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Introduction 
 
 
Properties are essentially about cause and effect. A material left completely 
undisturbed doesn’t display its properties. However, if we probe something the 
response will reveal the characteristic properties of the object. Here, probing should 
be understood in its broadest sense. If we look at something it is probed by the light 
reflected or transmitted by the object. If we put an object on a table it is probed by 
contact forces. If we place the object on a hot plate it is probed by the heat. An endless 
list of external “perturbations” serve as probes of properties that, taken together, 
characterize the object. At a qualitative level we might label the object as shiny, hard, 
heavy etc. More accurately, however, we should specify its reflectance, hardness, heat 
capacity and so on as precisely defined properties that can be measured in a specific 
setup. This also allows us to describe theoretically the phenomenon in a precise 
manner. Hence, to this end we must construct a model that encompasses the object, 
the perturbation and the response. 
 
The present set of lecture notes deals only with a small part of all the properties 
imaginable. We restrict ourselves to the following perturbations: electric potentials, 
light and magnetic fields. The responses to these stimuli define together the electric, 
optical and magnetic properties of an object. Moreover, with a few exception, we 
exclude cases, where any two of these perturbations are present at the same time. 
Finally, we restrict the analysis to weak disturbances that don’t perturb significantly 
the object. This might seem as rather severe restrictions but, actually, they are not. 
They will allow us to understand a wide range of phenomena such as the color of an 
object. And within this restricted analysis we’ll still be able to explain several 
important features of advanced devices such as diodes, lasers and magnetic hard 
discs.  
 
What is characteristic of electric, optical and magnetic properties? To answer this 
question, we should specify some appropriate experimental setup, in which we wish 
to measure a given property. Focusing on the perturbations, we might think of 
something like the sceneries shown in the Fig. I.1. Here, the bar represents a sample 
that we want to characterize. The electrical setup in the upper panel is probably the 
most familiar type of setup. In this case, the perturbation is the voltage applied 
between the end points. The response is the current, which flows in the circuit. Hence, 
perturbation and response can be determined experimentally by means of a 
voltmeter and amp meter, respectively. Really, such a measurement is tricky because 
not only the sample plays a role in determining the current. Resistances in the wires 
and power supply in general cannot be ignored and so more advanced methods (such 
as four-point measurements) may be needed. But what is the role of the sample? Well, 
for a voltage V the current I is limited by the electrical resistance /R V I  or, if we 
like, we could measure the conductance / 1/G I V R  . The point here is that these 
quantities depend on both the material in the sample and shape of the sample. For a 
large homogeneous bar of length L and cross section A the resistance is expected to 
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vary as /R L A , where   is the specific resistance of the material. In turn,   is a 
characteristic of the material and depends only on external parameters such as 
temperature and pressure and so on. 
 
 

Figure I.1. Schematic illustration of electric, magnetic and optical perturbations of 
sample. 

 
Next, we turn to the magnetic response. As shown in the middle panel of the figure, 
we could imagine placing a sample between the poles of a magnet. Hence, the 
perturbation in this case is the magnetic field penetrating the sample. What happens 
inside the sample? The answer to this question depends on the nature of the sample. 
We consider first the case of so-called non-magnetic materials. Imagine the external 
magnetic field intensity   penetrating the sample. Inside the sample, the electrons 
act as tiny bar magnets themselves. A characteristic property of non-magnetic 
materials is that these tiny bar magnets point in all directions with equal probability 
if the external magnetic field is switched off. However, when the external field   is 
applied they will try to align with this field. The result is that the material becomes 
magnetized and we say that a certain magnetization   has been induced. Since the 
magnetization is induced by the magnetic field we expect a linear dependence if the 
field is not too large: M , where M  is the magnetic susceptibility. Hence, in 
this case, M  is the important material quantity, which we wish to describe. 
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Measuring M  is less simple than measuring e.g. the resistance described above. One 
possibility is to use a flux meter to record the flux of the total magnetic field 

0 0( ) (1 )M         through a wire loop as the external field   is turned 
on.  
 
The exception to this behavior of non-magnetic materials is found in magnetic 
materials. These are substances, in which a finite magnetization can exist even without 
an external field. The challenge in this case is to understand this phenomenon and to 
see how such a material will be influenced by an external field. An extremely 
important aspect of this case is the change in the direction of the magnetization that 
can be induced by an external field. This forms the basis for magnetic storage devices. 
 
The optical response is, in fact, quite similar to the magnetic one. In this case, a high-
frequency electric (and magnetic) field   is incident on our sample and this field 
displaces the charges in the material. In the optical regime, the relevant charges are 
electrons as the nuclei respond primarily to fields of much lower frequency. The 
displaced electron charges are described by the polarization   and in perfect analogy 
with the magnetic case we expect a linear relation 0  , where   is now the 
electric susceptibility. In turn,   determines the dielectric constant of the material 

1    and also the refractive index 1n   . Hence, these quantities are the 
relevant material properties. Measuring the refractive index is in itself a complicated 
task. The imaginary part reveals itself in absorption measurements, while the real 
part is responsible for refraction and interference effects. The technique known as 
ellipsometry is developed for the purpose of accurately measuring these quantities. 
 
So far, the discussion has been quite general and applicable to many circumstances. 
The focus of these notes, however, will be on nanostructures. The reason is simply 
that our ability to design and fabricate structures on a nanometer scale has expanded 
the range of electric, optical and magnetic phenomena in a truly amazing manner. 
There are several reasons for this. Most importantly, the rules of physics are different 
on the nanoscale. Pronounced quantization effects appear and, hence, scaling bulk 
results such as /R L A  into the nanoscale simply doesn’t work if the cross section 
A becomes sufficiently small. A dramatic consequence in this particular case is the 
appearance of quantized conductance, in which individual quantum levels 
determine the resistance. Similarly, electric and magnetic susceptibilities are entirely 
different in low-dimensional structures. This opens the window to novel phenomena 
as well as brand new applications. Even if the material properties are almost identical 
to the bulk values, new effects can appear if the size of the sample is in the nanoscale. 
An important example is found in nanooptics. Here, optical components of a size 
comparable to the wavelength are used and this dramatically changes the way light 
propagates, diffracts and so on. Actually, completely new metamaterials can be 
fabricated in this fashion. 
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Through these lecture notes I hope to display the differences between the properties 
of bulk materials and nanostructures. I do this by describing both so that a 
comparison can be made. Our approach consists in the formulation of a very general 
framework for the response to external perturbations in the bulk as well as in 
nanostructures. We then turn to all the different electric, optical and magnetic 
applications of this general framework in the subsequent chapters. The notes are 
intended for students in the final year of undergraduate study having already 
established a solid knowledge in quantum mechanics, statistical mechanics, solid 
state physics as well as optics and electromagnetism. Several people made helpful 
comments on the manuscript and, in particular, I wish to thank Thomas Bastholm 
Lynge, Kjeld Pedersen, Mads Lund Trolle, Jesper Jung, Jonas Have, Thomas 
Søndergaard and Alireza Taghizadeh. 
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1. Time-Dependent Perturbation Theory 
 
 
In order to describe the properties of a system we need to describe the response of 
the system to external perturbations such as an electromagnetic field. The external 
perturbation may be time-dependent so what is needed is time-dependent perturbation 
theory. In general, the response of the system can be very complicated. In the present 
discussion, however, we restrict ourselves to linear response theory, i.e. we only 
consider changes to the wave function of the system that are linear in the 
perturbation. 
 
The starting point of the discussion is the unperturbed system. The unperturbed 
system is described by a time-independent Hamiltonian 0Ĥ . We assume that all 
eigenstates of 0Ĥ  are known, i.e. that we know the solutions of the stationary 
Schrödinger equation 
 
 0

ˆ
n n nH E  , (1.1) 

 
where n  is the stationary wave function, which depends on all space coordinates 
but not on time, and nE  is the corresponding energy eigenvalue. In an energy 
eigenstate, the full time-dependent wave function is given by exp( / )n niE t   . We 
now introduce the perturbation. We assume that the time-dependence is harmonic, 
i.e. characterized by a single frequency. In fact, the linear response to perturbations 
with more complicated time-dependence can be constructed from a series of 
harmonic perturbations using Fourier analysis. The Hamiltonian therefore changes 
from 0Ĥ  to †1 1

0 1 12 2
ˆ ˆ ˆi t i tH H e H e   , where 1Ĥ  contains the spatial part of the 

perturbation,   is the frequency and the conjugation in the last term ( † ) is in the 
operator sense (“Hermitian conjugation”). Typical perturbations are electric or 
magnetic fields that interact with electrons via their charge or spin.  
 
1.1 Linear Response Theory 
 
The key to describing the response to the perturbation is trying to solve the time-
dependent Schrödinger equation 
 

  †1 1
0 1 12 2

ˆ ˆ ˆi t i ti H H e H e
t

 


  



. 

 
This is generally an impossible task but we’re helped by the fact that we’re only 
looking for the linear change to the wave function. Our knowledge of the n ’s can be 
used if we write the unknown   in the following form 
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 /niE t
n n

n
a e    , (1.2)

  
where na  is an unknown time-dependent coefficient. Any   can be written in this 
form since the n ’s constitute a complete set. We next insert this expression in the 
time-dependent Schrödinger equation 
  

 

 

 

/ /†1 1
0 1 12 2

/ /†1 1
0 1 12 2

ˆ ˆ ˆ

ˆ ˆ ˆ .

n n

n n

iE t iE ti t i t
n n n n

n n

iE t iE ti t i tn
n n n n n n n n

n n

i a e H H e H e a e
t

aa E i e a H H e H e e
t

 

 

 

    

 

 


  




          

 

 

 

 





 

 
Due to the eigenstate condition Eq.(1.1), the first terms on the right-hand and left-
hand sides cancel. We consequently find 
 

  / /†
1 1

1 ˆ ˆ .
2

n niE t iE ti t i tn
n n n

n n

a e a H e H e e
t i

   
 

  



 (1.3) 

 
Next, we exploit the orthogonality between the eigenstates 
 

 
1    if
0 otherwisem n nm

n m
  

  
, 

 
where m n   is the shorthand Dirac notation for the integral 
 
 3 3

1...m n m n Nd r d r      

 
over all the coordinates of the N electrons. If the electron spin is considered, the 
integration is over the spin variables as well. Hence, we multiply Eq.(1.3) by m

  and 
integrate to find 
 

 

 

 

/ /†
1 1

/†
1 1

1 ˆ ˆ
2

1 ˆ ˆ ,
2

n n

mn

iE t iE ti t i tn
nm n m n m n

n n

iE ti t i tm
n m n m n

n

a e a H e H e e
t i

a a H e H e e
t i

 

 

    

   

 




 





 



 



 







 (1.4) 

 
where mn m nE E E  . Again, the Dirac notation is used for matrix elements such as 
 
 3 3

1 1 1
ˆ ˆ ...m n m n NH H d r d r     . 
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To proceed, we now need the important expansion of the unknown coefficients na  in 
powers of the perturbation. For the electromagnetic perturbations considered in the 
present discussion, the perturbing Hamiltonian is proportional to the field strength, 
i.e. 1Ĥ    and 1Ĥ   for electric and magnetic perturbations, respectively. Hence, 
any coefficient na  may be considered a function of the field strength, e.g. ( )n na a   
in the electric case. We may consequently make a Taylor expansion in field strength, 
i.e. 
 
 

 

(0) (1)

0'th order 1'st order

 . . . ,n n na a a    

 
where the superscript indicates the power of the perturbation. We now utilize a 
familiar theorem from polynomial series: 
 
 If, for all , , then p p

p p p p
p p

x b x c x b c   . 

 
Used in Eq.(1.4) this implies that the powers of the perturbation on both sides must 
be equal, i.e. 
 

  
( )

( 1) /†
1 1

1 ˆ ˆ ,
2

mn

p
p iE ti t i tm

n m n m n
n

a a H e H e e
t i

     
 

  



 (1.5) 

 
since the matrix elements 1

ˆ
m nH   and †

1
ˆ

m nH   on the right-hand side already 

contain one power of the perturbation. The technique now consists in starting by 
setting 0p   in this expression. Subsequently, we set 1p   and so on. In fact, for the 
linear response we need not go beyond 1p  . The so-called nonlinear response can 
be found by repeating this exercise to higher orders [1]. Setting 0p  , we find 
 

 
(0)

0ma
t





, 

 
i.e. the zero’th order coefficients are constant. This is quite obviously correct since 
zero’th order means that the perturbation is ignored altogether. Having established 
this simple result, we can immediately proceed to 1p  for which Eq.(1.5) yields 
 

  
(1)

/(0) †
1 1

1 ˆ ˆ .
2

mniE ti t i tm
n m n m n

n

a a H e H e e
t i

    
 

  



 

 
We integrate this expression to find 
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 / /(1) (0) †

1 1

/ /
(0) †

1 1

1 ˆ ˆ
2

1 ˆ ˆ .
2

mn mn

mn mn

iE t iE ti t i t
m n m n m n

n

iE t iE ti t i t

n m n m n
n mn mn

a a H e e H e e dt
i

e e e ea H H
E E

 

 

   

   
 





 

         

 



 

 



 

 (1.6) 

 
The lower limit of the integral does not contribute if we assume that the perturbation 
was turned off in the infinite past. Physically, the result Eq.(1.6) is an idealization 
because we have ignored losses that tend to de-excite the system, i.e. make the system 
decay back to the ground state. To incorporate these effects, we may introduce a 
certain damping   in the expression above 
 

 
/ /†

1 1(1) (0)
ˆ ˆ

1 .
2

mn mniE t iE ti t i t
m n m n

m n
n mn mn

H e e H e e
a a

E i E i

    

 

               


 

   

 (1.7) 

 
We are now in a position to calculate the expectation value of any time-independent 
operator corresponding to some measurable quantity. We denote this operator 
(response observable) by X̂  so that what we want is X̂  . We therefore use 

Eq.(1.2) and keep only terms up to linear order in the perturbation 
 
   /(0) (0) (0) (1) (1) (0)

,

ˆ ˆ .nmiE t
n m n m n m n m

m n
X a a a a a a X e          

 
To interpret this result, we see what normalization of the total wave function tells us. 
Using Eq.(1.2) we see that 
 
 21 ,n

n
a    

 
using the orthogonality of the n ’s. Thus, if the perturbation is absent and (0)

n na a  
we have 
 
 

2(0) 1  (no perturbation)n
n

a  . 

