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1. Introduction  

In this note we will cover theory for scattering from very small particles, and spherical particles. More 

complex geometries will be covered with slides. 

2. Scattering from very small particles – the quasistatic limit: 

In this section a quasi-static approach will be presented for calculating optical scattering by, and absorption 

in, very small particles. Using a quasi-static approach rather than a fully retardation-based approach will be 

justified. Optical absorption and scattering cross sections will be expressed in terms of the dipole moment of 

the particle, which can be calculated from knowledge of the electric field inside the particle. The electric 

field can be calculated with the methods of electrostatics. 

As a first step we will consider the radiation from a time-dependent current distribution. We may expand the 

electromagnetic fields E, D, B, H, the currents J, and the relative dielectric constant r in its  temporal 

Fourier-components, i.e. 

𝑬 𝒓, 𝑡 =  𝑬 𝒓,𝜔 𝑒 𝑖𝜔𝑡 𝑑𝜔
𝜔 =∞

𝜔 =−∞
= 2𝑅𝑒𝑎𝑙  𝑬 𝒓, 𝜔 𝑒𝑖𝜔𝑡 𝑑𝜔

𝜔=∞

𝜔=0
      ,   (1) 

where 

𝑬 𝒓, 𝜔 = 1

2𝜋
 𝑬 𝒓,𝑡 𝑒−𝑖𝜔𝑡 𝑑𝑡

𝑡=∞

𝑡=−∞
 ,     (2) 

and similar for the other parameters (D, B, H, J, and r). 

Assuming linear materials Maxwell's equations can then be formulated ( 𝜇 = 𝜇0, 

 𝑫 𝒓, 𝜔 = 𝜀𝑟 𝒓, 𝜔 𝑬 𝒓, 𝜔 ,  𝜌 = 0): 

𝛁 × 𝑬 𝒓, 𝜔 = −𝑖𝜔𝜇0𝑯 𝒓, 𝜔 ,      (3) 

𝛁 × 𝑯 𝒓, 𝜔 = 𝑖𝜔𝜀0𝜀𝑟 𝒓, 𝜔 𝑬 𝒓, 𝜔 + 𝑱 𝒓, 𝜔 ,     (4) 

𝛁 ∙ 𝜀𝑟 𝒓, 𝜔 𝑬 𝒓, 𝜔 = 0,       (5) 

𝛁 ∙ 𝐇 𝒓, 𝜔 = 0,       (6) 

From which we can derive the wave equation (𝑘0
2 = 𝜔2/𝑐2 with c being the vacuum speed of light) 

−𝛁 × 𝛁 × 𝑬 𝒓, 𝜔 + 𝑘0
2𝜀𝑟 𝒓, 𝜔 𝑬 𝒓, 𝜔 = 𝑖𝜔𝜇0𝑱 𝒓, 𝜔 .    (7) 
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If the currents satisfy Ohm’s law,  𝑱 𝒓, 𝜔 = 𝜍 𝒓, 𝜔 𝑬 𝒓, 𝜔  where  is the conductivity, we arrive at a wave 

equation in terms of only the electric field and a complex dielectrictric constant 

−𝛁 × 𝛁 × 𝑬 𝒓, 𝜔 + 𝑘0
2𝜀 𝒓, 𝜔 𝑬 𝒓, 𝜔 = 0,    (8) 

where 𝜀 𝒓, 𝜔 = 𝜀𝑟 𝒓, 𝜔 − 𝑖𝜍 𝒓, 𝜔 /𝜔𝜀0. We may also define the complex refractive index as  𝑛 𝒓, 𝜔 =

 𝜀 𝒓, 𝜔 . For metals it is usually the complex refractive index which is tabulated in books and papers. The 

complex refractive index for gold, silver and copper can e.g. be found in [1]. 

In the case where the electric field is generated by a current distribution in a homogeneous medium, i.e. 

