Optical scattering resonances of metal nano particles and related structures

(PhD course: Optical at the nanoscale)

Thomas Søndergaard

Department of Physics and Nanotechnology
Aalborg University, Denmark
Outline:

Gold coated spherical polystyrene particles

Alloys and other geometries

Metal nano strip resonators
Quasistatic approximation

\[\nabla \times \mathbf{E} = 0 \quad , \quad \nabla \cdot (\varepsilon \mathbf{E}) = \mathbf{E}_{\text{inc}} = \hat{z}E_0 = -\nabla (-E_0 r \cos \theta) \]

\[\mathbf{E}_i = -\nabla \Phi_i \quad , \quad \Phi_i = A_i r \cos \theta + B_i \frac{1}{r^2} \cos \theta \]

Boundary conditions

\[B_1 = 0 \quad , \quad A_N = -E_0 \]

\[\hat{\theta} \cdot \nabla \Phi_i (r_i) = \hat{\theta} \cdot \nabla \Phi_{i+1} (r_i) \]

\[\varepsilon_i \hat{r} \cdot \nabla \Phi_i (r_i) = \varepsilon_{i+1} \hat{r} \cdot \nabla \Phi_{i+1} (r_i) \]

\[C_{\text{ext}} = \text{Im} \left\{ \frac{k_0 \sqrt{\varepsilon_N}}{|E_0|^2} \int (\mathbf{E}_{\text{inc}})^* \cdot \frac{\varepsilon(r) - \varepsilon_N}{\varepsilon_N} \mathbf{E}(r) d^3 r \right\} \]

The incident field is oriented along the z-axis.

Reproduced from Averitt et al., JOSA B 16(10), 1824-32 (1999).
Exact calculation that includes retardation

\[E_{\text{inc}} = \hat{x}E_0 e^{ikz} = E_0 \sum_{n=1}^{\infty} (-i)^n \frac{2n+1}{n(n+1)} (m_{o1n}^{(1)} + in_{e1n}^{(1)}) \]

\[E_j = E_0 \sum_{n=1}^{\infty} (-i)^n \frac{2n+1}{n(n+1)} \left(a_{n,j}^{(1)} m_{o1n}^{(1)} + a_{n,j}^{(3)} m_{o1n}^{(3)} + ib_{n,j}^{(1)} n_{e1n}^{(1)} + ib_{n,j}^{(3)} n_{e1n}^{(3)} \right) \]

\[B_j = -\left(\frac{E_0}{c/\sqrt{\varepsilon_j}} \right) \sum_{n=1}^{\infty} (-i)^n \frac{2n+1}{n(n+1)} \left(b_{n,j}^{(1)} m_{e1n}^{(1)} + b_{n,j}^{(3)} m_{e1n}^{(3)} - ia_{n,j}^{(1)} n_{o1n}^{(1)} - ia_{n,j}^{(3)} n_{o1n}^{(3)} \right) \]

\[m_{e1n}^{(1,3)} = \pm \frac{1}{\sin \theta} z_{n}^{(1,3)} (kR) P_n^1 (\cos \theta) \cos \phi \hat{\theta} - z_{n}^{(1,3)} (kR) \frac{dP_n^l (\cos \theta)}{d\theta} \sin \phi \hat{\phi} \]

\[n_{e1n}^{(1,3)} = \frac{n(n+1)}{kR} z_{n}^{(1,3)} (kR) P_n^1 (\cos \theta) \sin \phi \hat{\phi} + \frac{1}{kR} \left[kR z_{n}^{(1,3)} (kR) \right] \frac{dP_n^l (\cos \theta)}{d\theta} \sin \phi \hat{\phi} \]

\[\pm \frac{1}{kR \sin \theta} \left[kR z_{n}^{(1,3)} (kR) \right] P_n^1 (\cos \theta) \sin \phi \hat{\phi} \]

\[P_n^1 (x) \quad \text{is a Legendre function} \]

\[z_{n}^{(1)} (kR) \quad \text{is a spherical Bessel function} \]

\[z_{n}^{(3)} (kR) \quad \text{is a spherical Hankel function} \]

References:
J.A. Stratton, Electromagnetic theory, McGraw-Hill, 1941
Gold coated polystyrene spheres

The finite thickness of the gold layer will result in additional loss due to surface scattering of electrons. This is sometimes taken into account to some extent in models by modifying the gold dielectric constant in the following way

\[
\varepsilon(\omega) = \varepsilon_{bulk}(\omega) + \left(\frac{\omega_p^2}{\omega^2 + i\omega\gamma_{bulk}} - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma} \right)
\]

\[
\Gamma = \gamma_{bulk} + A \frac{v_F}{(r_2-r_1)}
\]

\[
\omega_p = 1.37 \times 10^{16} \text{rad/s}, \quad v_F = 1.4 \times 10^6 \text{m/s}, \quad g = 3.33 \times 10^{13} \text{s}^{-1}
\]
Reproduction of Fig. 11 of Shi et al., Langmuir 2005, 21, 1610-17

\[r_1 = 148\text{nm} \]
\[r_2 - r_1 = 15\text{nm} \]
\[A = 3 \]

\[r_1 = 148\text{nm} \]
\[r_2 - r_1 = 23\text{nm} \]

\[r_1 = 148\text{nm} \]
\[r_2 - r_1 = 36\text{nm} \]
Gold coated polystyrene spheres