 

As usual, we interpret 
2(0)

na  as the probability that the unperturbed system is in the 

state n . In thermal equilibrium, this means that 
2(0) ( )n na f E , where f is the 

probability distribution, which depends on the energy of the state only. We use this 
property to postulate the following: 
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 (0) (0) ( ) if 
0 otherwise

n
n m

f E n m
a a

 
. 

 
This postulate can be made more rigorous using the so-called density matrix 
formulation of perturbation theory [1]. We will simply accept it as a reasonable 
postulate here. We subsequently apply Eq.(1.7) to show that 
 

 
†

1 1

,

†
1 1

,

ˆ ˆ( )

ˆ ˆ
1 ˆ( )
2

ˆ ˆ
1 ˆ( ) .
2

n n n
n

i t i t
m n m n

n n m
m n mn mn

i t i t
m n m n

m n m
m n nm nm

X f E X

H e H e
f E X

E i E i

H e H e
f E X

E i E i

 

 

   

   
 

 

   
 

 







               
               







   

   

 

 
If this result is Fourier decomposed into frequency components it is found that 
 

 1 1ˆ ˆ( ) ( ) ( )
2 2

i t i t
n n n

n
X f E X X e X e          . (1.8) 

 
Here, the time-independent first term is the permanent contribution, which exists in 
the absence of the perturbation, while comparison with the previous result shows 
that 
 

 
1

,

ˆ ˆ
( )

m n n m

nm
m n mn

H X
X f

E i

   





  
 

, (1.9) 

 
where ( ) ( )nm n mf f E f E  . This is the time-dependent induced response due to the 
perturbation. It is noted that the form Eq.(1.8) ensures that the response is real-
valued. At zero temperature, the ground state is known with certainty to be occupied 
while all other states are empty. Hence, the only non-vanishing nmf  terms are 0 1mf   
and 0 1nf  , where n and m are both larger than 0. For this reason we find 
 

 
1 0 0 0 1 0

0 0 0

ˆ ˆ ˆ ˆ
( )     ( 0)

n n n n

n n n

H X H X
X T

E i E i

       


 

                


   

 (1.10) 

 
at zero temperature. The expressions in Eqs.(1.9) and (1.10) are the fundamental 
results of linear response theory. They constitute the basis upon which all subsequent 
results are built.  
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Exercise: High-frequency limit 
 
In this exercise, we will investigate the response of a nanostructure subjected to a 
perturbation with a very high frequency. If     and we change the order of 
certain terms, we may, first of all, write Eq.(1.10) as 
 

 
0 1 0 0 1 0

0 0 0

ˆ ˆ ˆ ˆ
( ) .

n n n n

n n n

X H H X
X

E E

       


 

           


 

 

  
Secondly, we will assume that 0nE   for all the important transitions in the sum. 
 
a) Show that using a geometric series 
 

 0
2

0

1 1 ...
( )

n

n

E
E  

 




  

 

 
We also need the completeness property of the states, which means that 

1n n
n

   . If the ground state n = 0 is excluded from the summation it follows 

that 0 0
0

1n n
n

   


  .  

 
b) If only the first term of the geometric series is retained, show that 
 

 0 1 0
1 ˆ ˆ( ) ,X X H  


    


, 

 
where 1

ˆ ˆ,X H 
    is the commutator between the two operators. 
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2. Preliminaries 
 

 
Before we start seriously applying the results of perturbation theory to real 
nanostructures or bulk materials it is useful to consider some general features of 
perturbations and responses. The most common perturbations and, also, the ones 
treated in this work are: 
 
• Static or low-frequency electric fields 
• Static or low-frequency magnetic fields 
• High-frequency electric fields (light) 
 
In addition, two or more of these perturbations may be present simultaneously. 
Examples of perturbations that are not considered here are mechanical ones such as 
pressure or mechanical stress. The most important combinations of perturbation and 
response for solids are shown in the table below. 
 

Perturbation→ 

 
The electric and magnetic perturbations are intimately related to the electric and 
magnetic dipole moments. Classically, the changes in energy associated with an 
electric field 



  or magnetic field 


  are e 




  and m 




 , where e


 and m


 are 
electric and magnetic dipole moments, respectively. For a quantum mechanical 
system of electrons, the electric dipole operator is 
 
 ,e i

i
er r r     . 

 
Here, the sum is over all the electrons. The magnetic interaction is a little more 
complicated because both orbital and spin angular momentum contributes. Hence, 

m orb spin   
    with 

 

 Electric field Magnetic field Electric + 
magnetic field 

Electric 
current 

Electric 
conductivity 

 Hall effect 

Polarization Electric 
susceptibility 

 Faraday effect 

Spin 
magnetization 

 Spin-magnetic 
susceptibility 

 

Orbital 
magnetization 

 Orbital-magnetic 
susceptibility 

 

Response→
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 , 2 , ,orb B spin B i i
i i

l s l l s s   = − = − = =∑ ∑
  

   

, 

 
where /2B e m   is the Bohr magneton. Here, l



 and s  are the total angular and 
spin angular momentum, respectively. The factor 2 in the expression for spin

  is 

actually the g-factor of the electron and should be replaced by 2.0023eg ≈  if 
quantum-electrodynamic effects are included.  
 
The response observables, in turn, are also related to the dipole moments. Thus, 
polarization ( )



  is nothing more that the induced electric dipole moment per 
volume and magnetization ( )



  is the induced magnetic dipole moment per 
volume.  It follows that the associated observables are 
 

 

ˆPolarization ( ) : / /
ˆOrbital magnetization ( ) : /

ˆSpin magnetization ( ) : 2 / ,

e

orb B

spin B

X er

X l

X s

 

 

 

  

 

 

 
















 

 
where   is the crystal volume. The only additions needed to this list are those related 
to electric currents. In this case, the perturbation is the action of the electrostatic 
potential ( )ii

e V r− ∑   and the observable is the current density operator is 
ˆ ˆ /J ep m= − Ω


 , where ˆ ˆ
i i

p p=∑   is the total momentum operator. As we shall see, 
however, this case is also described by the electric case described above. 
 
The actual calculation of response functions always relies on the computation of 
matrix elements such as ˆn mo  , where ô  could be any of the Hermetian operators 
encountered above. Many apparently different matrix elements are closely related as 
can be proved by a clever trick that goes as follows: We start from the matrix element 
of the commutator between the Hamiltonian 0Ĥ  and the operator ô  
 

 

0 0 0

0 0

0 0

ˆ ˆ ˆˆ ˆ ˆ,

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ,

m n m n

m n m n

n m m n

H o H o oH

H o oH

oH oH

   

   

   


     

 

 

 

 
where the last equality follows from the fact that both 0Ĥ  and ô  are Hermitian. We 
then utilize the action of 0Ĥ  on the eigenstates 
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0
ˆ ˆ ˆ ˆ,

ˆ ˆ

ˆ .

m n m n m n m n

m m n n m n

mn m n

H o E o E o

E o E o

E o

     

   

 

     

 



 (2.1) 

 
On the other hand, many commutators can be calculated explicitly. We may consider 
just a single electron and for the z component of the position we find 
 

 

2 2

0 2

2 2 2 2

2 2 2

2

ˆ , ,
2

2
2

ˆ .z

H z z
m z

z z z z
m z z z z z

m z

p
im

 

   





         
                  
















 

 
Thus, in fact 0

ˆ ˆ, ( / ) zH z im p      . Similarly, for the electrostatic potential 

 

  

 

2
2

0

2
2 2 2

2
2

ˆ , ,
2

2
2

2 .
2

H V V
m

V V V V
m

V V
m

 

   

 

         

        

    







 

 
Now, V= −∇



  and if the electric field is assumed constant in space then 2 0V∇ = . 
Hence, 
 

 
2

0
ˆˆ , .iH V p

m m
         

 


 

   

 
As a consequence, only momentum matrix elements are really needed in both cases. 
The results can be summarized as follows 
 

 
ˆ ,

ˆ .

m z n mn m n

m n mn m n

p E z
im

i p E V
m

   

   



 









 (2.2) 
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2.1 A First Example: Electric Polarizability 
 
We will now illustrate some of the concepts above by working our way through a 
simple example: the electric polarizability of a spherical quantum well with infinite 
barrier confinement. This model and the first few eigenstates are illustrated in the 
figure below. In this situation, the perturbation is the electric field 



  and the response 
is the induced dipole moment d e r 





. For simplicity, we assume that only a 
single electron is in the system. Also, an isotropic system is assumed, which means 
that an electric field along the z-axis ze=





   induces a dipole moment in the same 

direction zd e d




. From the general framework presented in the previous chapter it 
then follows that 
 

 
,

2

2

,

( )

.

m n n m
nm

m n mn

m n
nm

m n mn

e z ez
d f

E i

z
e f

E i

   




 






  


  





 

 





 

 
The constant of proportionality between d and   is the polarizability ( )   given by 
 

 
2

2

,
( ) .m n

nm
m n mn

z
e f

E i
 

 



  
 

 

 
At low temperature, we can similarly to Eq.(1.10) utilize the fact that the only non-
zero nmf  terms are 0 1mf   and 0 1nf  , where n and m are both larger than 0 and 
after re-labeling  
 

 

2 2

0 02

0 0 0

2

0 02
2 2 2

0 0

( )

2 .
( )

n n

n n n

n n

n n

z z
e

E i E i

z E
e

E i

   
 

 

 







               


  





   



 

 
This expression obviously leads to resonances whenever 0nE , i.e. whenever the 
photon energy matches the energy difference between the ground state and an 
excited state. The dimensionless quantity 
 

 
2

0 0 02
2

n n n
mg z E 

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is known as the oscillator strength of the 0 n   transition. Thus, 
 

 
2 2

0
2 2 2

0

( ) .
( )
n

n n

ge
m E i

 



  



 

 
Note that we removed the restriction on n in the sum because 00 0g  . We now wish 
to investigate the high and low frequency limits. In the former case, we may assume 
that 0nE   for all important transitions and so 
 

 
2

02( ) .n
n

e g
m

 


   

 
To evaluate the sum over oscillator strengths we utilize Eq.(2.2) 
 

  

 

2

0 0 02

0 0 0 0 0 02

0 0 0 0

2

1 ˆ ˆ .

n n n
n n

n n n n n n
n

n n z z n n
n

mg z E

m z z E E z z

z p p z
i

 

       

       



 

 

 











 

 
Now, applying the completeness of the states 1n n

n
    and the commutator 

relation  ˆ , /zp z N i   (for N-electron operators), we see that 
 

  0 0 ˆ , .n z n
n

ig p z N  


 

 
This general result is known as the Thomas-Reiche-Kuhn sum rule. In the present 
example, N = 1 and 00 0g   and so 
 

 
2

2( ) (high frequency limit).e
m

 


  

 
Conversely, in the low frequency limit 
 

 
2

02

0 0

( ) 2 (low frequency limit).n

n n

z
e

E
 

 


   

 
In any spherically symmetric system (an atom or spherical nanoparticle), the 
eigenstates are of the form ( ) ( , ) ( )nlm lm nlr Y R r  



 with the angular dependence in 
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the form of a spherical harmonic. The ground state is 100 00 10( ) ( , ) ( )r Y R r  


. 
Moreover, z equals cosr   in polar coordinates that, in turn, can be written as 

10( , ) 4 /3rY    . Using 00( , ) 1/ 4Y     we therefore readily see that 
 

 3
100 1 10 1 0

0

1 ( ) ( )
3nlm n l mz R r R r r dr   



  . 

 
The Kronecker deltas follow from the orthogonality of the spherical harmonics 

10 1 0lm l mY Y   . Thus, the ground state only couples to p-type excited states. For the 
spherical quantum well with infinite barriers and radius a (see Appendix 1) 
 

 10 1 2
2 2( ) sin , ( ) sin cos

|sin |
n n n

n
n n

r r rr aR r R r
a r a a ar a

  
 

         
. 

 
Here, n  is the n’th root of the 1’st spherical Bessel function, i.e. sin cos 0n n n   

. Numerically, the first few are {4.49341, 7.72525, 10.9041,...}n  . The ground state 
and the first two p-type excited states are shown in Fig. 2.1. 
 
 

 
 
 

Figure 2.1. Model of a spherical quantum well with infinite barriers (left) and some of the  
first eigenstates displaced vertically by the energy (right). 

 
From these states, the dipole matrix elements are easily calculated 
 

 
 

3
1 10 22 2

0

41 ( ) ( )
3 3

a
n

n

n

aR r R r r dr  

 



 . 

 
Also, the energies are 2 2 2

100 /2E ma  and 2 2 2
10 /2n nE ma . We consequently 

find 
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 

2 2

0 32 2

16
3

n
n

n

g  

 



. 

 
Summed over the first 50 states, we find 0 0.9999986nn

g  , which illustrates the 
Thomas-Reiche-Kuhn sum rule. Similarly, the static polarizability becomes 
 

 
 

2 22 4 2 4

52 22 2

64(0) 0.0363 .
3

n

n n

e ma e ma 


 
 




 

 

 
More advanced versions of perturbation theory (see Appendix 11) can be used to 
show that the numerical factor is really 2 4(3 4 )/(12 )  . In terms of the 
characteristic energy of the spherical quantum well 2 2/2SQWE ma , the resonances 

10 100n nE E    are found at 2 2/n SQW nE    {10.32, 49.81, 109.03,...} . In the 
plot below illustrating the general result, these resonances are clearly noticeable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2. The frequency dependent polarizability of a spherical quantum well.  