−𝛁 × 𝛁 × 𝑬 𝒓, 𝜔 + 𝑘0
2𝜀𝑟𝑒𝑓  𝜔 𝑬 𝒓, 𝜔 = 𝑖𝜔𝜇0𝑱 𝒓, 𝜔 ,    (9) 

a solution satisfying that the radiation should propagate away from the sources is given by 

𝑬 𝒓, 𝜔 = −𝑖𝜔𝜇0  𝑮   (𝒓, 𝒓′ ; 𝜔) ∙ 𝑱 𝒓, 𝜔 𝑑3𝑟′,    (10) 

where the Green’s tensor 𝑮    is given by  

𝑮    𝒓, 𝒓′ ; 𝜔 =  𝑰 +
1

𝑘0
2𝜀𝑟𝑒𝑓

∇∇ 𝑔 𝒓, 𝒓′ ; 𝜔 ,      𝑔 𝒓, 𝒓′ ; 𝜔 =
𝑒

−𝑖𝑘0𝑛𝑟𝑒𝑓  𝒓−𝒓′  

4𝜋 𝒓−𝒓′ 
 .    (11) 

𝑮    𝒓, 𝒓′ ; 𝜔 =  𝑰  1 −
𝑖

𝑘0𝑛𝑟𝑒𝑓  𝒓−𝒓′  
−

1

𝑘0
2𝜀𝑟𝑒𝑓  𝒓−𝒓′ 2 −

 𝒓−𝒓′  𝒓−𝒓′ 

 𝒓−𝒓′ 2  1 −
3𝑖

𝑘0𝑛𝑟𝑒𝑓  𝒓−𝒓′  
−

3

𝑘0
2𝜀𝑟𝑒𝑓  𝒓−𝒓′ 2  

𝑒
−𝑖𝑘0𝑛𝑟𝑒𝑓  𝒓−𝒓′  

4𝜋 𝒓−𝒓′ 
 . 

    

The expression (10) is a solution to equation (9) because the Green’s tensor satisfies 

−𝛁 × 𝛁 × 𝑮    𝒓, 𝒓′ ; 𝜔 + 𝑘0
2𝜀𝑟𝑒𝑓  𝜔 𝑮    𝒓, 𝒓′ ; 𝜔 = −𝑰 𝛿 𝒓 − 𝒓′ .   (12) 

We can now use Eq. (10) to calculate the radiation field generated by a monochromatic dipole current, a 

current which exists because the position of the two charges oscillates. The dipole moment can be expressed 

in the form 

𝒑 𝒓, 𝑡 =  𝒑0𝑒𝑖𝜔𝑡 + 𝐶. 𝐶.  𝛿(𝒓 − 𝒓0),     (13) 

and the corresponding dipole current is given by (𝑱 𝒓, 𝑡 =
𝜕

𝜕𝑡
𝒑 𝒓, 𝑡 ): 

𝑱 𝒓, 𝜔 = 𝑖𝜔𝒑0𝛿(𝒓 − 𝒓0).      (14) 

Thereby the electric field generated by a dipole current is given by 

𝑬 𝒓, 𝜔 = 𝜔2𝜇0𝑮   (𝒓, 𝒓0; 𝜔) ∙ 𝒑0 .     (15) 

Without loss of generality we may choose  𝒑0 = 𝑧 𝑝0 and 𝒓0 = 𝟎. Then for large distances to the current 

source the expression (15) reduces to  

𝑬 𝒓, 𝜔 = −𝜔2𝜇0𝑝0𝜃 sin 𝜃
𝑒

−𝑖𝑘0𝑛𝑟𝑒𝑓 𝒓

4𝜋𝑟
 .     (16) 

The magnetic field can then be calculated using the Maxwell equation (3) resulting in 
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𝑯 𝒓, 𝜔 = −
𝜔2

𝑐
𝑝0𝑛𝑟𝑒𝑓  sin 𝜃

𝑒
−𝑖𝑘0𝑛𝑟𝑒𝑓 𝒓

4𝜋𝑟
 .     (17) 

The radiated power can be calculated from the Poying vector, which has to be based on real fields instead of 

the complex fields, i.e. 

𝑺 𝒓 =  𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡  =   𝑬 𝒓, 𝜔 𝑒𝑖𝜔𝑡 +  𝐶. 𝐶.  ×  𝑯 𝒓, 𝜔 𝑒𝑖𝜔𝑡 +  𝐶. 𝐶.     (18) 

= 𝑬 𝒓, 𝜔 ×  𝑯 𝒓, 𝜔  ∗ + 𝐶. 𝐶. = 2𝑅𝑒𝑎𝑙 𝑬 𝒓, 𝜔 ×  𝑯 𝒓, 𝜔  ∗   

= 2𝑘0
4 𝑐

𝜀0

𝑛𝑟𝑒𝑓

4𝜋
 𝑝0 2 sin 2 𝜃

4𝜋𝑟2 𝑟  . 

