
 1

11. Excitons in Nanowires and Nanotubes 
 
 
We have seen that confinement in quantum wells leads to enhanced excitonic effects in the 
optical response of semiconductors. The binding energy of the strongest bound excitons 
increase by a factor of 4 in the ideal 2D case. Consequently, one expects this trend to 
continue to 1D-structures with even stronger binding of excitons. As we will see, this is 
precisely what happens even to the point, where excitons completely dominate the 
response. 
 
Following the previous chapter, we will limit ourselves to variational calculations of 
excitons in 1D-structures. These structures are assumed to be infinite along the long-axis 
direction and strongly confining in the two transverse dimensions. Also, the system is 
excited along the long-axis so that centre-of-mass momentum for this direction is to 
remain zero throughout. We take the z-axis as the long-axis and so the confined electron-
hole pair is described by the Hamiltonian 
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Here, 1 2 2 2 2ˆ ( , ) ( / / ) ( , )e e e e e e e e eh x y m d dx d dy V x y−=− + +  is the Hamiltonian for the transverse 
motion of the electron confined by the potential eV  and ˆ

hh  is the analogous term for the 
hole. In this expression, the effective electron and hole masses should be taken in units of 
the reduced electron-hole pair mass, which is taken as the unit of mass. In a purely 
variational treatment, we attempt to describe the exciton state by the variational ansatz 

( , ) ( , ) ( , ) ( )exc e h e e e h h hr r x y x y zϕ ϕΨ = Ψ
G G . The corresponding expectation value for the energy is 

then 
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with 1 1

e h
g gE E E E= + +�  and an effective potential 
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At this point, it is instructive to consider some specific examples of transverse 
confinement: 
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A. Rectangular nanowire with transverse dimensions d d×  (Ref. [1]): 
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B. Hexagonal nanowire with diameter d  (Ref. [2]): 
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C. Circular nanotube with radius r (Ref. [3]): 
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We note that in the nanotube model, the wave function is completely localized to the 
cylinder wall and rather than giving the wave function itself, we give the normalized 
square. In cases A and B, the effective potential can only be computed numerically. 
However, for the nanotube model an analytic result can be found. To this end, we 
introduce polar transverse coordinates cosx ρ θ=  and siny ρ θ= . Due to the complete 
localization on the cylinder wall, we always have rρ= . In this manner, 

2 2 2 2( ) ( ) 4 sin (( )/2)e h e h e hx x y y r θ θ− + − = −  . Hence, in polar coordinates, 
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In the last line, K is a so-called complete elliptic integral of the 1. kind defined by  
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From this definition, it is seen that (0) /2K π=  and the potential approaches the bare 1D 
Coulomb potential ( ) 2 /| |V z z=−  in the limit 0r → . From Eq.(11.3) it is clear that this 
must always be the limit of a 1D effective potential whenever the confining potential 
becomes sufficiently narrow that e hx x≈  and e hy y≈  because of the confinement.  
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Figure 11.1 Effective Coulomb potential for three different 1D confinements compared to the 
bare potential. 

 
The actual effective potentials for the three models listed above are illustrated in Fig. 11.1.  
When compared to the bare Coulomb potential, it is clear that the behaviour as 0z →  is 
must less singular. Hence, for models A and B, the singularity is completely removed and 
for C, the singularity is now logarithmic instead of 1/| |z∼ . However, in all cases the bare 
potential 2 /| |z−  is found as a limit when the diameter of the nanowire or –tube becomes 
very small. It might then be thought that a viable and simple model for 1D excitons would 
result from using the pure 1D potential ( ) 2 /| |V z z=−  in Eq.(11.2) similarly to the 2D 
quantum well case. To look at the properties of this simple model we need to start with a 
“regularized” potential, however. For this purpose, we will take ( ) 2 /(| | )V z z c=− +  as 
our potential, where c is a positive constant, which should eventually be taken to zero. 
This “Loudon” model was originally analyzed by R. Loudon [4]. The form is 
mathematically simpler than any of the alternatives above. As our variational ansatz we 
will, as usual, try the exponential ||( ) zz e αα −Ψ = . Differentiating twice leads to 

2 2 2( )/ ( ) 2 (0) ( )d z dz z zα α δΨ = Ψ − Ψ . Thus, the expectation value Eq.(11.2) is 
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Evaluating this integral leads to yet another complicated function: the exponential integral 
Ei :  
 
