Dipole Operator from Atoms to Crystals

Using perturbation theory, the induced dipole moment at frequency pw due to interaction

with p photons is d(pw) = o, (w)E". Here, the (hyper-) polarizabilities are
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with f = f(E,) the probability of occupancy in the unperturbed situation and
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where s, =1-(p+1)§, and s ;=5 ,+1-(p+1)5, [1]. Here, x, = <n|x|m> and
=(E,—E,)/h.For instance,
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We apply these expressions to a simple polymer chain (polymethineamine):
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It consists of alternating C and N atoms along the backbone and, in addition, is dimerized
with alternating single and double bonds. We only consider the - orbitals directed
perpendicularly to the molecule. Only nearest neighbour interactions are included and the
orbitals are taken to be orthogonal. Hence, the tight-binding Hamiltonian is of the form



We take the values a =0.5eV, 3, =—-2.0eV and 3, =—2.5 eV and the lattice constant a =
2A for polymethineimine. For a =0, 3, =—2.0eV and (3, =-3.0eV the same model

describes polyacetylene. All bond lengths are assumed identical and the number of unit
cells in the chain is N. In the 7 - orbital basis, the x-operator is of the form
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with x, =na /2. Hence, in the presence of a long-axis electric field, the Hamiltonian

becomes H + eFX . If an infinite chain is considered in k-space the two orbitals per unit cell
lead to the Hamiltonian
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The momentum operator becomes p, =m /h(dH / dk) and we find the eigenvalues and
matrix elements ({2 is the Berry connection defined below)

E,.=FE, E=+a’+e*, e= \/ﬁf + 37 + 2,8, cos(ka)
Poo =" {~200,5, sin(ka) +i 6} — 5} | E} / (2<E)
Q.. —Q,, =—aa(B; - 55 )/ 2E).

Infinite chain

For an infinite chain, states are labeled by band #n and k-vector so that
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For an infinite chain, the naive x operator is ill defined. However, the momentum is well
behaved and for non-degenerate levels, the commutator relation x,, .. =p, ./ ({imw, ..)



allows for simple reformulations. We have generally p, ..=p,,(k)é, For the interband

case n=m, we therefore immediately find
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We now compute the polarizability per length Na and rewrite as an integral
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For the intraband case n =m, we symmetrize in k and k’ and so
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We will again rely on the commutator trick and subsequently carefully take the k' — k
limit
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We may now take the limit k' — k by expanding f,,. ~ f,, + fuhw,. . with f'=df /dE.In

this manner,
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Using p,, . =mdw,, /dk we find after converting to an integral
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Figure 1. Polyacetylene polarizability per unit length for finite and infinite chains.

In the presence of a long-axis electrostatic field F, Eq.(2) still holds for the finite chain. The
infinite-chain expression changes, however. If field-induced coupling between bands is
ignored, the eigenstates belonging to a band 7 are determined by
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Here, E, (k) is the band structure energy and index p is the Wannier-Stark ladder index. If
the width of the Brillouin zone is K =27 / a, the normalized solutions are

The allowed states satisfy W (k+K)=W{"(k). Thus, E\"”=p-2meF /K+E, with p an

— K
integer and E, = L/; E, (k)dk / K . The transition frequencies are
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The momentum matrix elements become
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In turn, the response is
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Since only p—gq enters, one sum can be performed providing a factor hw,, /eFa.
Partitioning bands into valence bands (v) and conduction bands (c) finally leads to
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Figure 2. Polyacetylene polarizability in a field for finite and infinite chains.

The Systematic Way

As is apparent from the previous section, problems only arise whenever we are dealing
with intraband factors x,, ... We therefore formally write
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The intraband dipole operator x' is defined via the relation x, . =6, and its
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commutator with simple operators O such as p, or H [2] for which O,, .. =0, (k)d,.
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Here, “;k” is the symbol for generalized derivative and by writing the band states as
|nk) =V ~""?u,e™ we have defined the Berry connection as Q,,(k)=iV,¢ f u, Ly dr
with the normalization §,, =V, f o, d°r . We see that (nk|[x',0]|nk"y=i6,.dO,, / dk.
To prove Eq.(8), we follow Blount [3] and write
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Thus, because <mk’ |nk) =6,,6, the inner product with <mk’ ‘ yields
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Similarly, interchanging quantum numbers, we find (nk|x|mk') =, (k)8 —i8,,,d6,, / dk'.

Comparison with the complex conjugate of the result above then shows that
dé,, /dk'=—dé,. /dk. Note, that Q  (k)=p,,(k)/(imw,,(k)) for n=m as one can

demonstrate using perturbation theory to compute u,. . For the intraband dipole
operator we then find
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The problem is how to make sense of the last term. To solve this, we consider the
commutator and apply the completeness relation
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We now use “integration by parts” to transfer the derivatives of the Kronecker deltas to
the matrix elements (a more rigorous would involve converting the sum to an integral and
the Kronecker deltas to delta functions before integration). After subsequently summing
over k" we find
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which is precisely Eq.(8). Applying this to the linear intraband polarizability Eq.(5) w
find
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Converting to an integral and using df /dk= f'-dE / dk, this expression is seen to be
identical to Eq.(6). We now consider o,(w) in the special case of a two-band

semiconductor. When only two-band contributions are retained, the general expression
Eq.(3) can be reduced to
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Because the intraband dipole operator has only diagonal elements we can rewrite as the
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in agreement with Ref. [4].
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Figure 3. Polymethineamine hyperpolarizability for finite and infinite chains.

The third order response consists of an interband and a mixed term
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The Velocity Gauge

An alternative approach to avoiding dipole matrix elements is to work in the “velocity
gauge”. In this case, the perturbation is H, = (e /m)p A+ (e’ /2m).A*>. The observable is
then the induced current j=—(e/m)(p, +eA). The current is the time-derivative of the
dipole moment j=—iwd and the electric field is £=iwA. For the linear response,
perturbation theory then shows that
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It follows that the polarizability is
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To prove the equivalence, we then use
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The first term is identical to the dipole expression and the last part vanishes if a complete
set of states is considered. To see this, consider
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Hence, the two terms in the curly brackets cancel but only if a complete set of states is
included. Otherwise, an additional contribution is found that diverges badly at low
frequencies.
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