The time-averaged power radiated from the dipole can thereby be expressed in terms of the dipole moment 

𝑃 =  𝑺(𝒓) ∙ 𝑛 𝑑𝑎 = 2𝑘0
4 𝑐

𝜀0

𝑛𝑟𝑒𝑓

6𝜋
 𝑝0 2 .     (19) 

We can now apply our knowledge from previously about Green’s functions and integral equation methods, 

and the equation (19), to evaluate scattered power for a small particle.  

If we consider a particle with complex dielectric constant (r,) the wave equation (8) can be conveniently 

written in the form 

−𝛁 × 𝛁 × 𝑬 𝒓, 𝜔 + 𝑘0
2𝜀𝑟𝑒𝑓  𝜔 𝑬 𝒓, 𝜔 = −𝑘0

2  𝜀 𝒓, 𝜔 − 𝜀𝑟𝑒𝑓  𝜔  𝑬 𝒓, 𝜔 .  (20) 

An incident field E0 corresponding to the situation without the particle is a solution to the equation 

−𝛁 × 𝛁 × 𝑬0 𝒓, 𝜔 + 𝑘0
2𝜀𝑟𝑒𝑓  𝜔 𝑬0 𝒓, 𝜔 = 0.    (21) 

By combining (20) and (21) we arrive at 

−𝛁 × 𝛁 ×  𝑬 𝒓, 𝜔 − 𝑬0 𝒓, 𝜔  + 𝑘0
2𝜀𝑟𝑒𝑓  𝜔  𝑬 𝒓, 𝜔 − 𝑬0 𝒓, 𝜔  = 𝑖𝜔𝜇0𝑱 𝒓, 𝜔 ,  (22) 

where 

𝑖𝜔𝜇0𝑱 𝒓, 𝜔 = −𝑘0
2  𝜀 𝒓, 𝜔 − 𝜀𝑟𝑒𝑓  𝜔  𝑬 𝒓, 𝜔 .    (23) 

The field outside the particle can now be calculated using 

𝑬 𝒓, 𝜔 = 𝑬0 𝒓, 𝜔 − 𝑖𝜔𝜇0  𝑮   (𝒓, 𝒓′ ; 𝜔) ∙ 𝑱 𝒓, 𝜔 𝑑3𝑟′.    (24) 

Notice that if we consider a very small particle we can ignore the dependence of 𝑮   (𝒓, 𝒓′ ; 𝜔) on r' for large 

distances to the center of the particle, in which case the electric field 

𝑬 𝒓, 𝜔 = 𝑬0 𝒓, 𝜔 + 𝜔2𝜇0𝑮   (𝒓, 𝒓0; 𝜔) ∙ 𝒑0 ,    (25) 

is expressed in terms of the dipole moment 

𝒑0 = 𝜀0   𝜀 𝒓, 𝜔 − 𝜀𝑟𝑒𝑓  𝜔  𝑬 𝒓, 𝜔 𝑑3𝑟 .    (26) 
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It is now possible to calculate the scattered power by inserting (26) in (19).  

Consider the incident field of a plane wave, e.g. 

𝑬0 𝒓, 𝜔 = 𝑧 𝐸0𝑒−𝑖𝑘0𝑛𝑟𝑒𝑓 𝑥  ,      (27) 

𝑯0 𝒓, 𝜔 = −𝑦 
𝑘0𝑛𝑟𝑒𝑓

𝜔𝜇0
𝐸0𝑒−𝑖𝑘0𝑛𝑟𝑒𝑓 𝑥  ,     (28) 

with the Poynting vector 

𝑺 𝒓 = 𝑥 2
𝑘0𝑛𝑟𝑒𝑓

𝜔𝜇0
 𝐸0 2 .      (29) 

