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Photonic'csta putting

twist on light

J. D. Joannopoulos, Pierre R. Villeneuve & Shanhui Fan

Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of
‘forbidden’ frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate
through the medium. This provides the opportunity to shape and mould the flow of light for photonic information

technology.

For the past 50 years, semiconductor technology has played a role in
almost every aspect of our daily lives. The drive towards miniatur-
ization and high-speed performance of integrated electronic circuits
has stimulated considerable research effort around the world.
Unfortunately, miniaturization results in circuits with increased
resistance and higher levels of power dissipation, and higher speeds
lead to a greater sensitivity to signal synchronization. In an effort to
further the progress of high-density integration and system perfor-
mance, scientists are now turning to light instead of electrons as the
information carrier.

Light has several advantages over the electron. It can travel in a
dielectric material at much greater speeds than an electron in a
metallic wire. Light can also carry a larger amount of information
per second. The bandwidth of dielectric materials is significantly
larger than that of metals: the bandwidth of fibre-optic commu-
nication systems is typically of the order of one terahertz, while that
of electronic systems (such as the telephone) is only a few hundred
kilohertz. Furthermore, light particles (or photons) are not as
strongly interacting as electrons, which helps reduce energy losses.

In spite of the numerous advantages of photons, all-optical
circuits have yet to be commercially available on a large scale.
Some hybrid optoelectronic circuits have produced significant
improvement over the performance of electronic circuits, but the
difficulties in designing a multipurpose optical component analo-
gous to the electronic transistor has severely hindered the prolifera-
tion of all-optical systems. A new class of optical materials known as
photonic crystals’ may hold the key to the continued progress
towards all-optical integrated circuits. Indeed, scientists have begun
imagining photonic integrated circuits which resemble microscopic
metropolises at micrometre length scales, with photonic crystal
buildings that house bundles of light, and highways and bridges that
guide light along narrow channels and around tight corners.

The underlying concept behind photonic-crystal materials stems
from early ideas by Yablonovitch? and John’. In a nutshell, the idea is
to design materials so that they can affect the properties of photons,
in much the same way that ordinary semiconductor crystals affect
the properties of electrons. Both Yablonovitch and John suggested
that structures with periodic variations in dielectric constant could
influence the nature of photonic modes in a material; Yablonovitch’s
aim was to control the radiative properties of materials, while John’s
was to effect photon localization” by introducing a random
refractive-index variation.

Traditionally, the manipulation of optical photons has relied in
general on the mechanism of total internal reflection. Light
propagating in a high-dielectric material is reflected at the inter-
face with a low-dielectric material. This severely limits the degree of
miniaturization of optical components because the interface must
be smooth with respect to the wavelength of light. Photonic crystals
offer a completely different mechanism for the control of light. The
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difference lies in the concept of a photonic bandgap—the optical
analogue of the electronic bandgap in semiconductors.

In a semiconductor, the atomic lattice presents a periodic
potential to an electron propagating through the electronic crystal.
Moreover, the geometry of the lattice and the strength of the
potential are such that, owing to Bragg-like diffraction from the
atoms, a gap in allowed energies opens up for which an electron is
forbidden to propagate in any direction. In a photonic crystal, the
periodic ‘potential’ is due to a lattice of macroscopic dielectric
media instead of atoms. If the dielectric constants of the constituent
media are different enough, Bragg scattering off the dielectric
interfaces can produce many of the same phenomena for photons
as the atomic potential does for electrons. Thus a photonic crystal
could be designed to possess a complete photonic bandgap—a
range of frequencies for which light is forbidden to exist within the
interior of the crystal. Forbidden, that is, unless there is a defect in
the otherwise perfect crystal. A defect, or mistake in the periodicity,

could lead to localized photonic states in the gap, whose shapes and |

properties would be dictated by the nature of the defect. A point
defect could act like a microcavity, a line defect like a waveguide, and
a planar defect like a perfect mirror. This ability to manipulate a
photon provides us with a new dimension in our ability to mould or
control the properties of light. Therein lies the exciting potential of
photonic crystals.