PS diameter = 50nm
Extinction cross section resonance found for gold layer of 3.5nm at the wavelength 800nm

\[r_1 = 25\text{nm}, \ r_2 = 28.5\text{nm}, \ \lambda = 800\text{nm} \]
$r_1=152.5\,\text{nm}, \, r_2=162.5\,\text{nm}, \, \text{PS/Au, } \lambda=800\,\text{nm}$

$r_1=250\,\text{nm}, \, r_2=265\,\text{nm}, \, \lambda=800\,\text{nm}$
Spherical particles made of an alloy of gold and silver

Other geometries of particles made of pure gold or silver

Figure 1. UV–vis absorption spectra of gold and gold–silver alloy nanoparticles with varying gold mole fractions x_{Au}. The spectra have been normalized at the plasmon absorption maximum. The inset shows how the absorption maximum of the plasmon band depends on the composition. The solid line is a linear fit of the absorption maximum to the gold mol fraction x_{Au}. The squares correspond to the experimental data while the triangle and diamond are two literature values for pure silver nanoparticles.29,34

Introduction to surface plasmon polaritons

SPP

Metal nano-strip resonator

LR-SPP

Gap-plasmon resonators

SR-SPP

Gap-PP

(Propagation along the x-direction)
Metal nano-strip resonators

Slow plasmon polaritons in a silver film

\[\mathbf{E}(\mathbf{r}) = \mathbf{E}(y) e^{-i \beta x} \]

- The x-component of the electric field dominates inside the metal film
- The x- and y-components of the field are out of phase
- The mode becomes less strongly bound as the film thickness increases

Electric field magnitude enhancement (values >10 are set to 10)

Cross section of resonant fields through the center of the metal strips

The resonance is robust towards a 20% increase in δ ($\delta=5\rightarrow 6\text{nm}$) and towards shifting the position of the 5nm gap by 20nm.

Gold nano-strip optical resonators: theory and experiment

Fabrication: A. Boltasseva
Measurements: J. Beermann

\[\frac{2\pi}{\lambda} n_{\text{slow}} = m\pi - \phi \]

\[\lambda = \left(\frac{2\pi}{m\pi - \phi} n_{\text{slow}} \right) w \]

\(w=100\text{nm}, \quad l=708\text{nm}, \)
Bottom-illuminated
(Field magnitudes > 10 have been set to 10).

Design of single-nano-strip optical resonators

Q-factor and field enhancement

Gap plasmon polaritons between two metal films

\[E(\mathbf{r}) = E(y) e^{-i\beta x} \]

- The x-component of the electric field dominates inside the metal films
- The mode index is larger compared to the single film and increases with decreasing gap and decreasing film thickness

Gap plasmon polariton resonator

\[w \frac{2\pi}{\lambda} n_{\text{slow}} = m\pi - \phi \]

The gold gap plasmon metal nano-strip resonator

- Contrary to using silver the scattering peaks are hardly observable for the 3rd and 4th order resonances.
- Standing-wave fields are still clearly seen

The gold gap plasmon metal nano-strip resonator

The gold gap plasmon metal nano-strip resonator

Single strip close to a thick metal block

Gold-air gap plasmon resonators

In this case we also use the Green’s function surface integral equation method. However, we avoid the surface integral over the infinite surface by using a specially constructed Green’s function.

Special construction of Green’s function

\[g_{\Gamma}(\mathbf{r}, \mathbf{r}') = \frac{1}{4i} H_0^{(2)} \left(k_0 \sqrt{\mathcal{E}_{\Gamma}} |\mathbf{r} - \mathbf{r}'| \right) \]

\[- \frac{i}{2\pi} \int_{\kappa_x=0}^{\kappa_x=\infty} \frac{1}{\sqrt{k_0^2 \mathcal{E}_{\Gamma} - \kappa_x^2}} \cos(\kappa_x (x - x')) r^{(p)}(\kappa_x) e^{-i\sqrt{k_0^2 \mathcal{E}_{\Gamma} - \kappa_x^2} (y + y')} d\kappa_x \]

, \quad y, y' > 0
Conclusion on metal nanostrip resonators

- Optical scattering resonances for metal nano-strip resonators is due to excitation of counter-propagating slow surface plasmon polaritons

- We can exploit the electromagnetics boundary conditions to obtain large field magnitudes.

- Robust enhancement of the magnitude of the electric field by a factor ~20-30.

- Excellent match of calculated and measured scattering spectra

- Near-linear relation between resonance wavelength and strip width for both strip and gap plasmon resonators
Acknowledgements - people:

Sergey I. Bozhevolnyi
Jonas Beermann
Alexandra Boltasseva
Jesper Jung

Acknowledgements - projects:

The Danish Research Council for Technology and Production

The NABIIT project financed by the Danish Research Agency (contract 2106-05-033)