In this case the power per unit area of the incident field passing through the surface perpendicular to the x-

direction is given by (29). If we normalize the scattered power with the power of the incident field per unit 

area we arrive at the scattering cross section 

𝜍𝑠𝑐𝑎𝑡 = 𝑘0
4  𝑝0 2/𝜀0

2

6𝜋 𝐸0 2  .       (30) 

The time-averaged power lost due to absorption (Ohmic losses) is given by 

𝑃 =    𝑬0 𝒓, 𝜔 𝑒𝑖𝜔𝑡 + 𝐶. 𝐶.  ∙  𝑱 𝒓, 𝜔 𝑒𝑖𝜔𝑡 + 𝐶. 𝐶.   𝑑𝑉    (31) 

=  2𝑅𝑒𝑎𝑙 𝑬0 𝒓, 𝜔 ∙  𝑱 𝒓, 𝜔  ∗ 𝑑𝑉  

= 2𝜔 𝐼𝑚𝑎𝑔 𝑬0 𝒓, 𝜔 ∙  𝒑0 ∗  . 

Thereby the absorption cross section becomes (31) normalized with the magnitude of (29), i.e. 

𝜍𝑎𝑏𝑠 =
𝜔 𝐼𝑚𝑎𝑔  𝑬0 𝒓,𝜔 ∙ 𝒑0 ∗  

𝑘0𝑛𝑟𝑒𝑓

𝜔 𝜇 0
 𝐸0 2

=
𝑘0

𝜀0𝑛𝑟𝑒𝑓

 𝐼𝑚𝑎𝑔  𝑬0 𝒓,𝜔 ∙ 𝒑0 ∗  

 𝐸0 2  .    (32) 

One approach to calculate the field is to solve the integral equation obtained by inserting (23) into (24). In 

this case we notice that if the distances considered between points inside the particle are very small we can 

approximate the Green's tensor with  

𝑮    𝒓, 𝒓′ ; 𝜔 ≅  3
 𝒓−𝒓′  𝒓−𝒓′ 

 𝒓−𝒓′ 2 − 𝑰  
1

4𝜋𝑘0
2𝜀𝑟𝑒𝑓  𝒓−𝒓′ 3 .    (33) 

If we approximate the incident field according to the same principle for positions inside the particle we arrive 

at 

𝑬0 𝒓, 𝜔 ≅ 𝑧 𝐸0 .      (34) 

Within the approximations (33) and (34) that are applicable inside and just outside a very small particle we 

obtain that the incident field and total field satisfy 

𝛁 × 𝑬 𝒓, 𝜔 ≅ 0,       (35) 

which means that to a good approximation we can calculate the field inside the particle with the methods 

known from electrostatics, i.e. we can express the electric field as minus the gradient of a scalar potential, 
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and then calculate the potential that satisfies the boundary conditions at the surface of the particle, and which 

leads to a field decreasing as (33) away from the particle. 

 

3. scattering from a very small spherical particle 

According to the theory of electrostatics, if a spherical particle with dielectric constant 2 surrounded by a 

material with dielectric constant 1, is placed in an electric field 𝑬0 being constant across the particle, then 

the total field inside the particle is given by 

𝑬 𝒓 = 𝑬0
3𝜀1

2𝜀1+𝜀2
,       (36) 

which in our case leads to the dipole moment (26) 

𝒑0 = 𝜀0 𝜀2 − 𝜀1 
4𝜋

3
𝑎3𝑬0

3𝜀1

2𝜀1+𝜀2
 ,     (37) 

where the material constants depend on the angular frequency. The resulting scattering and absorption cross 

sections are 

𝜍𝑠𝑐𝑎𝑡 = 𝑘0
4𝜀1

2𝑎6 8𝜋

3
 

𝜀2−𝜀1

𝜀2+2𝜀1
 
2
 ,      (38) 

𝜍𝑎𝑏𝑠 = 𝑘0𝑛112𝜋𝑎3 𝜀1𝐼𝑚𝑎𝑔 (−𝜀2)

 𝜀2+2𝜀1 2  .     (39) 

Notice that with the chosen sign convention the imaginary part of refractive index’es and dielectric constants 

is negative when there are absorption losses. Incidentally, the result in equation (39) is e.g. identical to Eq. 

(1) in the paper [2]. 