Three resonances are found in the depicted energy range. 
 
Exercise: One-dimensional quantum well 
 
In a simple quantum well stretching between /2z L  with infinite barriers, the 
eigenstates are of the form (see Appendix 1) 
 

 
cos( / )  odd2( ) ,
sin( / )  evenn

nz L n
z

nz L nL





 
, 

 
and the energies are 2 2 2 2/2nE n mL .  
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a) Verify that 
 

 1 1 1 2 2
160,
9

Lz z   


  . 

 
The general result is 
 

 
1

1 2 1 1 2 2 2 2

16 ( 1)0,
(4 1)

n

n n
nLz z

n
   








 


. 

 
b) Show that, accordingly, the oscillator strength is 
 

 
2

2 ,1 2 2 3
256

(4 1)n
ng

n



 

 
c) By direct calculation, show that 2,1 0.961g   and 4,1 0.031g  . This shows that the 
sum rule for oscillator strengths is very nearly satisfied with only a few terms. 
 
d) Use the above results to demonstrate that 
 

 
2 4 2

6 2 2 5
1

1024(0)
(4 1)n

e mL n
n













 

 
The sum may actually be evaluated exactly with the result 

2 22

2 5
1

(15 )
(4 1) 12288n

n
n

 






 . The net polarizability is therefore 

 

 
2 2 4

4 2

(15 )(0)
12

e mL








. 
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3. Bulk Response of Metals 
 

 
In the present chapter, we restrict the attention to metals. Metals are generally 
divided into noble metals, transition metals and alkali metals. Technologically, the 
first two groups are the most important ones. The noble metals include copper (Cu) 
and gold (Au), that are of great importance for electronics and conductors. Transition 
metals count materials such as iron (Fe) and titanium (Ti) of importance for electric 
motors, steel constructions and high strength alloys. A notable addition to these main 
classes is aluminum (Al), which is a so-called free-electron metal, and also of 
immense importance in many different areas. The band structure of copper is shown 
in Fig. 3.1. This picture is characteristic of noble metals in that it features some 
relatively flat d-bands well below the Fermi level and a single sp-band crossing the 
Fermi level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. Band structure of copper with the Fermi level indicated by the dashed line. 
 
An external perturbation connects an occupied to an empty level. Thus, if the typical 
energy of the perturbation is rather small, only states in the vicinity of the Fermi level 
are of importance. Examples of this are static electric and magnetic fields of modest 
field strength as well as low-frequency (infrared) electromagnetic fields. For these 
cases, hence, we only have to consider the single sp-band crossing the Fermi level in 
order to describe the response. 
 
3.1 Spin Magnetization 
 
The simplest example of perturbation theory in bulk metals is the spin magnetization. 
In this case, we consider as the perturbation the coupling between a magnetic field 
  and the magnetic moment ˆ2 B zs  of an electron 
 
 1

ˆ ˆ2 B zH s  , 
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where   is the magnetic field strength, and ˆzs  is the z-component of the electron 
spin. The response observable we’re looking for is ˆ ˆ2 /B zX s  , where   is the 
crystal volume. This operator describes the average magnetic moment per volume. 
The response itself is the spin magnetization for which we use the symbol ( ) . 
Before actually calculating the response we need to consider the following point: The 
perturbation and response introduced in Chapter 1 were for the entire system 
containing many particles. On the other hand, the present expressions for 1Ĥ  and X̂  
are for a single electron only. It can be shown, however, that if all the electrons are 
independent then the response expression 
 

 
1

,

ˆ ˆ
( )

m n n m

nm
m n mn

H X
X f

E i

   





  
 

 

 
in fact still holds but with a new meaning: Now that 1Ĥ  and X̂  are single-particle 
operators, n  and nE  should be taken as single-particle eigenfunctions and 
eigenvalues. Also, several single-particle eigenstates rather than just the many-
particle ground state are now occupied (below the Fermi level).  
 
Since this is the first application of linear response theory, we keep things simple and 
restrict ourselves to the special case of zero frequency and zero damping, i.e. 

0 . Thus, we wish to calculate the static response  
 

 1
,

ˆ ˆ(0) nm
m n n m

m n mn

fX H X
E

    . 

 
As mentioned above, the perturbation energy is very small for a static magnetic 
field and, hence, we may approximate 
 

 ( ) ( ) ( )( ), ( ) .nm n n mn
n

mn mn

f f E f E E f Ef E f E
E E E

     


 (3.1) 

 
so that 
 
 1

,

ˆ ˆ(0) ( )n m n n m
m n

X f E H X    . (3.2) 

 
The present example is simplified further by the fact that both 1Ĥ  and X̂  only operate 
on the spin part of the wave function. For an infinite, periodic solid the eigenstates 
can be labeled by three quantum numbers: The band index c, the Bloch wave vector 
k


 and the spin  . Hence, the state index n above is replaced by { }c k


. The 
eigenstates themselves are Bloch states of the form 
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 ( ) , ( ) ( ) ,ik r

c k c k c k
c k r r u r e     





  



  

 (3.3) 

 
where 

c k
u   is the lattice-periodic part and   contains the spin part. We consider only 

a single band and so we begin by evaluating the 1Ĥ  matrix element as follows 
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In exactly the same manner, 
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In the static response Eq.(3.2), the summations over n and m are now over { }k



 and 

{ }k  


. Each sum over wave vectors is restricted to the Brillouin zone and the spin 
summations cover the two possibilities { , }  . Three sums can be carried out 
immediately and the static magnetization is 
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At sufficiently low temperatures, the derivative of the Fermi function is 
approximately a delta function ( ) ( )Fc k c k

f E E E     and therefore  

 
 2(0) ( )B FD E  , 
 
where 1( ) 2 ( )F Fc kk

D E E E   
  is the density of states at the Fermi level. This 

result is known as Pauli paramagnetism. We finally introduce the susceptibility M  
via 
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 , 
 
which is known as the Pauli paramagnetic susceptibility. 
 
3.2 Electric Current 
 
The conductivity of electrons in an electric field can be handled much like the 
previous case. The electric field is taken to be polarized in the z-direction ze=





  . The 
perturbation on the electrons is given by ( )eV r−

 , where V is the electric potential 

related to the field via V= −∇


 . This means that the current response is given by 
 

 
,
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( ) ,

m n n m
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m n mn

eV J
J f

E i

   







  
 

 (3.4) 

 
where the current density operator is ˆ ˆ /zJ ep m= − Ω , i.e. equal to charge times 
velocity. The matrix elements of this operator is, therefore, given by  
 

 ˆ ˆn m n z m
eJ p

m
   





. 

 
Using Eq. (2.2) to evaluate matrix elements of the potential, the expression for the 
current becomes 
 

 
2

2

2
,

ˆ
( ) .m z nnm

m n mn mn

pfi eJ
m E E i

 





 
   

 



 (3.5)
 

 
We now again apply Eq.(3.1) due to the smallness of relevant mnE  and, in addition, 
we neglect mnE  in the frequency dependent denominator above so that 
 

 
2 2

2
,

ˆ( ) ( ) .
( ) n m z n

m n

ieJ f E p
m i

  



     

 
Next, we need the matrix elements of the momentum operator. Due to the Bloch form 
of the eigenstates Eq.(3.3) it follows that 
 

  ,
ˆ ˆz z zk k c k c k

c k p c k k u p u     
      

 

 . (3.6) 

 
These matrix elements, however, can be related to the energy using a few tricks. First, 
we note that, as usual, our single-particle states are eigenstates of a Hamiltonian 

2
0

ˆ ˆ /2H p m U   so that 

     2
0 0(0)/ ( )M B FD E 
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where 
 

 
2 2 2
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2 2
p k pkh k U
m m m


   








 . (3.7) 

 
This k-dependent Hamiltonian is obtained by carrying through the phase factor ik re 





. 
Hence, multiplying on both sides by 

c k
u

  and integrating demonstrates that 

0
ˆ ( )

c k c k c k
E u h k u  



. We now wish to see how this energy varies with zk . Hence, we 

take the derivative 
 

 0
0 0
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
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. 

 
By means of the eigenvalue condition, this can be re-expressed as 
 

  

 
The first contribution vanishes since 1

c k c k
u u   . This result is an example of the 

famous Hellmann-Feynman theorem. It follows using Eq.(3.7) that 
 

  ˆc k
z zc k c k

z

E
k u p u

k m


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This result allows us the rewrite the general matrix element Eq.(3.6) as 
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This expression shows that the momentum matrix element is mass times “band 
velocity” ( )cv k



. It should be emphasized, however, that this result is only valid for 
transitions within a single band. For transitions between bands, so-called interband 
transitions, the momentum matrix elements are more complicated. Precisely as in the 
magnetization example, the summations over n and m are replaced by sums over 
{ }k


 and { }k  


 and upon performing the sums over ,  and k  


 the current is given 
by 
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Again, at low enough temperatures 
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This result may be written in a briefer form by introducing the plasma frequency p  
via 
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 (3.10) 

 
Thus, if the conductivity is defined via ( ) ( )J      then 
 

 
2

0( ) .pi
i

 
 



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 (3.11) 

 
This is the famous Drude form of the electric conductivity. It relates the induced 
current density to the applied time-dependent electric field. In a similar optical 
setting, a piece of metal might also be subjected to a time-dependent electric field due 
to the light source. In that case, we would look for the induced polarization as the 
response. Thus, one could expect that there is a connection between current and 
polarization 



  and, indeed, there is. The connection follows from the fact that 
polarization is related to charge density ( )t  via ( ) ( )t t 



 . Moreover, the 

continuity relation ( )/ ( )t t J t  


 relates charge and current densities. Put 

together, ( ) ( )/J t t t 
 

  or, for harmonic time variation, ( ) ( )J i  
 

 . Now, just 
as ( ) ( )J      we can write 0( ) ( )     , where ( )   is the susceptibility. In 
turn, ( )   is related to the dielectric constant ( )   via ( ) 1 ( )     . Putting it all 
together, it follows that 
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0

( ) 1 ( )i
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 
  .  

 
In particular, for the intraband response of a metal described by the Drude expression 
we find 
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As an approximation the interband contribution may be taken to be roughly 
independent of frequency and so a simplified expression for the total dielectric 
constant is given by 
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 (3.12) 

 
where   is a constant representing the high-frequency interband response. In Fig. 
3.2, the optical response of bulk silver is considered [1]. For this material the 
appropriate parameters in the Drude model are p 

9.3 eV,  0.03 eV and    
5. As the plot demonstrates, the Drude form is quite accurate at low frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Comparison of experimental [1] and Drude model dielectric constant of Ag. 
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Exercise: Properties of free-electron metals 
 
For a true free-electron metal show that 
 

a) the density of states is 3( )
2F

F

nD E
E

 , where n is the electron density, and therefore 
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b) the squared plasma frequency is 
2

2

0
p

e n
m




 . 
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4. Electric Currents in Nanostructures 
 
 
The electric properties and in particular electric currents are greatly influenced by 
quantum confinement effects in nanostructures and entirely new features arise. One 
of the most striking features is quantization of conductance so that under ideal 
conditions, the conductivity becomes an integer multiple of the fundamental 
conductivity quantum 22 /e h . In addition, important effects arise when the distance 
traveled by charge carriers becomes comparable to or less than the mean free path, 
i.e. the average distance traveled between scattering events due to e.g. phonons or 
impurities. In this “ballistic” regime, coherence of the electronic wave function is 
maintained and new features arise from interference effects. 
 
We begin our study of conductivity in nanostructures by considering the general 
setup illustrated in Fig. 4.1. This figure shows a “system” through which an electric 
current is passing from left to right. The system, which might be a molecule, a 
semiconductor slab and so on, is connected to ideal wires or “leads” on both sides. 
Through these leads, an electric potential is applied so that an electric field exists 
inside the system. We suppose that we are in the ballistic regime so that an electron 
can be faithfully represented as a quantum mechanical wave incident on the system. 
This wave is then partly reflected and partly transmitted by the system. Hence, the 
important characteristics of the system lie in the reflection and transmission 
coefficients.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. Illustration of the nanoscopic conductor consisting of a “system” 
connected to leads on both sides. 

 
As in the previous chapter, the electric current along the z-axis is calculated as the 
response to the applied electric potential. Hence, the response expression is given by 
Eq.(3.5) 
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In the present chapter, we’ll restrict the discussion to the DC limit 0 . Using 
Eq.(1.8) it is clear that the total DC current DCJ is { (0) (0)} /2 Re{ (0)}DCJ J J J   . 
Hence, we need to extract the following real part 
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As we are in the ballistic regime, we should take the limit 0 . Using the identity 
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so that 
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The first factor in the sum can now be found by taking the limit as the energy 
difference mnE  vanishes 
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We therefore finally get 
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We now need to investigate in detail the relevant electronic states that carry the 
current. In any of the two leads, the eigenstates are of the form 

, where iL  is the length of the i'th lead and   describes 
the behavior the state in the directions perpendicular to the lead-direction. In general, 

  also depends on z and has the lattice periodicity in this direction. The energy 
eigenvalue corresponding to this state is denoted ( )n nE E k .  
 
In the present quasi-one dimensional problem, it is obviously important to 
understand how the summations in Eq.(4.2) should be performed. Primarily, 

( ) ( )exp( )/n n ir r ik z L  
 
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summing over n means summing over a composite index { }nn k  , with   is the 
spin index, and similarly for { }mm k  . The spin summation is readily performed 
and simply produces a factor of two. Hence, 
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Now, the sum over mk  can be converted to an integral using /2

k
L dk  . In 

addition, we use the delta-function property 
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where 0k  is the root of F, i.e. 0( ) 0F k  . This identity holds under the assumption that 
only a single root lies within the integration interval. The k derivative of the energy 
is basically the band velocity, c.f. Eq. (3.9) 
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We consequently find 
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It is important to note that in this expression mk  is understood to be determined by 
the condition ( ) ( )m nE k E k  . 
 