 2 24 ( 2 )c

gE E e Ei cαα α α= + + −� .  
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However, as c should go to zero we can use an expansion based on partial integration 
valid for small c 
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where the integral 
0

ln( ) ( ln( ))/ze z dzβ γ β β
∞

− =− +∫  with γ = 0.577… as Euler’s constant 

has been applied. Differentiating, one finds 0 2 4( ln(2 )) 4cα γ α= + + + . With a few 
manipulations this condition can be reformulated as 
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The formal solution to the equation  ( )expw w x=  is 
sometimes called the “product logarithm” (pl), i.e. 

pl( )w x= . Thus, the solution for α  is  
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where the second expression is the expansion for 
low c. Accordingly, the energy is 
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As the plot of the product logarithm to the right shows, it is a monotonically increasing 
function that diverges logarithmically as the argument increases. The extremely important 
conclusion is this: as c goes to zero, we find α→∞  and E→−∞ . Hence, the wave 
function becomes completely localized to the point 0z = . This is not an artefact of the 
variational approach because the variational estimate for the energy is always higher than 
the true value. We therefore conclude that the 1D Coulomb model is “pathological” in that 
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the ground state collapses and the ground state energy diverges. In Fig. 11.2, we illustrate 
the behaviour of the energy as c becomes smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2 Binding energy and variational parameter (inset) in the Loudon model as a 
function of the potential cut-off. 

 
Even though the pure 1D Coulomb model is clearly unphysical, it is still correct that the 
true potential for all realistic models approaches this strange situation as the confinement 
becomes stronger. Hence, even if actual exciton binding energies obviously do not 
diverge, they can still grow extremely large compared to bulk values. As an example of 
this, we now consider the true nanotube potential given by Eq.(11.4). With the same 
exponential ansatz as above, we find the energy expectation value 
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where 0J  and 0Y  are Bessel functions of first and second kind, respectively, and 2 3F  is a 
generalized hypergeometric function [5]. The similarity with the Loudon model above 
becomes apparent if we again use partial integration to approximate to lowest order in r. 
Using the definition of the elliptic integral, we have 
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The indefinite integral of 2 21/ z x+  is 2 2ln( )z z x+ +  and it follows that 
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Comparing to Eq.(11.5), we see that r takes the place of 2c. We therefore expect to find 
precisely the same behavior as above when r goes to zero. It should be noted that this 
similarity is obtained even though the nanotube potential is actually (logarithmically) 
divergent at the origin whereas the Loudon model potential is finite. The exciton binding 
energy for the nanotube model is illustrated in Fig. 11.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.3 Binding energy and variational parameter (inset) of excitons in carbon nanotubes 
as a function of nanotube radius, all in natural exciton units. 

 
From Fig. 11.3 it is apparent that the exciton binding energy may become very large if the 
nanotube radius is sufficiently small. The question is then: what are the actual values of 

 and Ba Ry∗ ∗ ? We recall that 0.529Å /B eha m mε∗ = ⋅  and 213.6eV /ehRy m mε∗ = ⋅ . Hence, to 
answer this question we need the reduced effective electron-hole pair mass and a value of 
the dielectric constant. The latter is relatively straight-forward since most experiments are 
performed in liquid suspensions and a reasonable value describing the screening in this 
case is 3.5ε=  [3]. To compute ehm  we need to consider the band structure. For nanotubes 
excited along the long-axis the allowed transitions are between bands symmetrically 
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positioned above and below the Fermi level. In a simple nearest-neighbor tight-binding 
model the transition energy is given by 
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where 3γ ≈ eV is the hopping integral and a = 2.46 Å is the lattice constant. The nanotube 
is characterized by the chiral indices ( , )n m  and in terms of these, the components of the k-
vector are 
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Here, k is the continuous long-axis component of the k-vector and q is the quantized short-
axis component given by /q p r= , where p is an integer and r is the radius. Also, 

2 2L n m nm= + +  is the radius in units of /2a π , i.e. 2 r aLπ = . An important point about 
the energy dispersion Eq.(11.6) is that ( ) 0cvE K =

G
 with ( 3 ,1) 2 /3K aπ= ⋅

G
. Thus, the band 

gap is found at the allowed k-point closest to K
G

. To simplify the analysis, we expand the 
dispersion in the vicinity of K

G
 and find 

 
 ( ) 3 | |cvE k a k Kγ≈ −

G G G
. 

