
14. Optical Processes 
 
 
The optical properties of nanostructures (as well as atoms and molecules) manifest 
themselves via optical processes. Most prominent among these is absorption, which is 
associated with the imaginary part of the susceptibility as discussed in the previous 
chapters. But other processes such as scattering and fluorescence are of importance. The 
processes are not independent. The energy emitted as scattering and fluorescence 
processes must originate from energy transferred from light to matter, ultimately 
absorption in a broad sense. In this chapter, we will study the balance between these 
processes and study their connection.  
 
Quite generally, the exchange of energy between light and matter is governed by the 
balance of electromagnetic power density (the Poynting vector = ×S E H ) reaching matter, 
on the one hand, and energy stored in the fields (electromagnetic energy density u) plus 
absorbed power, on the other. The energy balance is expressed as 
 

 ∂
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∂
uS
t

Ej .  

 
The electromagnetic energy density u is given by 1

2 (= ⋅ ⋅ )u +E D B H . We will make the 
simplifying assumption that all processes are elastic. Hence, if we restrict ourselves to 
monochromatic incident fields with a frequency  all fields vary with this frequency and 
we find that u contains terms varying at twice the frequency 2ω as well as temporally 
constant terms. Taking the time derivative, the constant terms vanish. In addition, we will 
average the energy balance over one period of the field. This kills off the 2ω terms as well. 
It should be noted that the elastic assumption means that fluorescence is ignored. Also, 
conversion of electromagnetic energy into heat is neglected. We write the time-averaged 
quantities using pointed brackets such as 

ω

S< >  and find 
 
 −∇⋅< >=< ⋅ >S j E�.  
 
Next, we integrate this relation over a finite volume V and use Gauss’ theorem to 
transform into an integral over the bounding surface S 
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where ne  is the outward pointing normal. The left-hand side has a simple interpretation as 

the net electromagnetic intensity radiated into the volume. Also, the ⋅j E  term is the  
absorbed optical power inside the volume. Both electric and magnetic fields contain an 
incident (subscript “0”) and a scattered (subscript “scat”) part and so the Poynting vector 
has three contributions 
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The integral over 0⋅< >ne S  vanishes because of conservation of electromagnetic power in 

the absence of matter. The integral of ⋅< >n scate S  is the power radiated by scattering. 
Hence, the energy balance yields 
 
 ,  = +ext scat absP P P
 
where the three terms are, respectively, the extinction, scattered, and absorbed power 
given by  
 
 3, ,=− ⋅< > = ⋅< > = < ⋅ >∫ ∫ ∫ext n ext scat n scat abs

S S V

P e S dS P e S dS P j E�d r .  

 
14.1 Single Dipole 
 
We now specialize to a single point dipole, that is, a single nanostructure, atom or 
molecule that is sufficiently small compared to the optical wavelength that it can be 
regarded as a point source. The dipole moment varies with time as ( )1

2( ) ( ) . .i tp t p e c cωω −= +  
and taking the dipole position as the origin, the associated density is ( ) ( )p t rδ . The 
accompanying current density is 
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2
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∂
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With an electric field (1

2( , ) ( , ) . .i tr t r e c cωω −=E E )+  it then readily follows that 
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In our case, the dipole is induced by the electric field and we therefore write 

0( ) ( ) (0, )ω α ω ω= ⋅p E , where 0α  is the polarizability (tensor). The subscript “0” signifies 
that it is the “bare” polarizability, which relates the dipole moment to the total driving 
field. Writing the field vector as ( , ) ( , )ω ω=r rE E e  we subsequently have 
 
 { } 21

02 Im ( ) | (0, )|ω α ω ω= ⋅ ⋅absP e e E . (14.2) 
 
This result demonstrates that the absorbed power is proportional to the imaginary part of 
the polarizability. 
 
Our next step is to compute the fields radiated by the dipole, i.e. the scattered fields. The 
simplest strategy is to obtain the vector potential A  (choosing Lorentz gauge) and then 
find the magnetic field via =∇×B A  and finally the electric field from . 
The relation between scattered vector potential and current density is [1] 

2/ t c∂ ∂ = ∇×E B
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where  is the so-called retarded time. With Eq.(14.1) we then find | |/t r r c′− −

( )1
2( , ) ( , ) . .ωω −= +i t

scat scatr t r e c cA A  with  
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In turn, the magnetic field becomes ( )1

2( , ) ( , ) . .ωω −= +i t
scat scatr t r e c cB B  with 
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where we have applied the far-field assumption that  is much faster varying than , 
which is clearly the case whenever . Similarly, the electric field in the far-field limit 
becomes 

0ik re 1r−
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 3



 
0 02 2

2 0 0

0 0

( , ) / ( , ) [ ( )] [ ] ( )
4 4

ik r ik r

scat scat r r r r
k e k er ic r e e p U e e p

r r
ω ω ω ω

πε πε
= ∇× ≈− × × = − ⋅E B . ω

 
The last form is obtained by considering the direction of [ ( )]r re e p ω× × , c.f. Fig. 14.1. From 
these fields we now compute the time-averaged Poynting vector of the dipole radiation 
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The last equality follows from the direction of the cross product between ( )re p ω×  and 

[ (r re e p ω× × )]. Introducing θ  as the angle between re  and ( )p ω  as illustrated in Fig. 14.1 
we realize that | ( )| [ ( )]| ( )sinre p e p pω× = × × =|r reω ω θ  and so  
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This result can be integrated over a large sphere to provide the scattered power 
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using the fact that 
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Figure 14.1 Vector diagram for the directions of scattered vector potential ( p ), magnetic field ( re p× ) 

and electric field ( [ ]r re e p× × ). 
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14.2 Bare and Dressed Polarizabilities 
 
