Adj (3.33)

Alternatively, one could argue that the enthalpy is equal to the internal energy minus the
volume work PVa. Since the volume work is zero in the Gibbs convention we simply get

H'a = Ua . (3.34)

What is the interfacial excess Gibbs energy? The difference between Ua and Fa should be
the same as the one between Ha and Ga. Therefore we define

iN* (3.35)

One consequence is that G = Ga + G0 + Ga + 7 A The differential is

dG°" = -SadT + ̂  jMNf - Ad-f (3.36)

With the alternative definition of Hfa we obtain

G'° = H'a - TSa = Fa (3.37)

3.3 The surface tension of pure liquids

For pure liquids the description becomes much simpler. We start by asking, how is the surface
tension related to the surface excess quantities, in particular to the internal surface energy and
the surface entropy?

One important relationship can be derived directly from Eq. (3.29). For pure liquids we
choose the Gibbs dividing plane such that F = 0. Then the surface tension is equal to the free
surface energy per unit area:

/CT = -4- = 7 (3-38)

Let us turn to the entropy. We start with Eq. (3.31). For pure liquids the position of
the interface is chosen such that Na = 0. For homogeneous systems we also know that
,sff = S°IA = 8Sa/dA. Putting everything together we find

* = - jf (3.39)
0± P,A
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The surface entropy per unit area is given by the change in the surface tension with temp
ture. In order to determine the surface entropy one needs to measure how the surface ten;
changes with temperature.

Question: If the volume of the interface is zero, why is the condition important that j
constant? Reason: A change in pressure may change the structure of the interface. Sine
the Gibbs approach we view the surface as being "collapsed" to an ideal plane, its entr
may change, even though its volume is zero. Eq. (3.39) is generally valid, not only within
Gibbs formalism.

For the majority of liquids, the surface tension decreases with increasing temperati
This behavior was already observed by Eotvos, Ramsay & Shields at the end of the 1
century [46,47]. The entropy on the surface is thus increased, which implies that the moleci
at the surface are less ordered than in the bulk liquid phase.

What about the internal energy? For a pure liquid we have Ua = TSa + 7 A Division
A and, assuming that we have a homogeneous system, leads to

U°
ua = — = Tsa + 7 • (3,

or

It is thus possible to determine the internal surface energy and the surface entropy by meas
ing the dependence of the surface tension on the temperature.

Q Example 3.2. The surface tension of water decreases with increasing temperature fix
74.23 mNirr1 at 10°C, to 71.99 at 25°C, and 67.94 niNni^1 at 50°C. Calculate /a, *
and ua at 25°C.

The first one is easy to answer: fa=j = 71.99 mNm"1. Using the other two valu
for the surface tension we can estimate that d^/dT = -157.3 x 1CT6 Nm^K"1 at 25°
Thus, the surface entropy is sa = 157.3 x 1CT6 mNm^K"1. Using Eq. (3.41) the surfa
energy is obtained to be u° = 71.99 + 293.2 • 0.1573 mNm"1 = 118.09 mNirr1.

How does the heat flow during an increase in the surface area? In a reversible process Tc
is the heat 6Q that the system absorbs. The heat absorption is proportional to the surfa
increase and we can write 6Q = qdA. Here, q is the heat per unit area that is taken up by tl
system. With dS = sadA and sa = —d^/dT we get

qdA = 6Q = TdS = TsadA = -T ~ • dA (3.4:
oT

or

,-r.g

This is the heat per unit area absorbed by the system during an isothermal increase in tl
surface. Since d^/dT is mostly negative the system usually takes up heat when the surfac
area is increased. Table 3.1 lists the surface tension, surface entropy, and internal surfac
energy of some liquids at 25°C.
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Table 3.1: Surface tension, surface entropy, and internal surface energy of some liquids at 25°C.

7 = /^(mNm 1 ) T-5 c r (mNm l ) ^(mNm l )

Mercury
Water
n-hexane
n-heptane
n-octane
n-nonane
n-decane
Methanol
Ethanol
1-propanol
1-butanol
1-hexanol
Toluene

485.48
71.99
17.89
19.65
21.14
22.38
23.37
22.07
21.97
23.32
24.93
23.81
27.93

61.1
46.9
30.5

' 29.2
28.3
27.9
27.4
23.0
24.8
23.1
26.8
29.8
35.4

549.6
121.1
49.9
50.3
50.9
51.7
52.2
46.3
48.0
47.6 .
53.0
55.6
65.1

3.4 Gibbs adsorption isotherm

It is well known that the surface tension of water decreases when a detergent is added. De-
tergents are strongly enriched, at the surface, which lowers the surface tension. This change
of surface tension upon adsorption of substances to the interface, is described by the Gibbs
adsorption isotherm.

3.4.1 Derivation

The Gibbs adsorption isotherm is a relationship between the surface tension and the excess
concentrations. To derive it we start with Eq. (3.28). Differentiation of Eq. (3.28) leads to

dUa = TdSa + SadT + Yl ^dNi + 5Z N?dp,i + "fdA + Ad-y (3.44)

Equating this to expression (3.27) results in

0 = SadT + Yl N?dp,i + Ad-i (3.45)

At constant temperature it can be simplified to

idm (3.46)

Equations (3.45) and (3.46) are called Gibbs adsorption isotherms. In general, "isotherms"
are state functions plotted versus pressure, concentration, etc. at constant temperature.