Of course, while the periodic arrangement of atoms occurs
naturally in semiconductors, photonic crystals need to be fabricated
artificially. To fully appreciate the challenge of fabricating these
structures, we note that the lattice constant of the photonic crystal
(that is, the size of the basic unit cell) must be comparable to the
wavelength of the light. For the optoelectronics industry, for
instance, where the usual operating frequency is around 1.5 pm
(in the infrared), the lattice constant of a useful photonic crystal
must be of the order of 0.5 um. Although this is about 1,000 times
larger than the lattice constant of atomic crystals, it is still over
100 times smaller than the diameter of a human hair. The fabrica-
tion of these intricate structures requires state-of-the-art micro-
lithography techniques, such as electron-beam lithography and
X-ray lithography.

From a theoretical point of view, the description of light in
photonic crystals must involve the solution of Maxwell’s equations
in a periodic dielectric medium. An appealing aspect of Maxwell’s
equations is that, unlike the complex strongly interacting many-
particle problem of electrons in a solid, they can be solved exactly.
With linear materials there are no interactions between photons so
that one is left with a fairly standard single-particle problem. This
means that theoretical computations can provide very accurate
descriptions and predictions of the properties of photons and
therefore be very useful and complementary to experimental
investigations. Another appealing aspect of Maxwell’s equations is
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that there is no fundamental length scale. If we ignore changes in the
dielectric function with frequency, a photonic crystal designed at
one length scale will have the same fractional gap as the crystal at any
other length scale. Thus a given photonic crystal designed to operate
at microwave frequencies, which is much easier to fabricate because
of millimetre-scale feature sizes, can be used to deduce the proper-
ties of the same photonic crystal scaled down to submicrometre
length scales.

To take full advantage of the potential of photonic crystals, it is
necessary to develop an understanding and intuition of their
photonic structure on the same level as we have for electrons in
solids. Towards this end, it is natural to begin our discussion with an
exploration of the physical origins of the photonic bandgap. This
will illustrate how different dielectric lattice topologies can lead to
gaps for different polarizations of light. We shall then proceed to
investigate the photonic structure associated with line defects
(waveguides) and point defects (microcavities). Waveguides in
photonic crystals will provide a unique ability for guiding optical
light in air, along narrow channels and around very tight bends,
with no losses. Microcavities in photonic crystals will provide
complete tunability in both defect frequency and symmetry; the
latter leads to the new concept of an orbital angular momentum for
the photon. Both will provide basic ingredients for using photonic
crystals to control the spontaneous emission of atoms in materials.
For simplicity, in all of these discussions, we shall concentrate on
employing two-dimensionally periodic photonic crystals as generic
examples. This is purely for ease of description and visualization. All
of the conclusions drawn carry over to their more complex three-
dimensional counterparts. While much of this discussion is based
on theoretical modelling, several approaches have now been
initiated to design and fabricate real three-dimensional photonic
crystals.

The photonic bandgap
In the absence of external currents and sources, Maxwell’s equations
can be cast in the following simple form

{Vx Lyx }H(r):iﬁﬂ(r) 1)
€(r) ¢

where H(r) is the magnetic field of the photon, w is its frequency, cis
the speed of light and e(r) is the macroscopic dielectric function.
The solutions H(r) and w are determined completely by the strength
and symmetry properties of e(r). If e(r) is perfectly periodic, as in a
perfect photonic crystal, the solutions are characterized by a
wavevector k and a band index n. The region of all allowed
wavevectors is called a Brillouin zone and the collection of all
solutions is termed a band structure. We are interested in under-
standing the aspects of the dielectric geometry of a photonic crystal
which lead to a complete bandgap in this band structure, that is, a
region of frequencies with no allowed photon modes for any value
of the wavevector k inside the Brillouin zone. For simplicity, we
examine the band structure of a two-dimensionally periodic photo-
nic crystal comprised of a square lattice of dielectric rods sur-
rounded by air. This system is convenient from points of view of ease
of theoretical calculation and ease of experimental fabrication and
meadsurement.

