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Introduction to photonic bandgap structures

The plane-wave-expansion method (MIT method)
2D photonic crystal waveguides

Planar slab photonic crystal waveguides
Large-bandwidth planar photonic crystal waveguides

Photonic crystal micro-cavities
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Figure 1 Top, photonic band structure for a square lattice of dielectric (e = 8.9) rods
inair with radiusr = 0.2a, where a is the lattice constant. TM modes are shown in
blue and TE modes in red. The solid lines are from theory and the squares
represent experimental measurements along T' to X from Robertson et al®
Bottom, photonic band structure for a triangular lattice of air cylinders (r = 0.48a)
in dielectric (e = 13). Note the presence of a complete photonic bandgap for both
TE and TM polarizations in this case as shown by a solid yellow bar. In both
panels high-dielectric material is indicated in green in the insets.
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Figure 2 Top, projected photon bands for a waveguide in a square lattice of
dielectric rods. The waveguide is formed by removing one row of rods from the
otherwise perfect lattice and this creates a band of guided modes as shown in
red. The green regions correspond to propagating modes in the bulk crystal and
the yellow region corresponds to the photonic bandgap. Bottom, electric field of
light propagating down a waveguide with a sharp bend carved out of a square
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Figure 3 Top, localized states in the gap for a defect formed by varying the radius
of a single rod in the square lattice of dielectric rods with lattice constanta. Th
case where there is no defect corresponds tor = 0.2a, while the case of a vacanc
corresponds to r = 0. Bottom panels, electric field patterns associated wit

selected defect states as indicated. The colour coding is the same as in th
bottom panel of Fig. 2.




The plane-wave-expansion method

We choose to work with the wave equation for the magnetic field
because it is a simple eigenvalue equation, and it is Hermitian for
dielectric materials without absorption.

1 0)2 Eigenvector: H(r),
V X H(I") — " 5 H(I’) Eigenvalue: w?/c?
g(r) C

V %

Field expansion for structures with discrete translational symmetry:

Hicn (1) = Uy (e’" = Z th,e,z,nei(kw)'r

G A=12
When the following functional is at a minimum, H is an eigenvector and E(H)
IS the corresponding eigenvalue. The expansion coefficients are adjusted using
an iterative proceduce until the minimum is reached.
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Interpretation of the slope of dispersion curves (2D)
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Fig. 1 :
2D PCW with silicon rods surrounded by air. Energy propagation velocity
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- The smooth curves in Fig. 2 correspond to the slope of the dispersion curves in Fig. 1.

- The discrete points in Fig. 2 is the energy propagation velocity calculated from the Poynting vector
and the energy stored in the fields.

- Note that the curves approach the light line in Fig. 1 as W is increased.
Reference: Phys. Rev. B 61, 15688 (2000).




Considerations regarding orientation and period of planar
photonic crystal waveguides

- A slab of a 2D PCW will usually be surrounded by a homogeneous dielectric material above and
below the slab such as air or glass:

Example with air above S Example with glass above air-hole
and below the slab C?S %CéDO and below the slab silica
OO OO
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silicon

- If a combination of Bloch wave number and frequency is allowed in the media surrounding the 2D
PCW slab a mode with these characteristics will leak energy into the surrounding media
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- The surrounding medium should have low refractive index
- The period of the waveguide should be small - ”First orientation” is preferable

Reference: Appl. Phys. Lett. 77, 785 (2000).
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Example of a silicon-on-insulator (SOI) PCW (2D)
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Reference: J. Lightwave Technol. 20, 1619 (2002).



Amplitude of magnetic field squared for bandgap guided modes
in a two-dimensional photonic crystal waveguide
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Example of a silicon-on-insulator (SOI) PCW (3D)

Dispersion relations (3D) Amplitude of magnetic field squared for the
bandgap guided modes
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Reference: J. Lightwave Technol. 20, 1619 (2002).




Three-dimensional analysis of finite-height photonic
crystal waveguides

Amplitude of electric field squared for the three
bandgap guides modes (kA/21=0.46) for a plane

Two-dimensional defined by the waveguide axis and the z-axis
photonic crystal waveguide

silicagﬁao O000

air-hole —

&
O
O
O

O O
O O
OO

(2)

silicon —
L
X

Z

Note the long tails of the
electric field for mode (3)

O'O
O O

— @

O
O
O
O

O
O
O
O
O

€—>

D A




Comparison with experiment
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The measurement has been made by J. Arentoft.



Design principle for achieving a large bandwidth

Finite-height 2D photonic crystal
waveguide suspended in air
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 The discrete bands cover only narrow frequency intervals =>
the waveguides are narrow-bandwidth waveguides

* The bands are flat =>
high group-index / low energy propagation velocity

Reference: Optics Communications 203, 263-70 (2002).



Design principle for achieving a large bandwidth

Idea: The dispersion curves of guided modes will approach the dispersion curves of

a slab of the material in the line-defect when the line-defect width becomes large
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Reference: Optics Communications 203, 263-70 (2002).
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