The above expression (36) can be derived by expressing the incident field in spherical coordinates 

𝑬0 = 𝑧 𝐸0 = −∇(−𝐸0𝑟 cos 𝜃),     (40) 

and expressing the field inside the sphere (layer i=1) and outside the sphere (layer i=2) as the gradient of a 

potential, i.e. 𝑬 𝒓 = −∇φi, where 

𝜑𝑖 = 𝐴𝑖𝑟 cos 𝜃 + 𝐵𝑖
1

𝑟2 cos 𝜃,      (41) 

and by requiring that the electromagnetic boundary conditions are satisfied across the surface of the particle, 

that the field and potential is not infinite in the center of the particle, and that for large distances from the 

particle the field should be just the incident field. This procedure is easily generalized to layered spheres, 

such as e.g. a gold coated polystyrene sphere, by expressing the field in each layer in the form (41). 

 

4. Surface integral equation approach to scattering from a very small particle of general shape 

For more complex particle shapes (only one material will be considered) a numerical method is required, and 

we will consider the surface integral equation method for the electric potential. The potential related to the 
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incident field (𝜑0) and to the total field (𝜑) both satisfy the equation ∇2𝜑 = 0. For positions r inside the 

particle (V) the potential can be expressed in terms of the potential and its normal derivative on the particle 

surface via the surface integral equation, i.e. 

𝜑 𝒓 =   𝑔 𝒓, 𝒓′ 𝑛 ′ ∙ ∇′𝜑 𝒓′ − 𝜑 𝒓′ 𝑛 ′ ∙ ∇′𝑔 𝒓, 𝒓′  𝑑𝑎′    ,  r inside V   (42) 

where the scalar electrostatic Green’s function is given by 

𝑔 𝒓, 𝒓′ ; 𝜔 =
1

4𝜋 𝒓−𝒓′ 
.      (43) 

For positions outside the particle the potential is given by 

𝜑 𝒓 = 𝜑0 𝒓 +   𝑔 𝒓, 𝒓′ 𝑛 ′ ∙ ∇′𝜑 𝒓′ − 𝜑 𝒓′ 𝑛 ′ ∙ ∇′𝑔 𝒓, 𝒓′  𝑑𝑎′   ,  r outside V    (44) 

where the latter expression satisfies the “radiating” boundary condition, namely that the scattered field 

should decrease away from the scatterer similar to the expression (33). By letting r approach the surface of 

the scatterer from either side we obtain self-consistent equations for the potential and its normal derivate on 

e.g. the outside of the particle surface if we apply the electromagnetics boundary conditions across the 

surface. This integral equation approach has been applied in ref. [3]. 

 

5. Scattering from layered spherical particles – Mie scattering theory 

In the case of spherical particles it is convenient to expand the electric and magnetic fields in spherical 

harmonics centered at the center of the particle. For the incident field we will now consider a plane wave 

with the electric field polarized along the x-axis and propagating along the negative z-axis, i.e [4,5] 

𝑬𝑖𝑛𝑐  𝒓 = 𝑥 𝐸0𝑒𝑖𝑘𝑧 = 𝐸0  (−𝑖)𝑛 2𝑛+1

𝑛(𝑛+1)
 𝒎𝑜1𝑛

(1)
+ 𝑖𝒏𝑒1𝑛

(1)
 ∞

𝑛=1 ,    

 (45) 

where 𝒎𝑜1𝑛
(1)

 and 𝒏𝑒1𝑛
(1)

 are spherical wave functions given by [4,5] 

 𝒎𝑜
𝑒

1𝑛

 1,3 
= ±

1

sin 𝜃
𝑧𝑛

 1,3  𝑘𝑅 𝑃𝑛
1 cos 𝜃 

cos 
sin

𝜃 − 𝑧𝑛
 1,3  𝑘𝑅 

𝑑𝑃𝑛
1(cos 𝜃)

𝑑𝜃

sin

cos 
 ,   (46) 

𝒏𝑜
𝑒

1𝑛

 1,3 
=

𝑛(𝑛+1)

𝑘𝑅
𝑧𝑛

 1,3  𝑘𝑅 𝑃𝑛
1 cos 𝜃 

sin

cos
𝑟 +

1

𝑘𝑅
 𝑘𝑅𝑧𝑛

 1,3  𝑘𝑅  
′ 𝑑𝑃𝑛

1(cos 𝜃)