In the top panel of Fig. 1 we illustrate a comparison between
experiment® and theory’ for the dispersion relations w,(k) of
photons in a square lattice of alumina rods (e = 8.9). For the
measurements, rods of diameter 0.74mm and length 100 mm
were arranged in a square array, as indicated in the inset, with a
lattice constant 4 = 1.87 mm. Coherent microwave transient spec-
troscopy measurements were then performed for wavevectors k
from (0,0) to (m/a,0), or equivalently from I' to X, to measure the
corresponding frequencies of the propagating photon. Because of
the presence of a mirror symmetry plane perpendicular to the rods,

144

o o
~ e ]
T

&
o
T
1

o

Loy
T
L

Frequency (wa/2wc)
o
F=N

0.3 1E modes \ 7
M
0.2+ X X | i
X|| o9 ®
0.1F r -
[ X X J
0
r X M I’
08 ——
X

0.7F =
g 0.6 h—
o
3 N |
3 0.5 Photonic Band Gap
B 0.4fF .
c
E
g 0.3F TE modes 1
L o2t . E

0.1}F s

0

r M K r

Figure 1 Top, photonic band structure for a square lattice of dielectric (e = 8.9) rods
in air with radiusr = 0.2a, where a is the lattice constant. TM modes are shown in
blue and TE modes in red. The solid lines are from theory and the squares
represent experimental measurements along T' to X from Robertson et al.®
Bottom, photonic band structure for a triangular lattice of air cylinders (r = 0.48a)
in dielectric (e = 13). Note the presence of a complete photonic bandgap for both
TE and TM polarizations in this case as shown by a solid yellow bar. In both
panels high-dielectric material is indicated in green in the insets.

it is possible and convenient to decouple the photon modes into
polarizations with transverse magnetic (TM) and transverse electric
(TE) fields with respect to the plane normal.

The agreement between experiment and theory is excellent for
both the TM and TE modes. We note also that for the TM modes
there is an experimental indication of a large photonic bandgap
between the first and second bands. This is substantiated by the
calculation of the bands for the other high-symmetry directions of
the Brillouin zone, as shown in Fig. 1. A complete bandgap does
indeed exist between the first and the second TM bands. There is,
however, no corresponding bandgap for the TE modes. It should be
possible to explain such a significant fact.

If we examine the displacement field pattern associated with the
lowest TM band we find that it is strongly concentrated in the
dielectric regions. This is in sharp contrast to the field pattern
associated with the second TM band which has most of its energy in
the air regions. These statements have been quantified by
calculation’ of the fraction, f, of electrical energy inside the dielectric
regions. For the modes at the X-point, for example, one obtains
f=0.8and f = 0.3 for bands 1 and 2, respectively. The first band
has most of its power in the dielectric regions and has a low
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Figure 2 Top, projected photon bands for a waveguide in a square lattice of
dielectric rods. The waveguide is formed by removing one row of rods from the
otherwise perfect lattice and this creates a band of guided modes as shown in
red. The green regions correspond to propagating modes in the bulk crystal and
the yellow region corresponds to the photonic bandgap. Bottom, electric field of
light propagating down a waveguide with a sharp bend carved out of a square
lattice of dielectric rods. The white circles indicate the positions of the rods.

frequency; the second has most of its power in the air region, and
has a much higher frequency.

The fractions f for the TE modes do not contrast as strongly. At
the X-point, for example, one finds f = 0.2 and f = 0.1 for the first
and second bands, respectively. In this case, both modes have
significant amplitude in the air regions, raising their frequencies.
They have no other choice; the field lines must be continuous so
they are forced to penetrate the air regions. This is the origin of the
small values of fand explains the absence of a bandgap for the TE
modes. Note that the vector nature of the photon field is central to
this argument. The scalar displacement field along the rods of the
TM modes can be localized within the rods, but the continuous field
lines of the TE modes are compelled to penetrate the air regions to
connect neighbouring rods. As a result, consecutive TE modes do
not exhibit markedly different f factors, and bandgaps do not
appear.

Although we will not discuss it any further here, it is interesting to
note that exactly the opposite behaviour is found for TE and TM
modes in the case of a crystal with a connected dielectric lattice: an
in-depth discussion of this and other aspects of the nature of the
photonic bandgap is given is ref. 9. We shall only state the general
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rule of thumb: TM band gaps are favoured in a lattice of isolated
high-e regions, and TE gaps are favoured in a connected lattice.

This rule of thumb may be used to design a photonic crystal that
has a gap for both TE and TM modes. The approach is a sort of
compromise: crystals with high-e regions that are both practically
isolated and linked by narrow veins. An example of such a system is
the triangular lattice of air columns shown in the bottom panel of
Fig. 1. A complete photonic bandgap clearly exists for both TE and
TM polarizations'®"". Such a gap has recently been observed
experimentally in the near-infrared regime along the I to Kand T’
to M directions for deeply-etched bulk structures' and for thin
integrated waveguide structures”.