4.1 Matrix Elements 
 
We now see what happens when the “system” region is inserted between the two 
leads. If an electron is propagating to the right in the left lead it encounters the system 
and two things can happen: either it is reflected back into the left lead OR it is 
transmitted into the right lead. In both cases, there is a chance that if the incident 
electron is in the n’th mode it will be reflected/transmitted into a different mode, say 
the l’th mode. Hence, the total wave function is given by 
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

              





 



, (4.4) 

 
where nN  is a normalization constant and   and   are reflection and transmission 
coefficients, respectively. The requirement that Eq.(4.4) be an eigenstate of the entire 
structure means that lk  and nk  are related via ( ) ( )l nE k E k  . 
 
The three parts of the wave function (incident, reflected and transmitted) correspond 
to three currents. As usual, they can be calculated as the matrix element of the current 
operator ˆ ˆ /zJ ep m= − Ω  taken over the appropriate volumes, i.e. the 1’st lead for 
incident and reflected and 2’nd lead for the transmitted current. This procedure 
yields 
 

  

 
where we, again, need the velocities 
 

1

( )1 1ˆ( ) ( ) ( )n nik z ik z n
n z

n

E kv k r e p r e
mL k


   


 


 



. 

 
We can then calculate the reflectance R   as the ratio between the (absolute) current 
reflected into the l’th mode and the incident current and, similarly, the transmittance 
T   as the ratio between the current transmitted into the l’th mode and the incident 
current. These ratios are 
 

 2 2( ) ( ), .
( ) ( )

l l

n n

v k v kR T
v k v k
 

       
 

       

 
Conservation of current implies that 
 
 1.

l l
R T   → →+ =∑ ∑  

 
In addition, we can express the normalization constant nN  in terms of these factors 
by integrating the square of the wave function. In the integral, we should include a 
contribution from the system region but if this is assumed much smaller than the 
leads we may safely ignore it and so 
 

2 2 2 2 2( ), ( ) and ( ),I n n R n l T n l
e e eJ N v k J N v k J N v k      

 

 → →= − = = −
Ω Ω Ω∑ ∑
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( ) ( )1 .
( ) ( )
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l ll l

v k v kN R T
v k v k
 

   
 

−
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 
= + + 
 

∑ ∑  

 
What we really need is the momentum matrix elements to be used in Eq.(4.3). We 
therefore use Eq.(4.4) and a similar expression for m  to show that 
 

 ˆ ( ) ( ) ( ) .
m nk z k m n n l lp mN N v k v k v k             
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        
   

         
   

 
Now, in order to evaluate Eq.(4.3) we should sum over all eigenstates, not only those 
given by Eq.(4.4). In fact, Eq.(4.4) only provides the right-travelling half the 
eigenstates and there is another left-travelling half given by 
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. 

 
These new states are easily shown to be orthogonal to the old ones. We subsequently 
need new momentum matrix elements and they turn out to be 
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These are very general results but, unfortunately, rather complicated in further use. 
We consequently introduce a useful simplification. 
 
4.2 Simplification: Decoupled Channels 
 
In the expressions above, we see that electrons incident in the n’th mode may scatter 
into the l’th mode upon reflection or transmission. In this connection, we speak of the 
modes as “channels” in which electrons are transported. Obviously, these channels 
are coupled and an electron that is initially in a particular channel may scatter into 
another as a result of the coupling. We now make the simplifying assumption that 
coupling can be ignored so that among all the reflectances and transmittances, only 
R   and T   remain. This greatly simplifies the results above and we have 
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After summing, this yields a very simple current density expression 
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that can be reduced even further using the conservation relation 1R T       so 
that 
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At this point, we can convert the remaining k summation to an integral that, in turn, 
can be turned into an energy integral 
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To relate this result to directly measurable quantities we introduce the total potential 
difference (voltage) V L   between the two leads and the total current equal to 
current density times cross sectional area of the leads, i.e. DCI AJ . Applying, in 
addition, the relations AL  and 2h    we find the celebrated Landauer formula 
for the quantized current 
 

  
22 .e VI f E T dE
h  


   (4.5) 

 
In the low-temperature limit, we then find 
 

 
22 ( ).F

e VI T E
h  


   (4.6) 

 
It shows that the conductance 
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22 ( ).F

I eG T E
V h  


    (4.7) 

 
is quantized. As an example, we may assume effective mass dispersion 

2 2( ) /2n n eE k E k m 
  , where ( 0)nE E k 

    is the quantization energy. Then, in 
the idealized case of vanishing reflection, the transmittance equals unity whenever 
the Fermi level exceed the band edge, i.e. ( ) ( )F FT E E E   

    and the conductance 
is simply 0G NG , where  is the fundamental 
conductance quantum and N is the number of channels below the Fermi level. If the 
assumption of completely ballistic transport is not fully applicable because of 
scattering losses, the conductance formula should be convoluted with the broadening 
function 2 2 2/( )/E     . This produces the broadened expression 
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12 1 1tan .
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FE EeG
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

 




             




 (4.8) 

 
Figure 4.2 illustrates the quantized conductance as a function of Fermi energy for a 
fictitious system in which 1 eV,   1, 2, 3,....E       and so on. The ideal case 

0  as well as a case of finite broadening 0.1 eV  is shown in the two graphs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2. Illustration of conductance quantization for the  
ideal and broadened cases. 

 
The figure 4.3 below shows experimental conductance plots for a GaAs/AlGaAs 
junction onto which an extremely narrow conducting channel is formed by metallic 
point contacts [1]. Tunneling occurs through a central metallic contact connected to 
leads on the left and right via tunneling regions. The tunneling current is recorded as 
a function of a gate potential applied to the central contact.  

2 1
0 2 / (12.90641 k )G e h   
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 Figure 4.3. Experimental conductance traces for a metallic point contact as a function of 

gate voltage. Taken from [1]. 
 
Exercise: Mode counting and minimum resistance 
 
Even for an ideal conductor having all transmittances 1T    there is a maximal 
conductance given by Eq. (4.7) 
 

 
2

max
2 #modes.eG
h

    

 
Here, #modes  should be understood as the number of occupied electron channels, 
i.e. channels for which FE E

   so that the band crosses the Fermi level. For a 
conductor with a square profile defined by side lengths xL  and yL  and infinite surface 
barriers, the mode index   is actually two-dimensional pq   because the energies 
depend on two quantum numbers (see Appendix 1) 
 

 
2 22 2

2 22pq
e x y

p qE
m L L


       

 . 

 
We first assume an ideal quantum well, i.e. take yL  so small that only a single y-mode 
contributes. 
 
a) Show that by setting pq FE E   the maximal occupied p-level and, hence, the number 
of occupied modes becomes 
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m L E E


 


. 

 
Next, we set x yL L L   and consider a square quantum wire. In this case, setting 

pq FE E   means that 2 2 2 2 2
max( ) 2 /( )F ep q E m L    . The problem of mode counting 

therefore reduces to finding the number of non-negative integers within a circle of 
radius 2 /( )F eE m L  .  
  
b) By assuming this radius much larger than unity, show that 
 
 2 2#modes /(2 )F eE m L   . 
 
We now assume that all bands are parabolic, i.e. that the full energy dispersion is 

2 2 /(2 )pq pq eE E k m  . Thus, for a sufficiently thick wire we know that the electron 

density is 2 3/2 2(2 / ) /3F en E m   . 
 
c) Show that the minimum resistance becomes 
 

 
2/3

min 2 2
4

3
R

n e L
    
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5. Electron Transmission and Reflection 
 
 
In the previous chapter, the general formulas for the electric current were developed 
in terms of electron transmittances. Here, we will continue by actually computing the 
transmittance for a range of illustrative examples. To simplify matters, we restrict 
ourselves to a one-dimensional description, i.e. we ignore what happens in the 
directions parallel to barriers and other potential steps. Throughout, we rely on an 
effective mass picture, in which electrons behave as free electrons but with a modified 
mass em  rather than the free electron mass (explained further in the next chapter). 
We also assume the potential energy to be piecewise constant but, as will be shown 
below, any true profile can be approximated by a sequence of constant potential steps 
via the “staircasing” approach. Thus, very general cases can be treated using the 
methods developed here.   
 
Electrons with energy E moving through a region with constant potential energy V 
are described by the wave function 
 

  2

2( ) ,ikx ikx emx Ae Be k E V    


. 

 
If we evaluate the same state at a shifted position x d  we obviously have 

( ) ( )( ) ik x d ik x dx d Ae Be      . Hence, if we write this state as ( ) ikx ikxx d Ce De   
, we can write 
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. (5.1) 

 
Similarly, the electron may pass from a material having potential energy 1V  to a 
position with potential energy 2V . In this case, the wave functions for the positions 1 
and 2 (located immediately left and right of the interface, respectively) are 
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To relate the coefficients in this situation, we need to match the wave function and its 
derivative at the junction 
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k A B k C D
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By adding and subtracting these equations, it follows that we may write the relations 
as the matrix expression 
 

 

2 2

1 1

2 2

1 1

1 1
1,
2 1 1

k k
A C k k

M M
B D k k

k k
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 

. (5.2) 

 
In this manner, transmission through any potential energy profile can be modeled by 
a series of matrix multiplications. As simple examples, we consider tunneling 
through single and double barriers as illustrated in Fig. 5.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Single and double tunneling barriers. 
 
For the single barrier, transmission involves (1) entering the barrier, (2) transversing 
the barrier, and (3) exiting the barrier. If we choose the potential energy outside the 
barrier as the zero-point, the wave number in this region is simply 

2
1 2 /ek k m E   . Inside the barrier the potential energy is 0V  and, 

correspondingly, the wave number is 2
2 0, 2 ( )/ek i m V E     . The combined 

effect of the three processes is described by the “system” matrix 
 
 in B outM M M M  

   

. 
 
Now, in a reflection-transmission experiment with an incoming wave from the left, 
the (un-normalized) wave functions far to the left and right are, respectively, 
 
 ( ) , ( )ikx ikx ikx

L Rx e re x te    , 
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where r and t are reflection and transmission coefficients. In terms of the system 
matrix, we therefore have 
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0
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so that 111/t M  and 21 11/r M M . Finally, the transmission and reflection 
probabilities can be computed from 2 2

11| | 1/| |T t M   and 2 2
21 11| | | / |R r M M  , 

respectively. As we will see below, quite complicated geometries can be handled 
using this technique.  
 
For the particular case of a single rectangular barrier of width d, the general 
expressions above yield the following matrices: 
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Performing matrix multiplications, it follows that the system matrix for the single 
barrier (“S”) becomes 
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And the transmittance is 
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4
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S kT
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
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
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In the exercise at the end of the chapter, a plot of the single barrier transmittance is 
shown. For the double barrier (“D”) in Fig. 5.1b we need, in addition, the matrix for 
translation between the barriers 
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and the transmission matrix becomes 
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It is easily demonstrated that 
 
 ( ) ( ) ( ) ( ) ( )

11 11 11 12 21
D S S S Sikw ikwM M e M M e M  . 

 
Below, we plot the double barrier transmittance vs. energy using 0 4 eVV  , d = 6Å 
and w = 8Å and taking em  equal to the free electron mass. The peaks correspond to 
“resonant tunneling” [1] and they are located, where true bound eigenstates would 
appear if the barriers were infinitely wide. Note that we plot the result for 0E V  
also. In fact, the only modification for this energy range is that   becomes imaginary. 
Since the formulas above remain valid for imaginary  , the results still apply for this 
energy range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.2. Tunneling transmittance T for the resonant tunneling structure  
shown in Fig. 5.1b using 0 4 eVV  , d = 6Å and w = 8Å. 

 
Any full system matrix built from multiplying the matrices above will be of the form 
 

 11 21

21 11

M M
M

M M





     



. 

 
Since 2

111/| |T M  and 2
21 11| / |R M M , we find for the determinant  

 

 2 2
11 21

1 1det | | | | R RM M M
T T T


    



. 
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As electrons don’t disappear, we should have 1R T   and so any valid system 
matrix must have unit determinant det 1M 



. 
 
5.1 Triangular Barrier 
 
We will now attempt to tackle a much more complicated problem: That of a 
triangular barrier such as the one illustrated in Fig. 5.3. 
 

 
 

Figure 5.3. The triangular tunneling barrier (left) and the “staircased” approximation (right). 
 
Such a barrier naturally arises in field emission structures. Here, electrons are emitted 
from a metal by approaching a positively biased electrode to the metal surface. For a 
simple planar geometry, the electric field is constant and, hence, the potential 
decreases linearly with the distance from the surface (actually the image charge effect 
modifies the potential near the surface [2] but this complication is ignored). Therefore 
the electrons have to overcome a triangular barrier, whose height 0V  equals the metal 
work function for electrons at the Fermi level. This tunneling problem can be attacked 
in several ways, ranging from approximate over fully numerical to analytical 
approaches. The first type (approximate) is called the WKB approximation after 
Wentzel, Kramers and Brillouin. The starting point is the ( )ST  expression Eq.(5.3) for 
the single barrier, derived above. If the barrier is sufficiently wide, the argument d  
is large and we may approximate  
 

  
2 2

( )
2 2 2 2 2

16 exp 2
4 ( )

S kT d
k k




 
 

 
. 

 
For simplicity, the prefactor can also be replaced by unity, as we are mainly interested 
in the thickness dependence, i.e.  ( ) exp 2ST d  . In this manner, we are sure that 

( ) 1ST   as 0d  . Now, for this case it is clearly no approximation to write 
 

  02
0

2d
emd V E dx  



. 

 
The WKB approximation consists in applying this expression to barriers that are not 
rectangular. In general, the tunneling range through the barrier is determined by the 
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electron energy E as illustrates in Fig. 5.4. Here, the tunneling range is between x  
and x  that are defined by the intersections ( )V x E  . 
 
