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Dipole Operator from Atoms to Crystals 
 
 
Using perturbation theory, the induced dipole moment at frequency pω  due to interaction 

with p photons is ( ) ( ) p
pd pω α ω= E . Here, the (hyper-) polarizabilities are  
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 with ( )m mf f E≡  the probability of occupancy in the unperturbed situation and 
 

 
( )( ) ( )0 1

1 0 2 0 0

1

...
1 1 2

1
( )

p

p

p

m m m
k m m k m m k m m kp

D
s s s

ω
ω ω ω ω ω ω

+

=

=
+ + +

∑
�

, 

  
where 1 11 ( 1)k ks p δ= − +  and , , 1 1 ( 1)k j k j kjs s p δ−= + − +  [1]. Here, nmx n x m=  and 

( )/nm n mE Eω = − � . For instance, 
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We apply these expressions to a simple polymer chain (polymethineamine): 
 
 
 
 
 
 
 
 
 
 
 
 
 
It consists of alternating C and N atoms along the backbone and, in addition, is dimerized 
with alternating single and double bonds. We only consider the π - orbitals directed 
perpendicularly to the molecule. Only nearest neighbour interactions are included and the 
orbitals are taken to be orthogonal. Hence, the tight-binding Hamiltonian is of the form 
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We take the values 0.5 eVα= , 1 2.0 eVβ =−  and 2 2.5 eVβ =−  and the lattice constant a = 
2Å for polymethineimine. For 0α= , 1 2.0 eVβ =−  and 2 3.0 eVβ =−  the same model 
describes polyacetylene. All bond lengths are assumed identical and the number of unit 
cells in the chain is N. In the π - orbital basis, the x-operator is of the form 
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with /2nx na= . Hence, in the presence of a long-axis electric field, the Hamiltonian 

becomes H eFX+
� �

. If an infinite chain is considered in k-space the two orbitals per unit cell 
lead to the Hamiltonian 
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The momentum operator becomes / ( / )xp m dH dk= �  and we find the eigenvalues and 
matrix elements (Ω  is the Berry connection defined below) 
 

( ){ }
( )

2 2 2 2
, 1 2 1 2

2 2
1 2 1 2

2 2 2
1 2

, , 2 cos( )

2 sin( ) /(2 )

/(2 ).

v c

cv

cc vv

E E E ka

ma
p ka i E E

a E

α ε ε β β β β

αβ β β β ε

α β β ε

= = + = + +

= − + −

Ω −Ω =− −

∓

�
 

 
Infinite chain 
 
For an infinite chain, states are labeled by band n and k-vector so that 
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For an infinite chain, the naive x operator is ill defined. However, the momentum is well 
behaved and for non-degenerate levels, the commutator relation , , ,/( )

nk mk nk mk nk mk
x p imω′ ′ ′=  
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allows for simple reformulations. We have generally , ( )nmnk mk kk
p p k δ′ ′=  For the interband 

case n m≠ , we therefore immediately find 
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We now compute the polarizability per length Na  and rewrite as an integral 
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For the intraband case n m= , we symmetrize in k  and k′  and so 
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We will again rely on the commutator trick and subsequently carefully take the k k′→  
limit 
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We may now take the limit k k′→  by expanding ,nk nknk nk nk

f f f ω′ ′′≈ + �  with /f df dE′ = . In 
this manner, 
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Using , /nk nk nkp md dkω=  we find after converting to an integral 
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Figure 1. Polyacetylene polarizability per unit length for finite and infinite chains. 
 
In the presence of a long-axis electrostatic field F, Eq.(2) still holds for the finite chain. The 
infinite-chain expression changes, however. If field-induced coupling between bands is 
ignored, the eigenstates belonging to a band n are determined by 
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Here, ( )nE k  is the band structure energy and index p is the Wannier-Stark ladder index. If 
the width of the Brillouin zone is 2 /K aπ= , the normalized solutions are 
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The allowed states satisfy ( ) ( )( ) ( )n n
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In turn, the response is 
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Since only p q−  enters, one sum can be performed providing a factor /mn eFaω� . 
Partitioning bands into valence bands (v) and conduction bands (c) finally leads to 
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where 0 int( / )mnq E eFa=− .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Polyacetylene polarizability in a field for finite and infinite chains. 
 
 
The Systematic Way 
 
As is apparent from the previous section, problems only arise whenever we are dealing 
with intraband factors ,nk nk

x ′ . We therefore formally write 
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The intraband dipole operator ix  is defined via the relation , ,
i i

nmnk mk nk nk
x xδ′ ′=  and its 

commutator with simple operators O such as xp  or H [2] for which , ( )nmnk mk kk
O O k δ′ ′=  
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Here, “;k” is the symbol for generalized derivative and by writing the band states as 
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The problem is how to make sense of the last term. To solve this, we consider the 
commutator and apply the completeness relation 
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We now use “integration by parts” to transfer the derivatives of the Kronecker deltas to 
the matrix elements (a more rigorous would involve converting the sum to an integral and 
the Kronecker deltas to delta functions before integration). After subsequently summing 
over k′′  we find 
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which is precisely Eq.(8). Applying this to the linear intraband polarizability Eq.(5) we 
find 
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Accordingly, we find 
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Converting to an integral and using / /df dk f dE dk′= ⋅ , this expression is seen to be 
identical to Eq.(6). We now consider 2 ( )α ω  in the special case of a two-band 
semiconductor. When only two-band contributions are retained, the general expression 
Eq.(3) can be reduced to 
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Because the intraband dipole operator has only diagonal elements we can rewrite as the 
commutator , , ,lim ( ) lim [ , ]i i i
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in agreement with Ref. [4]. 
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Figure 3. Polymethineamine hyperpolarizability for finite and infinite chains. 
 
The third order response consists of an interband and a mixed term 
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The Velocity Gauge 
 
An alternative approach to avoiding dipole matrix elements is to work in the “velocity 
gauge”. In this case, the perturbation is 2 2

1 ( / ) ( /2 )xH e m p e m= +A A . The observable is 
then the induced current ( / )( )xj e m p e=− + A . The current is the time-derivative of the 
dipole moment j i dω=−  and the electric field is iω=E A . For the linear response, 
perturbation theory then shows that 
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It follows that the polarizability is 
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To prove the equivalence, we then use 
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The first term is identical to the dipole expression and the last part vanishes if a complete 
set of states is considered. To see this, consider 
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Hence, the two terms in the curly brackets cancel but only if a complete set of states is 
included. Otherwise, an additional contribution is found that diverges badly at low 
frequencies. 
 
References: 
 
[1] L. Pan, K.T. Taylor, and C.W. Clark, Phys. Rev. A. 39, 4894 (1989). 
[2] C. Aversa and J.E. Sipe, Phys. Rev. B. 52, 14636 (1995). 
[3] E. I. Blount, Solid State Physics 13, Ed. F. Seitz and D. Turnbull (Academic Press Inc., 
New York, 1962). 
[4] B. Kirtman, F.L. Gu, and D.M. Bishop, J. Chem. Phys. 113, 1294 (2000). 


