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Introduction to surface plasmon polaritons 

Examples of plasmonic nano structures
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Green’s tensor volume integral equation method (VIEM):

Boundary condition:

Vector wave equation:   0rEr  )()(2
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Green’s tensor G:

By rewriting the vector wave equations for the incident and total field we find
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which is satisfied by

The solution where the scattered field Escat=(E-E0) satisfies the radiating 

boundary condition is obtained if we choose the G which satisfies this condition

)()()( 0 rErErE scat

The given E0 satisfies:
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Green’s tensor in the case of a homogeneous dielectric
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Green’s tensor in the case of a planar metal-dielectric interface
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G can be calculated via Sommerfeld-integrals – example for z,z’>0
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Discretization of the Green’s tensor volume integral equation
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Discretization approximation: constant field and material parameter assumed 

in each volume element

Case i=j : the singularity of G can be dealt with by transforming the integral 

into a surface integral away from the singularity

Discrete Dipole Approximation (DDA): jiV  ,)k( 2
0jiij r,rGG

Purcell and Pennypacker, 1973, used the equivalent of:
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B.T. Draine, 1988, used the equivalent of:
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Green’s tensor volume integral equation method (VIEM):

self-interaction term / radiation reaction

For i=j it is advantageous for the evaluation of Gii to rewrite 

(part of the) volume integral as a surface integral
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Where we have used
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Taking advantage of the Fast Fourier Transform (FFT)
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Gaussian elimination, LU-decomposition etc. scales as N 3

=> Matrix inversion is not efficient for large numbers of volume elements.

The equation is solved by an iterative approach where a trial vector containing 

is optimized until a convergence criteria is satisfied. This procedure 

involves many matrix multiplications of the above form.

The convolution is carried out by the FFT, multiplication in reciprocal space, and 

another FFT. This procedure scales as NlogN.

In e.g. the case where we use the DDA, or volume elements of the same size

and shape placed on a cubic lattice, and a homogeneous background, the 

discretized equation to be solved takes the form of a discrete convolution

zyx ,i,iiE
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Green’s tensor volume integral equation method (VIEM):

- Modeling of a single surface scatterer

j



The magnitude of the scattered field is 

calculated at a small height above the 

surface but at a large distance 

10m as a function of direction j

gold

Actual structure being 

modeled when using cubic

Discretization elements

100nm

300nm

=1500nm

Polymer, n=1.53
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Poor convergence when using cubic discretization elements 
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Green’s tensor volume integral equation method (VIEM):
- Taking advantage of cylindrical symmetry by using a formulation of 

the VIEM based on ring discretization elements
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10nm transition layer from 

=40 to 50nm.          

Linear variation of .           

Tensor effective medium 

representation:

Sharp edge -

no averaging:

10nm transition layer from 

=40 to 50nm.           

Linear variation of . 

Geometric averaging
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Green’s tensor volume integral equation method (VIEM):

Finite-size surface plasmon polariton bandgap structures

Modeling of a single scatterer required 5000-30000 discretization 

elements for each angular momentum. If we then also have several 

thousand scatterers an approximation method is required.

1) The incident field is assumed constant over a surface scatterer

2) The field inside a single scatterer (Ax, Ay and Az) is calculated for an 

incident field being constant over the scatterer and oriented along each of the 

three main directions

3) The results for a single scatterer is reused in an approximation method for

an array of a large number of scatterers (Ei,ext is the external field at the site of

a scatterer):
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L=450nm

VIEM: Finite-size surface plasmon polariton bandgap structures
Gold particles arranged on a hexagonal lattice on a planar gold surface

GK

GM

The incident (but not the total) field is assumed constant across each scatterer
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Bandgap vs size of surface scatterers



Out-of-plane scattering
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In-plane scattering
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Transmission through a straight 

channel in a SPPBG structure

=812nm

Particle size: h=50nm, r=125nm
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Transmission through a bent 

channel in a SPPBG structure

Particle size: h=50nm, r=125nm
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Transmission through a gradually 

bent channel (R=bend radius) in a 

SPPBG structure

R=35m

Particle size: h=50nm, r=125nm
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Green’s tensor area integral equation method (AIEM): 
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Green’s tensor area integral equation method (AIEM): 

Stair-cased description of surface vs using special surface elements

For a modest ratio of dielectric constants (=4) both methods converge.

Using special discretization elements near the surface that follow closely the

surface profile offers a very significant improvement

00 4.0)1/(2 EEE  Static limit:
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Green’s tensor area integral equation method (AIEM): 

Stair-cased description of surface vs using special surface elements

For a large ratio of dielectric constants (1 : -22.99-i*0.395) the method of

using a stair-cased description of the surface converges very slowly – if at all.

Reasonably efficient convergence is, however, achieved when using the special 

surface elements. In this case the numerical equations do not involve a discrete 

convolution and we cannot take advantage of the FFT to the same extent.

Thomas Søndergaard, October 27, 2008



W

h
d

L

Ridge gratings for long-range surface plasmon polaritons

Gold Polymer with refractive index 1.543 (BCB)

d=15nm, W=230nm, L=500nm x
y

z
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Here G is the Green’s tensor for a thin metal-film reference structure
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Surface plasmon polariton contribution to Green’s tensor

Evaluation of transmitted LR-SPP field (x-x’>0):
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We have found a long analytical expression for A – and similar expressions for 

the three-dimensional case using an eigenmode expansion of the Green’s tensor:
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Evaluation of reflected LR-SPP power (x-x’<0):
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Double length Double ridge height
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for wavelengths below the bandgap

Bloch modes

Continuum of modes 

allowed to propagate in 

the polymer

Leakage-free guided modes do not exist for <2Ln=1543nm

L500nm
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Case of 160 ridges: 

Increasing the ridge 

height above a threshold

leads to reduced peak 

reflection

The experiment was made by 

A. Boltasseva

Ref.: T. Søndergaard, S.I. Bozhevolnyi, and

A. Boltasseva, Phys. Rev. B 73, 045320 (2006).
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Case of ridge height h=10nm. 

Theory versus experiments for different grating lengths

Ref.: S.I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. 

Leosson, Optics Communications 250, 328-33 (2005).
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Green’s function surface integral equation method
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Quantitative agreement with: J.P. Kottmann et al., Opt. Express 6, 213 (2000).
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Electric field magnitude 

enhancement (values 

>10 are set to 10)
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Ref.: T. Søndergaard, and S.I. Bozhevolnyi, Phys. Stat. Sol. (b) 245, 9-19 (2008).
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Summary

The treatment of the surface of plasmonic (metal) nano structures is crucial.

VIEM: 

 Cubic volume elements for a cylindrical gold scatterer did not work at all. 

 Ring volume elements and a cylindrical harmonic field expansion 

worked - but only when using ”soft” edges.

 The result for a single scatterer was reused in an approximation method for  

large arrays of scatterers (SPPBG structures).

AIEM: 

 Square area elements did not work for a circular metal cylinder.  

The method became efficient when replacing elements near the surface with

special elements following closely the shape of the structure surface. 

 The method was applied to LR-SPP ridge gratings.

SIEM: 

 Rounding of sharp corners may be necessary.

 The method was exemplified for metal nano-strip resonators.

(The methods are reviewed in: T. Søndergaard, phys. stat. Sol. (b) 244, 3448-62 (2007).
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