 
 
 
 
 
 
 

Figure 5.4. Sketch of an arbitrary tunneling barrier with classical turning points x


 and x


. 

 
In this manner, the general approximate transmittance becomes 
 

  2

2exp 2 ( )
x

e
WKB

x

mT V x E dx




           




. (5.4) 

 
The triangular barrier is defined by the potential 
 

 0 0
( ) ,

0 otherwise
V Fx x d

V x
   

, 

 
where F is the force proportional to the electric field F e   and the width d is related 
to F via 0 /d V F . Also, as long as 00 E V   we find 0x   and 0( )/x V E F   . 
In this case, an elementary integral shows that 
 

    3
02

24exp
3

e
WKB

mT V E
F

         

. (5.5) 

 
For the triangular barrier, however, it is possible to find a relatively simple analytical 
solution. The key point is to consider the Schrödinger equation in the barrier region 
0 x d  : 
 

  
2

0( ) ( ) ( )
2 e

x V Fx x E x
m

     
 . 

 
Rewriting slightly, we find 
 

   0
0 02

2( ) ( ),em F V Ex x x x x
F

 
   



. 

 
This resembles Airy’s differential equation 
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 ( ) ( )z z z   . 
 
In fact, if we write 0( )z q x x  , Airy’s equation reads 
 

 
2

3
0 0 02 ( ( )) ( ) ( ( ))d q x x q x x q x x

dx
     . 

 
This clearly fits if  1/322 /eq m F  . The two linearly independent solutions are 
denoted Ai and Bi and so the full solution must be 
 
    0 0( ) Ai ( ) Bi ( )x A q x x B q x x       . 
 
The reflection and transmission coefficients r and t along with A and B follow from 
the four boundary conditions 
 

 

   
   

   
   

0 0

0 0

0 0

0 0

1 Ai Bi

(1 ) Ai Bi

Ai ( ) Bi ( )

Ai ( ) Bi ( ) .

r A qx B qx

ik r q A qx B qx

t A q x d B q x d

ikt q A q x d B q x d

    

       
     

        

 

 
In this manner, utilizing the Wronskian [Ai,Bi] 1/W  , 
 

 

     

       
       

0 0 0 0

0 0 0 0

2

Ai , Ai ( ) , Bi , Bi ( )

Ai , Ai ( ) , Bi , Bi ( ) .

kqt
ika qa kb iqb ikb qb ka iqa

a qx a q x d b qx b q x d

a qx a q x d b qx b q x d




          
     

            

 

 









 (5.6) 

The fully numerical approach to transmission through arbitrary barriers consists of 
applying the matrix formalism presented above. As the method only applies to 
potential profiles that are piecewise constant, we need to approximate the barrier 
using “staircasing”. As an example, a staircased triangular barrier is shown in the 
right panel of Fig. 5.3. The idea is that the barrier is chopped into n pieces, each having 
a certain width and constant barrier height. When the number of steps n becomes 
large, the result comes close to the exact one. 

 
 
In Fig. 5.5, we have compared the exact result Eq.(5.6) to the WKB approximation 
Eq.(5.5) and to the staircasing approach using n = 2 and 3. Here, a barrier of  
and a force of  are assumed. Notice how well the n = 3 result 
approximates the exact curve. 

 

 

0 5 eVV 

1 eV/ÅF 
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Figure 5.5. Electron transmittance for the triangular barrier of 0 5 eVV  using  
(1) the WKB approximation, (2) the staircase method, and (3) the exact solution. 

 
 
Exercise 
 
In Fig. 5.6 below, we have plotted the transmittance of a single barrier with 0 4 eVV   
and d = 6Å. Similarly to the double barrier case, we note that the plot extends to the 
“fly-over” range 0E V . It is also noticed that a unit transmittance is found for some 
very specific barrier thicknesses. 
 
a) Show that in the fly-over energy range 
 

 
1 11 1 01 1, ,

2 2 01 11 1

B

B

B B
ik d

B B
in out B ik d

B B

B B

k kk k
k k ek kM M M

k k k k e
k kk k



                                       

  

, 

 
where 2

02 ( )/B ek m E V   . 
 
b) Show that the modified (1,1) element of the system matrix becomes 
 

 
2 2

( )
11

( )sincos
2

S B B
B

B

k k k dM k d i
kk


 



 

 
and, correspondingly, the transmittance 
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 ( )
2 2 2 4 4

22 2
2 22 2

1 1 .
( ) 1 sincos sin

44

S

B B
BB B

BB

T
k k k k k dk d k d

k kk k

 
 


 (5.7) 

 
Writing the result in the second form clearly demonstrates that ( ) 1ST  . It is also clear 
that the first form agrees with Eq.(5.3) as follows from the substitutions Bik  , 
cosh cos Bk   and sinh sin Bi k  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6.Transmission of a single rectangular barrier with energies  
at transmittance maxima highlighted.  

 
c) Show that the transmission attains its maximum value of unity at particular values 
of the energy given by 
 

 
22

0 , 1, 2, 3,...
2p

e

pE V p
m d

     
 . 
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6. Electron Transmission in Molecules: Introduction 
 
 
In this chapter, we turn to the transmission of electrons through molecules. We will 
therefore not use any effective mass approximation nor the rectangular barriers that 
were introduced in the previous chapter. Those concepts were appropriate for 
semiconductor nanostructures but will not suffice for individual molecules. We will 
start by considering a simple example that can be analyzed analytically. This 
geometry is illustrated in Fig. 6.1 and consists of a benzene molecule attached to 
simple one-dimensional leads with a single atom per unit cell [1].  
 
 
 
 
 

Figure 6.1. Transmission geometry consisting of a benzene ring (“system”) 
attached to two semi-infinite mono-atomic chains (“leads”). 

 
We analyze the states using the tight-binding approach described in Appendix 2. 
Moreover, we will assume that only a single orbital on each atom contributes to the 
transport. This orbital will be denoted n  if it belongs to the n’th atom. The quantum 
states can be written as expansions in this basis  
 
 n

n
c n  , 

 
where the sum is over all sites (atoms) in the structure. In our case, the structure 
consists of infinite leads attached to a finite molecule. Generally, a large part of the 
calculation is concerned with handling infinite leads. Here, as a starting point, we’ll 
consider the isolated molecule. For the benzene ring chosen as our example, the 
molecule has 6 sites. For simplicity, assume that only nearest neighbor coupling exists 
and denote the hopping matrix element by   (the minus sign is in order to keep 

0 ). Also, we’ll choose the zero point of energy such that the onsite matrix 
elements ˆ 0n H n  . Hence, the eigenvalue problem for the isolated system reads  
 

 

1

2

3

4

5

6

0 0 0 0
0 0 0 0
0 0 0 0

, , .
0 0 0 0
0 0 0 0
0 0 0 0

S S

c
c
c

H c Ec H c
c
c
c

 
 
 

 
 

 

                                               

 

  

 (6.1) 
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It’s a simple matter to show that the eigenvalues are 2  and   with the last pair 
twice degenerate. The isolated leads are even simpler. Under the same assumptions 
as for the molecule, we find 
 
 1 1( )n n nc c Ec     . 
 
The eigenstates are simple propagating waves of the form iqna iqna

nc Ae Be   and the 
associated energy is 2 cos( )E qa , where a is the lattice constant of the chain. 
Hence, the energies form a continuous band with values in the range 2 2E    . 
 
We now aim to couple system and leads together. In doing so, we will assume that a 
wave of unit amplitude is incident from the left and then partially reflected by the 
system. Designating the reflection coefficient by r, the full wave in the left lead is thus 

( ) iqna iqnain
nc e re  . Similarly, in the right lead a transmitted wave ( ) iqnaout

nc te  
propagates, where t is the transmission coefficient. Now, if we naively tried to set up 
the eigenvalue problem for the coupled system, an infinite matrix would result. 
Fortunately, the influence of the infinite leads can be accounted for via their electronic 
Green’s function. In the present mono-atomic case, the construction is particularly 
simple. First, we note that 0 1c r   and 1

iqa iqac e re
    and, hence, 

 1 0 1iqa iqac e c e
    . Secondly, the hopping integral coupling the left lead and the 

system is denoted  . Then, the Schrödinger equation for the 0’th site becomes 
1 1 0c c Ec    . Combining these relations, we now see that 

 
 0 1( ) , iqa

L L L LE H c H H c H e      . 
 
If the coupling between right lead and system is also   we find, similarly, 
 
 7 6( ) , iqa

R RE H c c H e    . 
 
We are now in a position to write the matrix equation for the full coupled problem. 
To keep the notation as simple as possible, we will suppress vector and matrix 
symbols. Thus, 
 

 

1 †
0

†

1
7

0
0 .

0 0

L L L L

L S R

R R

g V c H H
V EI H V c

V g c

 



                                

 (6.2)

  
We stress that in this expression, SH  and c are really the matrix and vector defined 
in Eq.(6.1) and I is the 6 6 unit matrix. Also, several pieces of new notation have 
been introduced: 
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    † 0 0 0 0 0 , 0 0 0 0 0L RV V    (6.3) 

 
are coupling matrices connecting the system with the left and right leads, 
respectively. Finally, 
 
 1 1( ) , ( )L L R Rg E H g E H      (6.4) 
 
are the lead Green’s functions. 
 
Now, in order to compute the transmission coefficient t we need to find 7

7
iqac te . 

The phase factor is irrelevant as we are really interested only in the transmittance 
2 2

7| | | |T t c  . We could, of course, simply invert the matrix equation Eq.(6.2). 
However, to prepare ourselves for tackling more elaborate cases we will demonstrate 
how the calculation can be simplified using a few mathematical manipulations. 
Primarily, the full Green’s function of the entire device (leads plus system) is just the 
inverse of the matrix in Eq.(6.2), i.e. 
 

 

1 †
11 12 13

†
21 22 23

1
31 32 33

0 1 0 0
0 0 .

0 0 0 1

L L

L S R

R R

g V G G G
V EI H V G G G I

V g G G G





                                            

 (6.5) 

 
From Eq.(6.2), it follows that 7 31( )L Lc G H H   and, hence, 31G  is the only important 
element of the full Green’s function matrix. It can be computed by simple 
manipulations of the first column of equations in the matrix expression above. These 
are 
 

 

1 †
11 21

†
11 21 31

1
21 31

1
( ) 0

0.

L L

L S R

R R

g G V G
V G EI H G V G

V G g G





 

    

  

 

 
A few mathematical operations demonstrate that 
 
 31 R R L LG g V GV g . (6.6) 
 
Here, G is the device Green’s function 
 

 
1

† †

( )
, .

S L R

L L L L R R R R

G EI H
V g V V g V

   

   
 (6.7) 
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The corrections /L R  are the so-called self-energies that incorporate the effect of 

coupling the systems to the leads. Thus, 
2

( )R R L L L LT g V GV g H H  . We seek to find 
the transmission T as a function of the electron energy E. This means that we should 
express the lead Green’s functions in terms of E as well. However, since 

iqa
L RH H e   and 2 cos( )E qa  it follows that 

 

 

1/22
2

1/22
1 1 2

2 4

.
2 4

L R

L R

E EH H i

E Eg g i



 

        


        

 

 
 In the present example, the only non-vanishing elements of the self-energy matrices 
are 2

,11 ,66 /L R L Rg   . Taking   , it can actually be demonstrated 
analytically that 
 

 
2 2 2 2 2 2 | | 24 (4 )/(5 )

,
otherwise.0

EE E
T

     
 

 
This result is plotted in Fig. 6.2. The maxima of unit transmittance are found at 

3E  . The effect of varying   is illustrated in the right-hand panel. It is clearly 
seen that transmission becomes restricted to a narrow energy range around  , 
which coincides with the eigenstates of the isolated molecule. When the coupling 
increases, so does the broadening due to the self energy until, eventually, the 
transmittance is high in the entire energy range allowed by the leads.    

 
 Figure 6.2. Transmission spectrum for the device illustrated in Fig. 6.1. In the right-hand panel,  

the lead-system coupling is varied. 
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6.1 General Landauer Formula 
 
The expression for the transmittance appears rather asymmetrical in spite of the clear 
symmetry between left and right sides. Using some rewriting, however, the 
symmetry can be restored. First, since L RH H  we find that 
 

 

2

2

2

( ) ( )

( ) ( )

( ) ( ).

R R R R L L L L

R R R R R L L L L L

R R R L L L

T H H g V GV g H H

g H H g V GV g H H g

g g V GV g g

 

   

 

  

  

    
 
The last equality follows from the identity ( )R R R R R Rg H H g g g      and similarly for 
the left lead. Now, bearing in mind that RV , G and LV  are really matrices it follows 

that   † † †
R L L RV GV V G V

 . Then, by judicious ordering of terms,  
 

 
† † †

† † †

( ) ( )
( ) ( ) .

R R R L L L L R

R R R L L R

T g g V GV g g V G V
g g V G G V

 



  

   
  

Now, if we could just bring the last factor †
RV  to the front of the expression, the final 

result would be nice and symmetrical. This, though, cannot be right since †
RV  is a 

matrix and the final result should be a scalar. This can be remedied by a neat 
mathematical trick. We can take the trace (Tr) of the expression, i.e. 
 