Itis also possible to find photonic-crystal structures which are not
connected, yet exhibit a complete photonic bandgap in the higher-
lying bands. This can occur when there is more than one ‘dielectric-
atom’ per lattice constant. An example is the honeycomb lattice of
dielectric rods"". These types of crystal have the advantage that the
larger value of the mid-gap frequency results in a larger value of the
minimum feature size. This can be a very important issue in
fabrication.

It turns out to be quite typical that the bands above and below a
bandgap can be distinguished by where the power lies—in the high-
€ regions, or in the low-e (usually air) regions. For this reason it is
convenient to refer to the band above a photonic bandgap as the ‘air
band’ and the band below a gap as the ‘dielectric band’. This is in
direct analogy with the use of the terms ‘conduction band’ and
‘valence band’ for the electronic band structure of semiconductors.

The waveguide

Once we have a photonic crystal with a gap we can introduce a
defect to attempt to trap or localize the light. If we use a line defect,
we can also guide light from one location to another. The basic idea
is to carve a waveguide out of an otherwise-perfect photonic crystal.
Light that propagates in the waveguide with a frequency within the
bandgap of the crystal is confined to, and can be directed along, the
waveguide. This is a truly novel mechanism for the guiding of light.
Traditionally, optical light can be guided without losses within
dielectric waveguides such as fibre-optic cables, which rely exclu-
sively on total internal reflection. But, if a fibre optic curves tightly,
the angle of incidence is too large for total internal reflection to
occur, so light escapes at the corners and is lost. Photonic crystals,
on the other hand, continue to confine light even around tight
corners.

To illustrate these ideas, we turn again to the square lattice of
dielectric rods as a simple example and consider only the TM
modes. In the top panel of Fig. 2 we plot the projected bands along
the direction of propagation for a waveguide formed by removing
one row of rods. The green regions correspond to states that can
propagate through the crystal. The band of states within the gap
region corresponds to guided modes, which can travel freely within
the narrow waveguide channel.

Once light is induced to travel along the waveguide it really has
nowhere else to go. An intriguing aspect of photonic-crystal
waveguides is that they provide the means to guide optical light,
tractably and efficiently, through narrow channels of air. As the
frequency of the guided mode lies within the photonic bandgap, the
mode is forbidden to escape into the crystal. The primary source of
loss can only be reflection back out of the waveguide entrance. This
suggests that we may use a photonic crystal to guide light around
tight corners. This is also shown in the bottom panel of Fig. 2, as
obtained from transmission simulations by Mekis et al.'>. Even
though the radius of curvature of the 90° bend is zero, 98% of the
power in the light that goes in one end comes out of the other. This
should be contrasted with 30% power transmission in an analogous
dielectric waveguide". Making very sharp lossless bends in wave-
guides which operate at 1.5 pum is of great practical importance for
enabling miniaturization of optoelectronic components and circuits.
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Figure 3 Top, localized states in the gap for a defect formed by varying the radiusr
of a single rod in the square lattice of dielectric rods with lattice constanta. The
case where there is no defect corresponds tor = 0.2a, while the case of a vacancy
corresponds to r = 0. Bottom panels, electric field patterns associated with
selected defect states as indicated. The colour coding is the same as in the
bottom panel of Fig. 2.

The cavity
One can also create imperfections to trap light at a point within the
crystal. One class of imperfections of this type involves changing the
dielectric medium in some local region of the crystal, deep within its
bulk. As a simple example, consider making a change to a single
‘dielectric atom’ by modifying its dielectric constant, modifying its
size, or simply removing it from the crystal. The top panel of Fig. 3
shows the consequence of creating a vacancy in the square lattice of
rods (a vacancy corresponds to a defect radius of r = 0). A defect
state does indeed appear in the photonic bandgap leading to a
strongly localized state. By removing a rod from the lattice, we
effectively create a cavity which is surrounded by reflecting walls. If
the cavity has the proper size to support a mode in the bandgap,
then light cannot escape, and we can pin the mode to the defect.