Will a particle be influenced by the scattered field that it emits? This may sound as a 
strange question but, in fact, it’s important for a full understanding of optical processes. 
The answer is yes and the basic reason is simple. In the process of emitting light, 
momentum is lost and so a force acts on the particle. This effect, however, can be 
incorporated into the response of the particle. Hence, instead of a “bare“ particle 
interacting with both incident and scattered fields we find an equivalent picture of a 
“dressed” particle interacting with the incident filed only. To set up this equivalent 
picture, a careful analysis of external and local fields is needed. Primarily, we need to 
consider the fields without using the far-field approximation. To this end, we use the 
identity 
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and write the vector potential as 
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Taking various curls, the electric field is then readily found as 
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This field, which is radiated by the dipole, also acts on the dipole! In fact, the total local 
field is the sum of the incident field and this radiated field evaluated at 0r = . The 
imaginary part is particularly important because it acts as a damping force being 90 
degrees out of phase with the dipole. The real part (which, incidentally, cannot be 
correctly handled in a classical scheme but requires a fully quantum-electrodynamical 
theory) leads to a frequency shift of the resonance, the so-called Lamb shift. The imaginary 
part of the field evaluated at 0r =  is called the Radiation-Reaction field ( )RR ωE . It is 
obtained from the imaginary part of the pole, i.e. 
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The effects of radiation reaction are clear if we note that the total field driving the dipole 
becomes 0(0, ) (0, ) ( )ω ω= + ωRRE E E . Hence, the induced dipole moment is 
 
 {0 0( ) ( ) (0, ) ( )ω α ω ω ω= ⋅ + }RRp E E .  

 
Applying the expression for the radiation-reaction field, this result can be rearranged as 
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Here, α  is the so-called dressed polarizability relating the dipole moment to the incident 
field alone. Hence, the effects of radiation reaction have been absorbed into the dressed 
polarizability. The bare polarizability was calculated previously in chapter 7 
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Here,  is the many body energy eigenvalue of the n’the state measured relative to the 

ground state. Also, 
nE

0 0= ∑n e
D er n

ωn

 is the many-electron transition dipole moment. We 
now make the simplifying assumption of isotropy in the polarizability as appropriate for 
atoms or spherical nanostructures. Also, the approximations applied above are only 
expected to hold when we are close to a resonance . Hence,  /ω ≈ ≡nE
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Using simple manipulations, this result can be rewritten as 
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where 
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This quantity, which is actually the spontaneous decay rate of the n’th excited state [2], 
then results in a finite line width equal to  for the resonance. Without Γ , the resonance 
would diverge precisely at . This modification should be done for every transition 
and so 

Γn n

ω ω= n
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We have defined the dressed polarizability so that 0 0( ) (0, ) ( ) (0, ).α ω ω α ω ω⋅ = ⋅E E  This 
means that the correct versions of Eq.(14.2) and (14.4) can be written as 
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We wish to introduce cross sections for the two processes and, to this end, need the 
intensity of the incident field 21

0 0 02| | | |incI S cε= = E . Dividing the power expressions above 
by this intensity provides absorption and scattering cross sections 
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It may be noted that if the dipole is embedded in a homogeneous dielectric with a (real-
valued) refractive index  the above relations remain valid provided  is replaced by 

. Now, if energy is not accumulated in the particle and it is not dissipated by 
other means, the absorbed power must equal the scattered power. Thus, equating the 
above cross sections yields 

1n 0k

1 1k n k= 0
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This condition is only expected to hold exactly at a resonance  so that Eq.(14.6) 

yields 

ω ω= n

2 2
0( ) 2 | | /( )n nie D Uα ω = nΓ

n

. Plugging this into Eq.(14.8) shows that the requirement 
is precisely obeyed if Γ  is given by the expression Eq.(14.7). Hence, our expression for the 
spontaneous decay rate is consistent with all absorbed power eventually being re-emitted 
as scattering. 
 
Exercise: Near-field relations 
 
The calculation of the scattered field above relied on the far-field approximation . 
If all terms are retained, a somewhat tedious computation shows that 

0 1k r
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a) Show by expansion around x = 0 that 
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b) Use this result to show that the radiation-reaction field is precisely the imaginary part of 
the scattered field in the limit . 0r →
 
c) Show that the near-field, i.e. the electric field very close to the dipole, is approximately 
given by 
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The same expression is obtained for the electrostatic field produced by a dipole. In a static 
calculation, we put =−∇ΦE , where Φ  is the electrostatic potential. 
 
d) Show that the accompanying near-field potential is 
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We now consider a small nanosphere of radius a and refractive index  embedded in a 
medium with refractive index  subjected to a constant incident field 
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0

θ
the incident potential must be . In polar coordinates,  and we 
therefore write the full solution as . Laplace’s equation for the potential 

 consequently simplifies to 
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21/( )f r rd) Show that ( )f r = r  and =  are solutions to Laplace’s equation. 
 
e) Of the above, only the first type is allowed inside the sphere while both forms are 
applicable outside. Apply the boundary conditions  and ( )f a = (f a− )+ ( )n2 2
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to demonstrate that the full solution outside the sphere is  with  0Φ=Φ +
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Comparing to the general expression for the near-field potential, this demonstrates that 

the polarizability is 
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