  † † †Tr ( ) ( ) .R R R L L RT g g V G G V   

  
Taking the trace simply means summing the diagonal elements of the matrix in the 
argument. In our case, however, the argument is just a scalar and taking the trace 
doesn’t do anything at all to the expression. But the trace has a very important 
property: it is cyclic, meaning that      Tr Tr TrABC CAB BCA   as can easily be 
verified. Thus, under the trace the terms can be rearranged so that 
 

 
 
 

† † †

† † †

Tr ( ) ( )

Tr ( ) ( ) .
R R R R L L

R R L L

T V g g V G G

G G

   

    
  

In much of the literature [2], one introduces line width functions †
/ / /( )L R L R L Ri     

that are essentially the imaginary part of the self energy. Hence, we find the final 
symmetrical expression 
 
  †Tr .R LT G G    (6.8) 
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An additional advantage of the trace is that we automatically compute the entire 
transmission, i.e. T T

  
  summed over channels. This very handy and elegant 

Landauer expression can be taken as the starting point for most calculations of 
transport in molecular systems. It applies to asymmetric geometries, where left and 
right leads differ. It also applies to leads that are much more complicated that mono-
atomic ones. In fact, it can even be generalized to devices that are periodic in the 
direction perpendicular to the transport.  
 
Exercise: Transmission in biphenyl molecules. 
 
The aim of this exercise is to calculate the electron transmittance through a biphenyl 
molecule as illustrated in Fig. 6.3. It is obviously quite similar to the benzene case 
discussed in the text. 
 
a) Before specializing to biphenyl, show that Eq.(6.6) actually follows from Eq.(6.5).  
 
b) Write down expressions for the matrices SH , †

LV  and RV . 
 
c) Write a computer program to evaluate Eq.(6.8) assuming all hopping elements to 
be  . The result should look similar to the spectrum in Fig. 6.3. 
  

 

 

 

 

 

 
 
 

Figure 6.3. Transmission geometry and spectrum for a biphenyl molecule. 
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7. Electron Transmission in Molecules: Challenges 
 
 
Based on the results of the previous chapter, we are now in a position to tackle more 
challenging examples of electronic transmission through molecules. Primarily, we 
wish to include more complicated leads with several atoms per unit cell. These leads 
may couple to the molecule through several bonds as well. Secondly, geometries that 
repeat periodically in the direction perpendicular to the transport will be studied. As 
a starting point, we will consider again the simple mono-atomic chain. This example 
can be analyzed analytically and used to illustrate the recursive approach introduced 
below. For this simple chain, the Hamiltonian is 
 

 

0 0 0
0 0

0 0 .
0 0 0

H


 

 


                 





  

 (7.1) 

 
Note that for notational simplicity we again suppress matrix symbols. The Green’s 
matrix for this chain is then 1( )G EI H   . Due to the repeated structure of H we 
write 
 

  
†

11 12 †

12 22

1 0
, 0 0 .

0
G GE V

V
G G IV EI H


                              

   

 
Solving the equations resulting from the first column we find 
 
 † 1

11 11( ) 1.EG V EI H VG     
 
Now,  1( )G EI H    and † 2

11V GV G  and so 2 2
11 11 1EG G   with the solution    

 

 
1/22

2
11 2 2 ,

2 4
E i EG 
 

         
 
in complete agreement with the previous chapter. Our aim is to extend the method 
to more complicated one-dimensional leads. Hence, such general leads could have 
several, possibly different, atoms per unit cell. An example is the two-atomic lead in 
Fig. 7.1. 
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Figure 7.1. A two-atomic lead. 

 
In this case, the wave function has components for both the upper (u) and lower (l) 
rows of atoms and for the n’th unit cell these can be collected as a vector 

 ( ) ( ),
Tu l

n n nc c c . In this manner, the chain Schrödinger equation can be written 
 
 1 1n n n nc c hc Ec     , 
 
where we introduce matrices 
 

 
0 0

, .
0 0

h
 

 
 

                
 

 
The reason for keeping separate symbols   and   for the couplings left and right, 
respectively, is that in general these might be different. The Hamiltonian is now 
 

 

0 0
0

0 .
0 0

h
h

hH
h


 

 


                 





  

 (7.2) 

 
Similarly to the previous chapter, we consider the first column of equations derived 
from the defining equation for the Green’s function   1EI H G  : 
 

 

00
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20

30

0 0 1
0 0

0 0 .
0 0 0

E h G
E h G

E h G
E h G


 

 


                                                                                 





    

 (7.3) 

 
Consider the relation obtained from the second row 
 
   1

00 10 20 10 00 20( ) 0 , ( )G E h G G G g G G g E h              . 
 
When combined with the first row it follows that 
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 00 20( ) 1E h g G g G       . 
 
The resulting system of equations can now be formulated as 
 

 

00

20

40

60

0 0 1
0 0

0 0
0 0 0

E h g g G
g E h g g g G

g E h g g g G
g E h g g G

   

       

       

     

  

    

      

   

                                                                      







      

.  

 
As is apparent, the 0’th cell now couples to the 2’nd, 4’th and so on. If iterated once 
more, coupling will be to cells number 4, 8, 12 etc. This recursive scheme [1] can be 
formulated as the following repeated sequence, initialized by setting 

:L R h      
 

 

1: ( )
:

loop
:

until   .
:

convergence
:
:

L L

R R

g E
g g

g
g

g
g


     
   
   
  
  

            

 

 
After convergence, the left and right surface Green’s functions of the leads are given 
by 1( )L Lg E     and 1( )R Rg E    , respectively. For numerical stability, it’s 
necessary to add a small imaginary part i  and typically we choose /1000  .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2. Comparison of the numerically generated mono-atomic lead Green’s functions  
at different stages in the iteration process. The blue curve is the exact result. 
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As an illustration, the result for the simple mono-atomic chain is shown in Fig. 7.2. It 
is seen that 8 iterations produce a result very close to the exact one apart from the 
broadening introduced by the imaginary term i . 
 
For the two-atomic lead, Fig. 7.1, the Green’s function is a 2 2 matrix G determined 
by the condition 
 
 ( ) .EI h G G G I     
 
This equation, in fact, has an analytical solution. It turns out that 22 11G G  and 

21 12G G . Isolating, it can be shown that 
 
 4 4 2 3 2 2 2 2 2 2 2

11 11 11 114 8 (5 3 ) ( / 3) / 0G E G E G E E G E           . 
 
Despite appearances, this equation has a relatively simple solution and the same goes 
for 12G . The results are plotted in Fig. 7.3. The spectral features are found at 3  and 
 . These features correspond to the eigenmodes of the two-atomic lead. It is easily 

shown that the two modes are 2 cos( )ka   . Hence, the energy ranges of the 
modes are 3 E     and 3E    , respectively. In the central range 

E    , the two bands overlap, which leads to the addition bump in 11G . These 
exact results can be used to check the numerical routine above in a simple example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3. Comparison of the numerically generated two-atomic  
lead Green’s functions after 5 iterations with the exact result. 
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In order to apply the two-atomic leads in an actual transport calculation, we imagine 
that such leads are attached to the left and right of a very simple system, as shown in 
Fig. 7.4, top panel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.4. Two-atomic leads attached to a system represented by the green atoms.  
Some of the hopping integrals are indicated. Both an isolated 1D device (top) and  

periodic 2D device (bottom) is shown. 
 
This “system” is also two atoms wide and the only difference compared to the lead 
atoms is that we let the device atoms be of a different sort. This implies two things: 
First the system Hamiltonian will be taken as 
 

 ,SH
 
 

      
 

 
where   is the on-site potential that describes the energy of an electron on an isolated 
“system” atom relative to the lead atoms. Here, we also assumed that the hopping 
integral within the system is the same as for the leads i.e.  . Secondly, the coupling 
between leads and systems should be considered. Again, their structure is similar to 
the coupling matrices of the leads but if we allow for an arbitrary coupling strength 
we can write them as 
 

 
0

,
0L RV V




      
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where   is the lead-system coupling. The system on-site potential   could also be the 
result of a local electrostatic gate, which would shift the energy of the system atoms 
relative to the leads. The transmittance of this simple barrier device is illustrated in 
Fig. 7.5. We see some expected trends: When the coupling between leads and system 
is reduced, transmittance drops and becomes highly peaked around  . Similarly, 
when the barrier potential   is raised the transmittance decreases in a symmetric 
fashion       

Figure 7.5. Transmittance of the isolated two-atomic lead device. In the left and right panel, the 
system-lead coupling and system on-site potential is varied, respectively. 

  
7.1 Two-Dimensional Leads 
 
So far, we have focused on one-dimensional geometries, where a small number of 
modes contribute to the transport. While such geometries are realistic representations 
of certain experimental systems, a more common case is that of much wider leads 
and devices. In such cases, it is more appropriate to view the system as an infinitely 
wide one. Moreover, the system can typically be broken down to a certain unit that 
is then repeated periodically along the dimension perpendicular to the transport 
direction. An example of such a geometry is shown in Fig. 7.4, bottom panel. We see 
that the system is essentially identical to the ones we have been considering so far 
except for the fact that periodic boundary conditions are used to couple neighboring 
units. As usual, whenever we encounter periodic boundary conditions, the wave 
functions become periodic apart from a Bloch phase factor. Hence, if the width of a 
single unit is w, the Bloch factor is exp( )ikw , where k is the wave vector restricted 
to the range / /w k w     and the sign depends on whether coupling is upwards 
or downwards.  
 
As long as we only consider nearest-neighbor coupling, only the system and lead 
Hamiltonians SH  and h are affected. The coupling matrices are not affected because 

all new coupling interactions are at least a factor of 2  further apart than nearest-
neighbors. Thus, adding periodic boundaries simply means that we should use 
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(1 ) 0 1

, .
(1 ) 1 0

ikw ikw

S ikw ikw

e e
H h

e e
 


  

                   
 

 
In practice, we do the averaging over k-vectors by running simulation for a range of 
discrete values and then simply divide the sum by the number of values kN , i.e. 
 

 1 ( )
kk

T T k
N

  . 

 
In Fig. 7.6, this average has been made for the structure in Fig. 7.4 (bottom) using a 
coarse and fine k-grid. In the periodic case, since each atom couples to 4 nearest 
neighbors, the full energy range of the leads is | | 4E  . Hence, transmission is non-
zero in this range. We also see that discretization errors are washed out when using 
the fine grid.  

Figure 7.6. Transmittance averaged over transverse k-points  
using a coarse (left) and fine (right) grid. 

 
Exercise: Transmission in graphene sheets. 
 
In this exercise, we consider the graphene sheet shown in Fig. 7.7. As shown, it can 
be constructed as “armchair” chains joined periodically. We therefore model the 
sheet as a collection of coupled chains. 
 
 
 
 
 
 
 
 
 

Figure 7.7. Graphene sheet built from coupled “armchair” chains. 
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a) Show that the lead Hamiltonian including coupling is 
 

 

0 1 0 0
1 0 1 0

.
0 1 0 1
0 0 1 0

ikw

ikw

ikw

ikw

e
e

h
e

e






                

 

 
Similarly, the only non-vanishing entries of the coupling matrices are 14 41   
. 
 
b) Use the recursive scheme to construct the left and right surface Green’s functions. 
Tip: since the k-points cover the interval / /w k w     we can just use the full 
phase kw as a variable covering the range kw     without worrying about the 
value of w. 
 
c) Compute the k-averaged transmittance of the sheet. Take the system to be four 
central atoms shifted by an on-site potential   and all coupling integrals to be  . 
The result should resemble the plot below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.8. Transmittance in graphene sheet averaged over 500 transverse k-points. 
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8. Electric Properties of Semiconductors 
 
 
We now turn from metals to semiconductors. Semiconductors like Si and GaAs are 
the active materials in electronic and optoelectronic devices such as transistors and 
semiconductor lasers. While traditional applications of semiconductors use bulk 
materials, many recent devices rely heavily on quantum confined structures, in 
particular quantum wells. Also, quantum wires and dots are emerging in 
applications such as fluorescent nanoparticles. Finally, two thirds of all possible 
carbon nanotubes are semiconductors and constitute extreme examples of one-
dimensional quantum structures. In the present chapter, we will look at doping in 
semiconductors of various dimensions in order to describe the electric conductivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1. Band structure of GaAs with a zoom of the bands in the vicinity of the 
band gap and parabolic approximations to the bands added. 

 
In Fig. 8.1, the band structure of the prototypical semiconductor GaAs is displayed. 
In the undoped case and at zero temperature, the four lower bands are completely 
occupied while the remaining are empty. Consequently, there is no conduction 
because occupied and empty states are separated by a large energy gap (roughly 1.5 
eV), which is far more than a normal electric potential can surmount. However, two 
factors can change that: doping and temperature. Hence, it is the aim here to describe 
the effects of these factors on the conductivity. The mechanism of conduction can be 
understood on the basis of Eq.(3.11): 
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2

0( ) .pi
i

 
 




 
 (8.1) 

 
In deriving the expression for the plasma frequency in Chapter 3, we took the 
temperature to zero, which is perfectly alright for a metal. In the semiconducting 
case, this is no longer justified and we should use the more general expression 
 

  

 
instead. As a starting point, we consider the bulk case. Here, the sum over k



 is readily 
converted into an integral and we get 
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We next apply the chain rule 
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to demonstrate that 
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The last equality follows by partial integration. For simplify, we will focus the 
attention on the conduction band. Hence, what we describe is the change in 
conductivity due to added electrons in this otherwise empty band. This phenomenon 
is known as n-doping. In general, an additional contribution will come from removed 
electrons or “holes” in the valence bands. This contribution can be described using a 
similar approach and added if needed.  The bands generally have a complicated 
dependence on k



. However, the relatively few electrons that are added to the 
conduction band will occupy states very close to the bottom of the band as those are 
the lowest in energy. Similarly, the few electrons removed from the valence band will 
be taken from the very top of the band. Hence, as only a small portion of the bands 
near the extrema matter, we can use the parabolic approximation, which reads for 
the conduction band 
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where cE  denotes the energy at the bottom of the band and em  is the effective electron 
mass deduced from the curvature of the band. When applied in the expression above 
it follows immediately that 
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 (8.2) 

 
where 3 32(2 ) ( )

c k
n f E d k     is the electron density. We notice that this is precisely 

as for the free-electron case except that the effective electron mass has replaced the 
free-electron mass. As usual, we may alternatively express the electron density in 
terms of the density of states, i.e. 
 