If the defect involves removal of dielectric (an ‘air defect’ as in the
case of the vacancy) then the cavity mode evolves from the dielectric
band and can be made to sweep across the gap by adjusting the
amount of dielectric removed. Similarly, if the defect involves the
addition of extra dielectric material (a ‘dielectric defect’) then the
cavity mode drops from the air band. As shown in the top panel of
Fig. 3, in both cases the defect state can be tuned to lie anywhere in
the gap.

Apart from tuning the frequency, one also has some control over
the symmetry of the localized photonic state. For example, the
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middle and bottom panels of Fig. 3 show the symmetries of the
localized photon mode for three different values of the defect radius.
For the case of r=1.0a we find a field pattern that is very
reminiscent of the ‘whispering gallery’ mode observed in microdisk
laser cavities'®.

The very specific symmetry associated with each photon mode
translates into an orbital angular momentum for each photon mode
which can exist in addition to its intrinsic spin angular momentum.
This is a very intriguing notion that can have spectacular conse-
quences in the selection rules of electronic transition rates, as
discussed below. Further information about air and dielectric
defects can be found in refs 17-25.

The flexibility in tuning the symmetry, frequency and localization
properties of defects makes photonic crystals a very attractive
medium for the design of novel types of filters, couplers, lasers,
light-emitting diodes (LEDs) and so on'®*. In the case of laser or
LED cavities, photonic crystals provide a particularly unique cap-
ability—the control of spontaneous emission.

Spontaneous emission is the natural tendency for an excited atom
to ‘fall’ to a state of lower energy while releasing its energy in the
form of emitted radiation. This process, which occurs indepen-
dently for each atom in a crystal, is at the heart of every light-
emitting device used in the optoelectronic industry. LEDs, for
example, emit light from the radiative recombination of electrons
and holes in a forward-biased p—n junction. Moreover, by increas-
ing the applied voltage, the number of electron—hole pairs in the
junction region can become sufficiently large for stimulated emis-
sion (that is, the emission induced by other photons) to become
prevalent. The junction may then be used as a diode laser.

The ability to control spontaneous emission could have profound
consequences for many optoelectronic devices. The rate at which
atoms decay depends on the coupling between the atom and the
photon, and also on the density of electromagnetic modes available
for the emitted photon. Photonic crystals could be used to control
each of these two elements independently, simply by changing the
properties of the defect states. For instance, the coupling between
the atom and the photon involves an integral over all space of the
initial and final states of the atom, and of the vector-potential
associated with the photon. In the usual dipole approximation, one
assumes a uniform vector-potential in the vicinity of each atom,
which leads to the standard ‘selection rules’ for atomic transitions as
illustrated in the left panel of Fig. 4. But in the case of a photonic
crystal, we can engineer the vector-potential to have specific orbital
symmetry. By doing so, transitions that are usually allowed could be
made forbidden, and more interestingly, electronic transitions that
were previously forbidden could now be made allowed, by judi-
ciously choosing the orbital angular momentum of the defect-state
photon, as illustrated in the right panel of Fig. 4. This latter case
would be possible if the wavelength of the electron and that of the
photon were designed to be of the same order. A synergy between
quantum-well and photonic-crystal technologies might be one
approach for fabricating systems for which this phenomenon
could be measured experimentally.

In addition to changing the coupling between the atom and the
photon, the rate of spontaneous emission could also be affected by
changing the density of allowed states. If we assume a non-zero
coupling between the atom and the photon, the ‘natural’ rate of
emission, in free space, is proportional to the free-photon density of
states per unit volume, Dy, which scales as

11
D =——
f w)\s (2)

where w is the frequency of the transition and A the wavelength of
light. If the system is a photonic crystal with a photonic bandgap
around w, there are no allowed modes to couple to and spontaneous
emission is severely inhibited. Conversely, if the photonic crystal is
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Figure 4 Schematic representation of allowed and forbidden optical transitions
for an electron between two atomic states. The symmetry of the orbital angular
momentum for the atomic states is shown in blue; the symmetry of the orbital

designed to have a point defect with a localized, or more generally, a
resonant state at w, then the emission rate could be enhanced
dramatically by the increase in the density of final states. An
estimate of this enhancement can be obtained from the following
simple argument. The density of states per unit volume for the
resonance, D,, will scale as

b L1
T AwQ
where Aw is the frequency width of the resonance and  is its

effective spatial volume. The enhancement factor is then given
roughly by

(3)

D _eN_ Q.
Di AwQ ~ (Q/N)

where Q = (w/Aw) is the quality factor of the cavity. Thus high Q
and small spatial volumes can lead to significant enhancement of
spontaneous emisison. As the smallest volume (2 must be of the
order of N\’, the largest enhancement will be of the order of Q.
Cavities whose spatial volume is of the order of the wavelength of
light are called microcavities.