𝑑𝜃

sin

cos
θ ±

 
1

kRsin 𝜃
 𝑘𝑅𝑧𝑛

 1,3  𝑘𝑅  
′
𝑃𝑛

1 cos 𝜃 
cos
sin

   .    (47) 

Here ´ means the derivative with respect to the argument (kR), 𝑃𝑛
1 is a Legendre function, 𝑧𝑛

 1 
 is a spherical 

Bessel function, and 𝑧𝑛
 3 

 is a spherical Hankel function. The spherical Bessel function is given by 
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𝑧𝑛
 1 

(𝑥) =  
𝜋

2𝐾𝑅
𝐽
𝑛+

1

2

(𝑥), where 𝐽𝑛 (𝑥)  is the ordinary Bessel function, and the spherical Hankel function is 

given by 𝑧𝑛
 3 

(𝑥) =  
𝜋

2𝐾𝑅
𝐻

𝑛+
1

2

(2)
(𝑥), where 𝐻𝑛

(2)
(𝑥) is the Hankel function of order zero and second kind. 

 

The electric and magnetic fields in each layer (j) generated in response to the incident field (45) of a layered 

spherical particle can be expressed in the form [4,5] 

𝑬𝑗  𝒓 = 𝐸0  (−𝑖)𝑛 2𝑛+1

𝑛(𝑛+1)
 𝑎𝑛.𝑗

(1)
𝒎𝑜1𝑛

(1)
+ 𝑎𝑛.𝑗

(3)
𝒎𝑜1𝑛

(3)
+ 𝑖𝑏𝑛.𝑗

(1)
𝒏𝑒1𝑛

(1)
+ 𝑖𝑏𝑛.𝑗

(3)
𝒏𝑒1𝑛

(3)
 ∞

𝑛=1  ,   (48) 

𝑩𝑗  𝒓 = −  
𝐸0

𝑐/ 𝜀𝑗
  (−𝑖)𝑛 2𝑛+1

𝑛(𝑛+1)
 𝑏𝑛.𝑗

(1)
𝒎𝑒1𝑛

(1)
+ 𝑏𝑛.𝑗

(3)
𝒎𝑒1𝑛

(3)
− 𝑖𝑎𝑏𝑛.𝑗

(1)
𝒏𝑜1𝑛

(1)
− 𝑖𝑎𝑛.𝑗

(3)
𝒏𝑜1𝑛

(3)
 ∞

𝑛=1  .  

 (49) 

Here we have used that the incident field only has terms cos and sin  and not the general cos m and 

sin m requiring a further summation over m. This simplification is the main reason for choosing an incident 

wave propagating along the z-axis. 

The boundary conditions in this case are that the electromagnetics boundary conditions must be fulfilled 

across interfaces, i.e. we require continuity of the tangential electric and magnetic field components, the field 

is not allowed to be infinitely large in the center of the particle, and outside the particle the field must be the 

sum of the given incident field and a field component propagating away from the particle. 

Consider that j=N is the outer medium surrounding the particle.In this case the scattering boundary condition 

gives 𝑎𝑛.𝑗
(1)

= 1, and 𝑏𝑛.𝑗
(1)

= 1, and the scattered electric field (E-E0) and magnetic field (B-B0) are 

𝑬𝑠𝑐𝑎𝑡  𝒓 = 𝐸0  𝑖𝑛
2𝑛+1

𝑛(𝑛+1)
 𝑎𝑛.𝑗

(3)
𝒎𝑜1𝑛

(3)
− 𝑖𝑏𝑛.𝑗

(3)
𝒏𝑒1𝑛

(3)
 ∞

𝑛=1  ,     (50) 

𝑩𝑠𝑐𝑎𝑡  𝒓 = −  
𝐸0

𝑐/ 𝜀𝑗
  𝑖𝑛

2𝑛+1

𝑛(𝑛+1)
 𝑏𝑛.𝑗

(3)
𝒎𝑒1𝑛

(3)
+ 𝑖𝑎𝑛.𝑗

(3)
𝒏𝑜1𝑛

(3)
 ∞

𝑛=1  .    (51) 

The scattered power can now be calculated using the Poynting vector of the scattered field, i.e. 