 
We introduce l̂  and ŝ  as unit vectors for the long-axis and short-axis, respectively. If we 
express K

G
 and k

G
 in terms of the projections along these directions we find ˆ ˆk kl qs= +

G
 and 

similarly ˆ ˆK Kl Qs= +
G

, where it can be shown that (2 )/3Q n m r= + . Hence, setting q = Q, 
leads to the condition (2 )/3p n m= + . This condition can only be fulfilled if (2 )/3n m+  is 
an integer in which case the nanotube is a metal. If not, the minimum difference becomes 

min| | 1/3q Q r− = . In this case, the minimum transition energy, i.e. the band gap gE� , then 
becomes 
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To find the effective mass, we consider an approximately parabolic dispersion  
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so that, to lowest order, the square becomes 2 2 2 2( ) ( ) /cv g g ehE k E k K E m≈ + −

G � �= . On the other 
hand, the square of the energy dispersion for the nanotube near the minimum is 
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Hence, a comparison demonstrates that 2 2 2/3eh gm E a γ= �= . Consequently the effective 
mass is proportional to the band gap. Plugging in the numbers it turns out that 

4.2 eVÅ /gE r=�  and / 0.19Å /ehm m r= . An extremely important point is then that the 

effective Bohr radius 0.529Å /B eha m mε∗ = ⋅  becomes a linear function of r given by 
9.7Ba r∗ = . As a consequence, the radius r measured in units of Ba∗  is always roughly 0.1!. At 

this value, the exciton binding energy as computed above and illustrated in Fig. 11.3 is 
around -7.44 Ry∗ . A more accurate calculation [3] finds a binding energy of approximately 
-8.1 Ry∗ . It is noted that these values are substantially higher than the maximum value -
4 Ry∗  found for 2D structures. In analogy with the effective Bohr radius, the effective 
Rydberg also depends on r and inserting values we find 0.21 eVÅ /Ry r∗ = . It therefore 
follows that the ratio between exciton binding energy and band gap is a near constant of 
around -40%. This is obviously a huge value, which will completely rearrange the optical 
response. 
 
As an example, we consider the (7,6) nanotube with a radius of r = 4.4 Å. For this 
structure, the exciton binding energy is then -0.39 eV. Unfortunately, there is no simple 
way to sum all the contributions to the optical response analytically. Instead, a numerical 
calculation of bound and unbound excitons can be made using a finite basis set [6]. 
Summing the different terms leads to the spectrum shown in Fig. 11.4, where the 
independent-particle result is included for comparison. The very large red-shift of the 
resonance corresponds to the value of the exciton binding energy. Also, it is noticed that 
the peak is now much more symmetric than the inverse square-root of the independent-
particle spectrum. 
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Figure 11.4 Normalized absorption spectra of a (7,6) carbon nanotube. The curves show the 
spectra including and neglecting excitonic effects, respectively. 

 
Exercise: 2p nanotube excitons 
 
In this exercise, we will attempt to compute the energy of the 2p exciton in a nanotube and 
for this purpose the ansatz 3 ||( ) 2 zz ze ββ −Ψ =  will be used. Note that it is always 
orthogonal to the ground state.  
 
a) show that ( )zΨ  is normalized and that the kinetic energy is 2β . 
 
The difficult part lies in determining an approximate expression for the Coulomb energy 
valid for small but finite r. It is given by  
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As a start, we will consider the definite integral 
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The first few indefinite integrals of the square-root are denoted ( , )nS z x  so that  
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b) Under the assumption that ( ) 0f ∞ = , show by repeated use of partial integration that 
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At this stage, no approximations have been made. However, to actually calculate the 
integral, we will now use the small-x expansion 
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With this form and the approximate 3( , )S z x  we find 
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The total energy is therefore { }2 3 2
2 2 8 1 ln( )p gE E r rβ β β γ β= + − − + +� . 

 
c) Show that the minimum energy is approximately 
 
 { }2

2 1 8 1 lnp gE E r rγ≈ − − + +� . 
 
This result is plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.5 Variational 2p exciton binding energy. 
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