 ( ) ( )n f E D E dE  . (8.3) 

 
Now, we should also worry about confinement effects. First, the sum over k



 should 
be replaced by a general summation over all states. When we speak of a D-
dimensional material (D = 0, 1, 2 or 3), we simply mean that the structure is “large” 
in D out of the 3 possible spatial directions. In the remaining directions, the structure 
is small enough for quantum effects to arise. Thus, for the quantized directions the 
sum over k should be replaced by a sum over an index m labeling the discrete 
eigenstates. The total energy in a particular state now becomes 2 2 /2 e

e mE k m E  , 
where k is the magnitude of the D-dimensional wave vector and 0e

mE   is the 
quantization energy of the electron. The consequence of these changes is that Eq.(8.3) 
should be replaced by  
 
 ( ) ( )D Dn f E D E dE  , 

 
where ( )DD E  is the D-dimensional density of states. Equation (8.1) with 

2 2
0/p D ee n m   then still applies for the conductivity along one of the extended 

directions. The density of states expressions are derived in Appendix 1 and given by 
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 (8.4) 

 
Here, the width of the 2D system (quantum well) is denoted d, the cross sectional area 
of the 1D system (quantum wire) is denoted A and the volume of the 0D system 
(quantum dot) is  . Using the Fermi function we can now write 
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Here, we follow the usual convention in solid state physics and denote the 
temperature dependent chemical potential by FE . For the three cases with at least one 
extended dimension, we find 
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 (8.5) 

 
In these expressions, Lip  denotes the p’th polylogaritm defined as 
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where ( )p  is the gamma function. In most situations, FE  lies several kT below cE  
and, hence, we may expand the results above using 
 
 Li ( ) , ln(1 ) , 1.p x x x x x     
 
In this case, we find 
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 (8.6) 

 
In particular, these formulas clearly show that provided F cE E  we have 0Dn   at 
low temperatures. To add electrons, we need to introduce doping. 
 
8.1 Doping 
 
In order to add electrons to the conduction band, we might introduce some suitable 
electron donating atoms (donor impurities) to the semiconductor. To function as 
efficient donors, the added atoms should be characterized by an energy level just 
slightly below the conduction band edge. Such donors are called shallow donors. 
Thus, when the electron resides on the parent atom it occupies this shallow energy 
level. This situation is illustrated in Fig. 8.2.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 8.2. Illustration of energy levels in a semiconductor doped with donor 
impurities. 

 
The occupation of the donor level is a standard exercise in statistical mechanics. There 
are four relevant states distinguished by the number and nature of the particles 
occupying the state: (1) zero electrons, (2) one spin-down electron, (3) one spin-up 
electron and (4) one spin-down plus one spin-up electron. No more than two 
electrons can occupy the state due to the exclusion principle. The energy of a single 
(spin-up or spin-down) electron in the state is denoted dE . Similarly, the energy of 
two electrons occupying the state is denoted ddE . The partition function is therefore 
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 1 2 exp{( )/ } exp{(2 )/ }F d F ddZ E E kT E E kT     . 
 
We then have the mean occupancy 
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Now, it’s important to realize that 2dd dE E  and, in fact, normally 2dd dE E . The 
reason is that two electrons localized on the same atom will lead to a substantial 
Coulomb repulsion energy. Thus, we can in fact neglect this possibility and so 
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 (8.7) 

 
Next, we want to set up a balance for the number of charges. Equation (8.6) gives us 
the number of electrons in the conduction band and Eq.(8.7) describes the number of 
electrons in the donor level. In addition, we need the number of electrons removed 
from the valence band or, equivalently, the number of holes put into the valence 
band. In the simplest case of a single valence band, the hole density Dp  is given by 
an expression identical to Eq.(8.6) except for the following changes: (1) the effective 
electron mass em  is replaced by the effective hole mass hm , (2) the conduction band 
edge cE  is replaced by the valence band top vE , (3) the sign of all energies is reversed, 
and (4) the electron quantization energies e

mE  are replaced by the hole equivalent h
mE

. In this manner, 
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In analogy with the electron case, it is required that the Fermi energy FE  lies well 
above vE  for these expressions to be correct. We will denote the total density of 
impurity atoms by IN . Thus, when multiplied by Eq.(8.7) this gives the total density 
of electrons residing in the donor level. It follows that the grand total electron density 
is D In n N . Similarly, we should count the positive charges. These come from two 
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sources: the holes in the valence band and the positive impurity ions, whose density 
is IN . Hence, overall charge neutrality requires that 
 
 D I D In n N p N   . 
 
To solve for the Fermi energy we introduce the notation exp{( )/ }D D F cn N E E kT  , 
where 
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Similarly, we write exp{( )/ }D D v Fp P E E kT   with 
 

  

 
Rather than actually solving for FE , we will introduce exp{ / }Fx E kT  and solve for 
x. Hence, putting all the pieces together, we can reformulate the charge balance as 
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To simplify even further, we introduce exp{( )/2 }cv c vx E E kT  , 

exp{( )/2 }cd c dx E E kT   and finally exp{ / }d dx E kT  so that 
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The solution to this seemingly innocent equation is 
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Once x is calculated, the electron density in the conduction band is found from 

exp{ / }D D cn N x E kT  . To illustrate the results, we take the following parameters 
appropriate for moderately doped GaAs: 
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• 0.066 , 0.5  (heavy hole)e hm m m m   
• 0, 1.5 eV, 0.1 eVv c d cE E E E     
• 21 -310  mIN   
• 1 1Quantum well ( 2): 2 nm, 0.15 eV, 0.02 eVe hD d E E     
• 2

1 1Quantum wire ( 1): 4 nm , 0.30 eV, 0.04 eVe hD A E E     
 
We only include the lowest quantized states for wells and wires as the higher states 
will be virtually empty. For this set of parameters, the Fermi energy and 
corresponding electron density vary with temperature as illustrates in Fig. 8.3. At low 
temperatures, the Fermi energy is pinned at the midpoint between the donor level 
and the effective conduction band edge, i.e. cE  for D = 3 and 1

e
cE E  for D = 1 or 2. 

Physically, this corresponds to the situation in which all electrons reside on the donor 
atoms. As the temperature is raised, the Fermi level drops below the donor level and 
electrons are transferred into the conduction band. Eventually, most of the donor 
atoms have given up their electron to the conduction band and a plateau at 

21 -310  mD In N   is reached for the electron density. This temperature range is 
called the saturation range whereas the low temperature range in which the electron 
density increases exponentially is known as the freeze out range. If more electrons 
should be added to the conduction band, they must be taken from the valence band, 
which is only feasible at rather high temperatures about 800 K as seen in the graph.  

 
Figure 8.3. Fermi energy and electron density vs. temperature for n doped GaAs 

in 1,2 and 3 dimensional structures. 
 
It is noted, that at relatively low temperatures the electron density in the quantized 
structures is less than for the bulk. This is mainly due to the increased separation 
between the donor level and the effective conduction band edge due to the 
confinement energy. However, at high temperatures (above the saturation range) the 
trend is reversed. The reason is that the 3D Fermi level increases steeply above the 
saturation range and much less so for the 2D and 1D cases. The origin of this 
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difference is the way the prefactors in the electron density Eq.(8.6) vary with 
temperature, i.e. the /2DT  behavior of the factors in front of the exponentials.   
 
Exercise: Properties of D-dimensional semiconductors. 
  
Consider a material with a simple parabolic conduction band. 
 
a) Show that the density of states expressions in Eq.(8.4) are correct. 
 
Now, assume that we’re dealing with an un-doped semiconductor, i.e. take 0IN  .  
 
b) Provided only the lowest quantized electron and hole levels are included, show 
that 
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9. PN and PIN Junctions 
 
 
In this chapter, we turn to some basic but important electronic applications of 
semiconductors and investigate the peculiar features that appear in the nanoscale 
regime. The basic element of (bipolar junction) transistors is the PN junction, which 
itself acts as a current rectifier and, hence, is an important device in its own right. We 
therefore discuss this device in detail below. As the name says, a pn junction diode 
consists of a junction between a p-doped and an n-doped semiconductor. In the 
interface region, an electric field arises due to unbalanced charges. The field exists in 
a narrow region called the depletion layer, which forms a barrier for the charge carriers. 
Here, we analyze the junction in order to compute the electrostatic potential 
corresponding to the field. Subsequently, we look at a related structure, i.e. the pin 
junction, in which an intrinsic layer is inserted between the doped regions. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9.1. Illustration of the pn junction. The bottom part shows  
the space charge density. 

 
We restrict the analysis to three dimensional structures so that carrier concentrations, 
electric fields etc. vary only along x. Our starting point is the pn junction illustrated 
in Fig. 9.1. In the last chapter, we discussed n-doped materials, in which a large 
concentration of donor impurities supplied the extra electrons. Similarly, p-doped 
materials contain a large concentration of acceptor impurities supplying additional 
holes to the conduction band. To distinguish between the two types of impurities, we 
denote their concentrations by DIN  and AIN , respectively. The basic physics of the 
pn junction is rather simple: On the n-side there is a surplus of mobile electrons and 
on the p-side there is a surplus of mobile holes. A certain number of electrons will 
therefore diffuse from the n- into the p-side and vice versa for the holes. We now 
make the following simplifying assumption: The electrons missing from the n-side 
are taken from a layer of width nW , which is completely depleted of free electrons. 
Similarly, the holes are taken from a depleted layer of width pW  on the p-side. We 
saw in the previous chapter that for temperatures in the depletion range, the electron 
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concentration in the n-doped material is approximately equal to the donor 
concentration DIn N . In analogy, we’ll have AIp N  for a bulk p-doped material. 
Hence, after formation of the depletion layer at the interface between the two sides, 
the net charge density will correspond to the illustration in the lower part of Fig. 9.1. 
Overall charge neutrality of course demands that 
 
 DI n AI pN W N W . (9.1) 
 
Locally, charges are obviously not balanced and so there exists a “space charge” 
density. This charge density will produce an electric field ( )x  directed from the 
positive charge towards the negative, i.e. from right to left. This field acts to prevent 
further electrons from diffusing into the p-side and holes from diffusing into the n-
side. Hence, one can imagine the formation of the junction as follows: Start from two 
separated pieces of n- and p-doped semiconductors. Upon bringing the two together, 
electrons will diffuse to the left and holes to the right. This continues until a sufficient 
electric field has been established and further diffusion is prevented. The depletion 
layer therefore forms a barrier for the charges and our aim is to describe the widths 

nW  and pW  .  
 
9.1 Analysis of the PN Junction 
 
In the analysis, we first solve the Poisson equation to find the field. We take 0x   at 
the interface and so the boundary conditions for the field are that 

( ) ( ) 0n pW W    . With the charge density in Fig. 9.1 we then find 
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Here,   is the relative dielectric constant. Setting the two expressions for the field 
equal at 0x   is easily seen to lead to the charge conservation condition Eq.(9.1). 
Next, the electric potential V is related to   via /dV dx . Outside the depletion 
layers, the potential must be constant and on the two sides the constant values are 
denoted nV  and pV , respectively. After integration, we consequently have 
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Again, we require continuity and set the two expressions for the potential equal at 

0x  . i.e. 
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 (9.2) 

 
where DV  is the so-called diffusion potential or built-in potential. Schematically, the 
potential varies across the junction as illustrated by the solid line in Fig. 9.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.2. The electric potential V across the junction.  

 
Treating DV  as a known quantity, Eqs.(9.1) and (9.2) provide two equations for the 
two unknowns nW  and pW  that we can solve to give 
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In addition, their sum n pW W W   is 
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To be of any use, however, we still need the value of DV . To this end, we first establish 
the law of mass action, which is the semiconductor equivalent of the chemical 
equilibrium condition of statistical mechanics. It is easily derived using the density 
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expressions from last chapter 3 exp{( )/ }F cn N E E kT   and 

3 exp{( )/ }v Fp P E E kT  . By forming the product it is seen that the unknown Fermi 
energy cancels and we get 
 
 2

3 3 3 3exp{( )/ } exp{ / }v c g inp N P E E kT N P E kT n     , 
 
where g c vE E E   is the energy gap and in  is the density of both electrons and holes 
in the intrinsic (un-doped) case. The law of mass action therefore states that no matter 
what happens to the Fermi energy, the product of n and p remains a constant. For 
GaAs around room temperature, 12 -32.1 10  min    [1]. Now, to the far left the space 
charges have produced a potential pV  and to the far right the potential is nV . The 
potential energy of an electron is changed by an amount eV  by placing it in a 
potential V. On the other hand, without V the potential energy must be cE  since this 

is the total energy if 0k 


. Hence, adding V simply corresponds to replacing cE  by 

cE eV  for electrons. Similarly, for the valence band vE  is to be replaced by vE eV
. It follows that the electron concentration must vary as 

3 exp{( )/ }F cn N E E eV kT   . We now form the ratio between electron 
concentrations on the n- and p-sides: 
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We saw already that ( -side) DIn n N  if we are far from the junction. Additionally, the 
law of mass action tell us that 
 
 2( -side) ( -side) in p p p n  . 
 
Thus, using ( -side) AIp p N  we see that 
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Used in Eq.(9.3), this demonstrates that the total depletion layer width W  is 
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The doping dependence of the depletion width is shown in Fig. 9.3 under the 
assumption of equal donor and acceptor doping DI AIN N . It is seen that W may 
become as small as 10 nm or even less if the doping concentration is sufficiently high. 
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Figure 9.3. The total depletion width W as a function of doping concentrations for 
GaAs assuming identical donor and acceptor concentrations. 

 
A word of caution is required here, however: At such high impurity concentrations, 
the assumptions used for the calculation of carrier densities in the previous chapter 
are likely to break down. In particular, for e.g. heavily n-doped materials the Fermi 
energy will lie above the band edge cE  and, similarly, FE  is likely to be below vE  on 
the p-side. Hence, the actual depletion width W at high doping density is expected to 
deviate from the plot in Fig. 9.3. We will not try to construct a more elaborate 
description here, however, because we expect the simple theory to be at least 
qualitatively correct. 
 