𝑃𝑠𝑐𝑎𝑡 =  2𝑅𝑒𝑎𝑙 𝑬𝑠𝑐𝑎𝑡  𝒓 ×  𝑯𝑠𝑐𝑎𝑡  𝒓  ∗ ∙ 𝑛 𝑑𝑎  

= −
 𝐸0 2

𝑐/ 𝜀
  

2𝑛+1

𝑛(𝑛+1)
 

2

 2𝐼𝑚𝑎𝑔   𝑎𝑛.𝑗
 3 

 
2
𝒎𝑜1𝑛

 3 
×  𝒏𝑜1𝑛

 3 
 
∗

+  𝑏𝑛.𝑗
(3)

 
2
𝒏𝑒1𝑛

(3)
×  𝒎𝑒1𝑛

(3)
 
∗
 ∙ 𝑛 𝑑𝑎∞

𝑛=1  , (52) 

where we have already applied orthogonality between the even (e) and the odd (o) wave functions (even and 

odd in ) and the relation 

  
𝑃𝑛

1(cos 𝜃)

sin 𝜃

𝑃𝑛 ′
1 (cos 𝜃)

sin 𝜃
+

𝑑𝑃𝑛
1(cos 𝜃)

𝑑𝜃

𝑑𝑃𝑛 ′
1 (cos 𝜃)

𝑑𝜃
 sin 𝜃 𝑑𝜃

𝜋

0
= 𝛿𝑛𝑛 ′

2

2𝑛+1
(𝑛(𝑛 + 1))2.  (53) 

Furthermore, we can show by e.g. inserting the large-argument approximation for the Hankel function that 

1

𝑘𝑅
  𝑘𝑅𝑧𝑛

 3  𝑘𝑅  
′
 

∗

𝑧𝑛
 3  𝑘𝑅 ′ =

1

(𝑘𝑅)2 𝑖.      (54) 
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The expression (52) now leads to 

𝑃𝑠𝑐𝑎𝑡 =
2𝜋

𝑘2

 𝜀

𝑐𝜇0
 𝐸0 2  (2𝑛 + 1)   𝑎𝑛.𝑗

(3)
 

2
+  𝑏𝑛.𝑗

(3)
 
2
 ∞

𝑛=1 ,    (55) 

where j and k refer to the surrounding medium. 

For the incident field we find 

𝑬𝑖𝑛𝑐  𝒓 ×  𝑯𝑖𝑛𝑐  𝒓  ∗ = −𝑧  𝐸0 2 
𝜀0

𝜇0
 𝜀.     (56) 

If we now normalize (55) with the magnitude of (56) we find the scattering cross section 

𝜍𝑠𝑐𝑎𝑡 =
2𝜋

𝑘2
 (2𝑛 + 1)   𝑎𝑛.𝑗

(3)
 
2

+  𝑏𝑛.𝑗
(3)

 
2
 ∞

𝑛=1 .    (57) 

We can calculate the absorption as the total average power into a closed surface surrounding the particle, in 

which case we should use the total field instead of the scattered field, i.e. 

𝑃𝑎𝑏𝑠 = −  2𝑅𝑒𝑎𝑙 𝑬 𝒓 ×  𝑯 𝒓  ∗ ∙ 𝑛 𝑑𝑎 =  

−𝑃𝑠𝑐𝑎𝑡 −  2𝑅𝑒𝑎𝑙 𝑬0 𝒓 ×  𝑯𝑠𝑐𝑎𝑡  𝒓  ∗ + 𝑬𝑠𝑐𝑎𝑡  𝒓 ×  𝑯0 𝒓  ∗ ∙ 𝑛 𝑑𝑎  ,  (58) 

such that the absorption cross section is given by 

𝜍𝑎𝑏𝑠 = −𝜍𝑠𝑐𝑎𝑡 +
2𝜋

𝑘2
 (2𝑛 + 1)  𝑅𝑒𝑎𝑙(𝑎𝑛.𝑗

 3 
+ 𝑏𝑛.𝑗

 3 
) ∞

𝑛=1 .    (59) 
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