One word of caution: The given equation is only valid for those surfaces whose deforma-
tion is reversible and plastic, i. e., liquid surfaces. In solids, changes of the surface are usually
accompanied by elastic processes [48,49]. In order to consider elastic tensions an additional
term has to be added to Eq. (3.45). This will be discussed in Section 8.4. 1 .
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3.4.2 System of two components

The simplest application of the Gibbs adsorption isotherm is a system of two components,
e. g., a solvent 1 and a solute 2. In this case we have

o77 = — Tid^i — F207/i2 (3.47)

The ideal interface is conveniently defined such that FI = 0. Then we get

o?7 = — F;, dfj.2 (3.48)

The superscript "(1)" should remind us of the special choice of the interface. The chemical
potential of the solute is described by the equation

liz = nl + RT-\n— (3.49)

Here, a is the activity and ao is a standard activity (1 mol/L). Differentiating with respect to
a/ao at constant temperature leads to

— (3.50)
a/ao a

Substituting this into Eq. (3.48) leads to

RT daT _ (151)

This is a very important equation. It directly tells us that when a solute is enriched at the
interface (F^ > 0), the surface tension decreases when the solution concentration is in-
creased. Such solutes are said to be surface active and they are called surfactants or surface
active agents. Often the term amphiphilic molecule or simply amphiphile is used. An am-
phiphilic molecule consist of two well-defined regions: One which is oil-soluble (lyophilic or
hydrophobic) and one which is water-soluble (hydrophilic).

When a solute avoids the interface (F^ < 0), the surface tension increases by adding
the substance.- Experimentally Equation (3.51) can be used to determine the surface excess
by measuring the surface tension versus the bulk concentration. If a decrease in the surface
tension is observed, the solute is enriched in the interface. If the surface tension increases
upon addition of solute, then the solute is depleted in the interface.

Q Example 3.3. You add 0.5 mM SDS (sodium dodecylsulfate, NaSO4(CH2)iiCH3) to
pure water at 25°C. This leads to a decrease in the surface tension from 71.99 mJ/m2 to
69.09 mJ/m2. What is the surface excess of SDS?

At such low activities and as an approximation we replace the activity a by the con-
centration c and get

£7 A7 (0.06909 - 0.07199)Nm~1 NL
-^ « —- = —i = -5.80 (3.52)
da Ac (0.0005-0)molL~1 molm
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In water SDS dissociates into a negatively charged surfactant and Na+. For each adsorbed
surfactant we in addition have one Na+ ion in the electric double layer. This has to be
counted in the Gibbs adsorption isotherm [50]. It follows that

57 0.0005 molL"1 _ NL _ __7mol
da

T~\ / _ •5.80- = 5.85 x 10" (3.53)
2RT da 8.31 • 298 JmoP1 '"molm

Every molecule occupies an average surface area of 2.84 nm2.

The choice of the ideal interface in the Gibbs adsorption isotherm (3.51) for a two-component
system is, in a certain view, arbitrary. It is, however, convenient. There are two reasons: First,
on the right side there are physically measurable quantities (a, 7, T), which are related in a
simple way to the interfacial excess. Any other choice of the interface would lead to a more
complicated expression. Second, the choice of the interface is intuitively evident, at least for
c'i > C2. One should, however, keep in mind that different spatial distributions of the solute
can lead to the same F;> . Figure 3.6 shows two examples of the same interfacial excess

concentration F;> . In the first case the distribution of molecules 2 stretches out beyond the
interface, but the concentration is nowhere increased. In the second case, the concentration of
the molecules 2 is actually increased.

Substance 1
Substance 2

Substance 2 I

Gibbs dividing interface

Figure 3.6: Examples of two different concentration profiles leading to the same interfacial
excess concentration F! '.

3.4.3 Experimental aspects

How can Eq. (3.51) be verified? For verification, the two variables — concentration and
surface tension — need to be determined independently. One way is to use radioaclively
labeled dissolved substances. The radioactivity close to the surface is measured, /^-emitters
(3H, 14C, 35S) are suitable because electrons only travel a short range, i. e., any recorded
radioactivity comes from molecules from the interface, or close below [51].

Plots of surface tension versus concentration for n-pentanol [52], LiCl (based on Ref. [53]),
and SDS in an aqueous medium at room temperature are shown in Fig. 3.7. The three curves
are typical for three different types of adsorption. The SDS adsorption isotherm is typical for
amphiphilic substances. In many cases, above a certain critical concentration defined aggre-
gates called micelles are formed (see Section 12.1). This concentration is called the critical
micellar concentration (CMC). In the case of SDS at 25°C this is at 8.9 mM. Above the CMC
the surface tension does not change significantly any further because any added substance
goes into micelles not to the liquid-gas interface.
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Figure 3.7: Plots of surface tension versus concentration for n-pentanol [52], LiCl (based on
Ref. [531), and SDS in an aqueous medium at room temperature.