Experimentalists have begun exploring the possibilities of fabri-
cating these microcavities with silicon-based materials and with
[II-V semiconductor-based materials at micrometre and submi-
crometre length scales. An exciting new design of a microcavity
involves an integrated waveguide—microcavity configuration®,
two embodiments of which have recently been successfully fabri-
cated, as shown in the scanning electron micrographs of Fig. 5
(J. Forezi, L. Kimerling and H. Smith, and K. Lim, G. Petrich and L.
Kolodziejski, unpublished results). The basic design employs a one-
dimensional photonic crystal to confine light in the direction along
the waveguide and near the defect at the centre, and total internal
reflection to confine light in the transverse directions. The structure
in the top panel of Fig. 5 corresponds to a monorail-like geometry
fabricated using Si and SiO, with electron-beam lithography. The
structure in the bottom panel is a novel suspended air-bridge
geometry fabricated using GaAs and AlGaAs with a photolitho-
graphic technique. In each case, the defect at the centre sustains only
one cavity mode whose field patterns are localized to within half a
wavelength along the guide and decay rapidly into the air regions.
Calculations of the Q for such cavity modes, even for non-opti-
mized geometries, are as high as 10* (refs 22, 28). Moreover, and
indeed very importantly, we expect the properties of such cavities to
be rather robust with respect to random defects. Such disorder will

(4)
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angular momentum of the photon state is shown in red. The panel on the left ‘
corresponds to the usual ‘selection rules’ for atomic transitions. The panel on the ‘
right indicates novel selection rules possible using photonic crystals.

typically arise during fabrication, and the amount of disorder will of
course depend on the minimum feature sizes and the fabrication
technique. Calculations® for a structure with surface disorder
whose average size is as large as £10% of the width of the
waveguide, reveal that the Q drops by only 30%. There are two |
basic reasons for this. First, the wavelength of the mode is sig- |
nificantly larger than the characteristic size of the defects. Second, |

Figure 5 Scanning electron micrographs of two embodiments of a waveguide-
integrated photonic crystal microcavity. Top, the monorail geometry fabricated
using Si on SiO, with electron-beam lithography (J. Foresi, L. Kimerling and
H. Smith, unpublished results) . Bottom, the air-bridge geometry fabricated
using GaAs on AlGaAs with a photolithographic technique (K. Lim, G. Petrich
and L. Kolodziejski, unpublished results). |
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Figure 6 Photonic crystal structures with 3D periodicity (see text for details). Left
panel: top, ‘Yablonovite’ (ref. 30); middle, structure developed by Ho et al. (ref. 33);
bottom, structure developed by Fan et al. (ref. 37). Right panel: lower three

most of the energy of the mode is concentrated in the middle
of the cavity and away from the surface. This makes the effect
of the surface roughness much less significant for this structure
than, say, for microdisks in which the high-Q modes propagate
along the boundary of the disks'.

The three-dimensional photonic crystal

The first three-dimensionally (3D) periodic photonic crystal pos-
sessing a complete bandgap was fabricated by Yablonovitch® in
1991 for the microwave regime. The fabrication technique involved
covering a slab of dielectric with a mask consisting of a triangular
array of holes. Each hole was then drilled three times along (110)-
type directions. The resulting structure (known affectionately as
‘Yablonovite’) is shown at the top of the left panel in Fig. 6. Since
then, several other 3D photonic-crystal designs have appeared that
offer complete photonic bandgaps® .

Of these, the Ho et al. structure® (shown in the middle of the left
panel of Fig. 6) is the smallest 3D photonic crystal with an
experimentally demonstrated complete bandgap to be manufac-
tured to date. Ozbay et al.* have used a technique of stacking thin
micromachined (110) silicon wafers to fabricate these photonic
crystals for wavelengths approaching 600 pm.