The adsorption isotherm for pentanol is typical for lyophobic substances, i. e., substances
which do not like to stay in solution, and for weakly amphiphilic substances. They become
enriched in the interface and decrease the surface tension. If water is the solvent, most organic
substances show such a behavior. The LiCl adsorption isotherm is characteristic for lyophilic
substances. Most ions in water show such behavior.

In order to describe the influence of a substance on the surface tension, one could specify
the gradient of the adsorption isotherm for c —> 0. A list of these values for some substances
dissolved in water at room temperature is shown in Table 3.2.

Table 3.2: Gradient of the ad-
sorption isotherm for c —» 0
of different solutes in water at
25°C

Solute 6/(A7)/dc(10 3 Nm 1M x )

HC1
LiCl
NaCl
CsCl
CH3COOH

-0.28
1.81
1.82
1.54

-38

Example 3.4. Adding 1 mM NaCl in water results in a slight increase of the surface
tension of A7 = 1.82 x 10~3N/m-0.001 = 1.82 x 10"6 N/m. Upon addition of 1 mM
CH3COOH the surface tension decreases by 3.8 x 10"5 N/m.

3.4.4 The Marangoni effect

Local variations in the surface concentratign of solutes will give rise to local differences in
the surface tension. Such a gradient in surface tension will result in a net transport of liquid
from the region of lower surface tension towards regions with higher surface tension. This so-
called Marangoni effect was first described by James Thompson (brother of Lord Kelvin) and
studied in detail by Carlo Marangoni2 [56]. A famous example of the Marangoni effect are

2 Carlo Marangoni, 1840-1925. Italian physicist, professor at a lyceum in Florence.
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"tears of wine" . This term denotes a special flow pattern that is formed if a mixture of water
and ethanol (e.g. red wine) is filled in a wine glass or a watch dish [54,55]. The liquid wets
the surface of the glass and is pulled up a certain distance along the walls by capillary forces.
Since ethanol has a higher vapor pressure, it will evaporate faster from the thin film than water.
At the rim, where the liquid film is thinnest, the ethanol concentration will decrease fastest.
Since the surface tension of ethanol is much smaller than that of water, the reduced ethanol
concentration at the rim leads to a higher surface tension at the rim compared to the bulk
liquid. This drives the flow of more liquid up the wall towards the rim. At some point the
accumulation of liquid at the rim will become instable and lead to the formation of droplets
that start flow down again due to gravity, resulting in "tears" or fingerlike structures (Fig. 3.8).
An example of a technical application of the Marangoni effect is the drying of silicon wafers
in the semiconductor industry after wet cleaning processes in aqueous media. By blowing
ethanol vapor over the wet surface through a moving nozzle efficiently drives the water film
off the wafer.

Figure 3.8: Schematic of the flow pattern for tears of wine.

3.5 Summary

• To apply the thermodynamic formalism to surfaces, Gibbs defined the ideal dividing
plane which is infinitely thin. Excess quantities are defined with respect to a particular
position.of the dividing plane. The most important quantity is the interfacial excess which
is the amount of substance enriched or depleted at an interface per unit area.

• For a pure liquid the Gibbs dividing plane is conveniently positioned so that the surface
excess is zero. Then the surface tension is equal to the surface Helmholtz energy and the
interfacial Gibbs energy: f(J=g(J= 7.

• For solutions the Gibbs dividing plane is conveniently positioned so that the surface
excess of the solvent is zero. Then the Gibbs adsorption isotherm (Eq. 3.51) relates the
surface tension to the amount of solute adsorbed at the interface:

r = a ^7
RT ' da

When the solute is enriched at the interface, the surface tension decreases upon addition
of a solute. When a solute avoids the interface, the surface tension increases when adding
the substance.
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3.6 Exercises

1. The surface tensions (in mN/m) of methanol and octane are

Calculate the surface entropy and the internal surface energy at 25°C.

2. The surface tension of water with a mole fraction of 0.001, 0.002, 0.003,..., 0.007 of
n-propanol is 67.4, 64.4, 61.9, 59.7, 57.7, 55.8, and 54.1 mN/m at 25°C, respectively.
Estimate the surface excess of propanol at mole fractions of 0.002, 0.004, and 0.006,
Does the surface excess increase linearly with the mole fraction?

3. Soap bubbles: To stabilize a bubble, surfactants are usually added to water. Assume we I
add a surfactant to a concentration of 2 mM. At this concentration we have a positive sur-
face excess. As an average, each surfactant molecule occupies a surface area of 0.7 nm2.
Estimate the change in pressure inside a soap bubble with a radius of 1 cm compared to
a hypothetical bubble formed from pure water.

4. Eq. (3.51) can be used to describe the adsorption of gases to surfaces. Then it can be
written as

with P being the partial pressure of the adsorbing gas. Derive Eq. (3.54) from Eq. (3.51).

(3.54)

10°C 25°C 50°C

Methanol 23.23 22.07 20.14
Octane 22.57 21.14 18.77