The ultimate goal for optoelectronic applications is to design and
fabricate 3D photonic crystals at an operating wavelength of 1.5 um.
This is certainly not a trivial task. Most recently, Scherer and co-
workers® performed a set of experiments to demonstrate the
exciting possibility of fabricating ‘Yablonovite’ at 1.5 wm, using
electron-beam lithography to ‘drill’ the (110)-type air channels. The
first several layers of ‘Yablonovite” have been created in this fashion.
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structures, schematic growth sequence for the Fan et al. structure; top, final
structure obtained after etching vertical holes.

A new class of photonic crystals, designed specifically to be
amenable for fabrication at submicrometre length scales and to
possess a large and complete bandgap, has recently been introduced
by Fan et al.”’. One embodiment of this type of photonic crystal is
shown at the bottom of the left panel of Fig. 6. The crystal is
designed to be fabricated in a layered fashion, using two different
dielectric materials (for example, Si and SiO,), with a series of non-
intersecting air channels etched at normal incidence through the
top surface after growth is completed. (The presence of non-
intersecting air channels was actually a constraint imposed on the
design and deemed important for easily maintaining high quality
during fabrication.) To create a crystal with a larger dielectric
contrast (and consequently a larger bandgap), one of the two
dielectric materials can be chosen so that it can be removed at the
end by selective etching. The sequence of ‘growth’ steps illustrated in
the right panel of Fig. 6 are shown to help the visualizaiton of the
basic elements that make up the crystal structure. First, a layer of Si
is deposited on a substrate of choice and grooves are etched into the
Si layers as shown. The grooves run normal to the page and are
arranged in a periodic array. The grooves are then filled with SiO,
and another Si layer is grown on the previous layer. Long grooves are
again etched (which now extend into the first layer) and again back-
filled with SiO,. Repetition of this procedure generates the basic
bulk structure of the photonic crystal. The final step is to etch an
array of air channels into the top surface of the structure, at normal
incidence.

The design of this structure has many degrees of freedom which
can be used to optimize the size of the bandgap. Using a dielectric
constant of 12.096 for Si at 1.5 um and 2.084 for silica at the same
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frequency gives an optimized complete photonic bandgap of about
14%. A very significant improvement can be made by simply
removing the oxide. The resulting photonic-crystal structure is
then predicted to possess a sizeable 23% gap®’. Moreover, calcula-
tions of the predicted transmission spectra for this structure reveal
that with a photonic-crystal thickness of only seven layers one can
achieve four orders of magnitude reduction in transmission
through the bandgap (J. Weitz, S.E, P.R.V. and ].D.]J., unpublished
results). This structure is currently being fabricated at the 4.5 um
length scale by Kolodziejski, Reif and co-workers at MIT, using
optical lithography. Two layers of the photonic crystal have already
been successfully grown.

Avery new and exciting approach to the design and fabrication of

submicrometre 3D photonic crystals involves the creation of a
periodic lattice of isolated metallic regions within a dielectric
host®. Such 3D metallodielectric photonic crystals have been
studied theoretically”™** and can be shown® to have enormous
omnidirectional bandgaps approaching 80%. As the metallic
regions are not connected and light tends to be attracted away
from the metal towards the dielectric, it is hoped that the effects of
the losses expected at optical frequencies may not be too important.
Efforts are currently underway at the MIT-Lincoln Laboratory to
fabricate and measure the losses and other properties of these
metallodielectrics.

The challenge

Photonic crystals offer the possibility of controlling and manipulat-
ing light by opening a gap in the density of electromagnetic states
within a given range of frequencies. Whereas perfect crystals may be
valuable for the fabrication of devices such as high-efficiency light-
emitting diodes and 3D mirrors, the introduction of a defect in the
crystal, either locally or in an extended region, will allow us to
generate electromagnetic states with specific properties. The ability
to custom-design a state may prove to be essential in the fabrication
of laser sources in frequency ranges yet unseen, and novel optical
devices such as switches, modulators, filters and interconnects.

From its beginning less than ten years ago, research in the field of

photonic crystals has been advancing at high speeds. To maintain
the same rate of progress in the next ten years, it will be necessary for
experimentalists to overcome the challenges associated with the
fabrication of small intricate three-dimensional periodic structures
with feature sizes of less than one wm. Only then will photonic

crystals be able to fulfill our expectations.

]
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