9.2 PIN Junction 
 
A pin junction is similar to a pn junction but differs by the insertion of an intrinsic 
(un-doped) central region, as illustrated in Fig. 9.4. The thickness of the intrinsic layer 
is d, and the constant electric field in this range is denoted I . The analysis of the 
electrostatic potential follows the previous section closely, and we only list the final 
result  
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Figure 9.4. Schematic illustration of a pin junction geometry. 
 
By construction, the potential is continuous across the boundary at 0x  . To ensure 
continuity at x d  we require that 
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In addition, the slope must be continuous and we find 
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These results just demonstrate that Eq.(9.1) is still valid, as expected. We can combine 
the boundary conditions to form a single equation for pW  
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with the solution 
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This result is seen to agree with that of the pn junction if d = 0. Also, from Eq.(9.4) it 
is a simple matter to compute the built-in field. A particular case arises when the 
intrinsic region is wide, i.e. when ,n pd W W

. In this case, the equation for pW  
reduces to 0/( )D AI pV eN W d   and combined with Eq.(9.4) it follows that 

/I DV d . Hence, the field is simply the diffusion potential divided by the 
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thickness. The thickness dependence of the field in a silicon junction is compared to 
the 1/d approximation in Fig. 9.5. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 9.5. Magnitude of the built-in electric field of a pin junction  
in the depletion approximation. 

 
9.3 Self-Consistent Potential and Trapped Charges 
 
The previous analysis relied heavily on the depletion approximation. In this section, 
we wish to study the exact, numerical solution to the Poisson equation without 
invoking this approximation. Moreover, our numerical scheme allows us to include 
more advanced effects such as trapped charges. To keep things on a reasonably 
simple level, we restrict the analysis to completely symmetrical pin junctions. That 
is, the two halves of the junction are complete images of one another. This means that 

AI DIN N  and we use identical widths of the doped regions. We choose the potential 
at the midpoint as our zero point and so /2n p DV V V  . According to the 
discussion above, the electron and hole densities in the presence of an electric 
potential are given by 
 
    3 3exp ( )/ , exp ( )/ ,F c v Fn N E E eV kT p P E E eV kT       
 
respectively. Our assumption of complete electron-hole symmetry implies that we 
can write 
 

 , ,i i
eVn n e p n e
kT

     . 

 
Note that the common pre-factor must necessarily be in  to comply with the law of 
mass action 2

inp n .  
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We now turn to the self-consistent solution of the Poisson equation. The investigated 
geometry is shown below 
 
 
 
 
 
 
 
 

Figure 9.6. Fully symmetric pin junction geometry. 
 
We focus on the region 0x   for which we can write the Poisson equation 
 

  
2 2

2
0

( /2)i i DI
d e n e n e N x d
dx kT

 



    . 

 
The boundary conditions here are (0) 0   and ( ) ln( / )n DI iL N n   . The latter is 
equivalent to /2n DV V . Before attempting a solution, we rewrite as 
 

  
22

2
0

2 sinh ( /2) ,
2

i DI

i

n e Nd n x d n
dx kT n


 


    . 

 
Also, it is convenient to measure x in units of the screening length 

 1/22
0 /2 il kT n e  so that 

 

 
2

2 sinh ( /2)d n x d
dx


    . (9.5) 

 
This differential equation is an example of a broad class of nonlinear problems that 
can be formulated generally as 
 

 
2

2 ( ( ), ), , ( ( ), ) , ( ( ), )a b
d F x x a x b F a a F F b b F
dx


       . 

 
The last two relations are meant to indicate that boundary conditions are specified in 
the form of function values at the end points. The general strategy for solving such 
equations is through discretization. Hence, we divide the x-range into N+1 points via 
 

 , 0,..., ,i
b ax a i i N

N


     . 
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Similarly, we define ( )i ix   and ( , )i i iF F x . A simple method involves 
discretizing the second derivative as follows 
 

 
2

2 2

( ) ( ) 2 ( )x x xd
dx

      



. 

 
In this way, we can write 
 
 2

1 1 2 , 0,i i i iF i N       . 
 
This set of nonlinear equations can be reformulated as a matrix equation by 
introducing 
 

 

2
1 1 0

2
2 2

2
2 2

2
1 1

2 1 0 0 0
1 2 1 0 0

, ,
0 0 1 2 1
0 0 0 1 2

N N

N N N

F
F

F H
F

F

 




 

 

 

                                                     

 



       , 

 
so that 
 
 1H F H F      

   

  . 
 
It’s important to remember that the F’s depend on the  ’s so that method must be 
iterated until convergence. For instance, if we write two successive iterations as old

  
and new

  we have 
 
 1

new old( )H F  
 

  . 
 
This simple approach, however, often fails to converge. A dramatically improved 
version is the matrix Newton method that proceeds as follows. First, we write the 
discretized set of equations as ( )H F  

 

  . Secondly, we expand around old
 , i.e. 

 
  old old old new old( ) ( ) ,H F G             

 

        . 
 
Solving, we then find 
 

    
1

new old old old old( ) ( )H G F H    


     
  

    

. 

 
In the present case, the matrix G



 is a simple diagonal matrix with elements 
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 2

i

ii
FG

  





. 

 
For the pin junction, 2 coshii iG  . The converged result for Si (l = 29 m  at room 
temperature) is illustrated as the black curve in Fig. 9.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.7. Normalized electrostatic potential of a symmetric Si pin junction 
with varying trap concentrations taking d = 340 nm and L = 200 nm. 

 
We finally wish to discuss the role of traps in such a junction. Traps capture electrons 
and holes in localized states and prevent them from contributing to the current. 
Moreover, trapped charges tend to screen the built-in electric field, which may be 
detrimental for charge separation in a pin junction solar cell. In the previous chapter, 
we investigated electron donors and derived their occupancy under the assumption 
that two electrons in a single site is highly improbable due to the repulsive energy. 
In a completely electron-hole symmetric model this doesn’t work, however. The trap 
state has three possible charge values: 0, 1,and 1  . The neutral trap corresponds 
to one electron in the state and 1  correspond to an additional hole or electron. To 
maintain symmetry, it is necessary to require that the energy of the 1  state is 
precisely twice the energy of the 0 state. Thus, the electron occupancy of a single trap 
becomes 
 
 

 2 exp{( )/ } 2 exp{2( )/ }
1 2 exp{( )/ } exp{2( )/ }

F T F T
T

F T F T

E E kT E E kTn
E E kT E E kT
  


   

. 

 
If the trap concentration is TN  it follows that the trapped charge concentration is 
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  1 exp{2( )/ }1

1 2 exp{( )/ } exp{2( )/ }

tanh .
2

F T
T T T

F T F T

T F
T

E E kTeN n eN
E E kT E E kT

E EeN
kT

 
 

   
     

 

 
Again, in the presence of a potential V, we must replace T TE E eV  . Moreover, the 
electron-hole symmetry requires 0 eVTE  . Finally, the Fermi level (which is 
obviously independent of x) must be fixed at 0 eVFE   as well. This implies that we 
can write the modified Poisson equation as 
 

 
2

2 sinh tanh ( /2),
2 2

T
T T

i

Nd n n x d n
dx n
 

      . 

 
Naturally, in the Newton method, we now include the additional term and take 

 2 2cosh /[2 cosh ( /2)]ii i T iG n   . Some results for various trap densities are 
shown in Fig. 9.7. Notice how trapped charges tend to screen the potential and 
thereby reduce the electric field. 
 
Exercise: Self-consistent pn junction model. 
 
The pn junction model used above is only approximately correct. The main problem 
lies in our assumption of a simple rectangular charge distribution as shown in Fig. 9.1. 
To remedy this, one should calculate the actual charge distribution rather than 
postulating it. In this exercise, we consider a pn junction under the simplifying 
assumption of symmetry between N- and P-sides and between electrons and holes. 
Hence, the starting point is Eq.(9.5) but with d = 0  
 

 
2

2 sinh , , 0
2

DI

i

Nd n n x
dx n


    . 

 
This is a complicated, second-order nonlinear differential equation but can be 
reformulated as a somewhat simpler first-order equation using a mathematical trick. 
First, we multiply by /d dx : 
 

  
2

2 sinhd d d n
dx dx dx
  

  . 

 
a) Show that this is equivalent to 
 

  
2

2 coshd d d n
dx dx dx


 

            
. 
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b) Integrate this result and use the boundary conditions to show that 
 

  1/22 cosh cosh , ln(2 )n n n
d n n n
dx


         . 

 
This result, which is still exact, provides an analytical expression for the normalized 
electric field norm ( ) /x d dx  at the junction 
 
    1/2

norm (0) 2 1 cosh 2 ln(2 ) 1n nn n n      . 
 
The actual and normalized fields are related via  1/2

0 norm( ) 2 / ( ).ix n kT x   
 
c) Show that the depletion approximation predicts a normalized field of 
 
 norm (0) 2 ln(2 )n n . 
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10. PN Junction and Tunneling Diodes 
 
 
In the previous chapter, we analyzed the pn and pin junctions without bias. Hence, 
we could compute electrostatic potentials and carrier concentrations based on 
thermal equilibrium statistical mechanics. In the present chapter, we wish to study 
the behavior under a bias voltage producing a current flowing through the junction. 
The purpose is to compute this current under general assumptions and ultimately 
understand the rectifying behavior of pn junction diodes. In order to fully describe 
the device, however, we want to generalize the results of Chapter 4. Throughout this 
book, we have relied on linear response theory and so the calculated current 
necessarily varies linearly with the applied voltage. This means that we restrict 
ourselves to the ohmic regime, in which current and voltage are proportional. To 
fully describe the rectifying behaviour of a diode, we clearly need to go beyond the 
linear response and investigate the non-linear relation between current I and applied 
voltage AV . Our approach will rely on plausible arguments in order to generalize the 
results of Chapter 4 rather than rigorous analysis. We begin by recalling Eq.(4.5) for 
the ohmic regime 
 

 
2

( ) ( )A
n n

n

e VI f E T E dE
  


, (10.1) 

 
where the assumption of decoupled channels has been made. Here, the summation 
is over the transverse eigenstates labeled by the index n. Each eigenstate corresponds 
to a conduction “channel” with transmittance n nT   and transverse energy nE . The 
total energy of an electron in this state is therefore nE E E 



, where E


 is the kinetic 
energy associated with the motion parallel to the wire axis. 
  
To proceed, we now consider the specific geometry illustrated in Fig. 10.1. Here, the 
“system” again is positioned between two leads: left (L) and right (R). The right lead 
is grounded and the left lead is biased at a potential AV .  
 
 
 
 
 
 
 

 
 
 

Figure 10.1. Biased junction with the right-hand side grounded. The Fermi functions  
with Fermi levels /L R  for the two sides are shown below. 
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In the presence of a potential V, the electron energies are shifted by an amount eV
. Hence, in the left and right lead, the electron energies are really L AE E eV   and 

RE E , respectively. This means that the statistical distributions for the two halves 
can be written 
 

 1 1( ) , ( )
exp{( )/ } 1 exp{( )/ } 1L R

A F F

f E f E
E eV E kT E E kT

 
    

. 

 
Naturally, ( )Rf E  is simply the usual, unbiased Fermi function ( )f E . Now, if AV  is 
sufficiently small it is obvious that 
 

 
00

( ) ( )( ) ( )
AA

L L
L R A A

A VV

f E f Ef E f E V eV
V E 

 
    

 
. 

 
On this ground, we postulate [1] that the current flowing in Fig. 10.1 under a finite 
bias voltage should be calculated by the following generalization of Eq.(10.1): 
 

  
0

( ) ( ) ( ) .L R n n
n

eI f E f E T E dE




  



 (10.2) 

 
Here, we changed integration variable from E to E



 since their difference nE  is just a 
constant. This expression is a very general result applying equally well to low 
dimensional structures for which the summation is over a restricted set of discrete 
transverse states as to “bulk” devices for which the summation becomes an integral 
over a continuum of transverse states. We now focus on the latter situation. 
 
10.1 Three-Dimensional Non-Degenerate Devices 
 
If the transverse area of the junction A is sufficiently large, the summation over n in 
Eq.(10.3) becomes an integral over a continuum of transverse eigenstates. These states 
are labelled by the transverse wave vector ( , )y zk k k 



, which replaces the subscript 

n. Thus, the sum is actually over  ( , )y zk k  and writing 2 2 /2 eE k m   to get 
2/ / edE dk k m    we find 

 

 2 2
,

(...) (...) (...) (...)
4 2

y z

e
y z

n k k

AmA dk dk dE
       



. 

 
By writing  we have implicitly chosen the semiconductor conduction 
band edge cE  as the zero-point for the energy. Summing over all transverse states is 
consequently replaced by an integral over the transverse energies E . Also, the n-

2 2 /2 eE k m 
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dependence of ( )n nT E  now should be thought of as a dependence on the continuous 
parameter E  and, thereby, T becomes a function of the both energies E



 and E  and 
so Eq.(11.2) becomes 
 

  2 3
0 0

( ) ( ) ( , ) .
2

e
L R

eAmI f E f E T E E dE dE


 

     



 

 
Here, of course E E E 



. Note that by integrating only over 0E   we restrict the 
calculation to states with energy above the semiconductor conduction band edge. In 
the present section, we want to focus on “non-degenerate” situations similar to the 
treatment in Chapter 8. Non-degeneracy means that the mean occupancy of states in 
the conduction band is much less than unity. This is the case whenever the Fermi 
energy is far below all energies E in the band. In this case, the distribution functions 
can be approximated as in Chapter 8 so that 
 
 ( ) exp{( )/ }, ( ) exp{( )/ }L F A R Ff E E eV E kT f E E E kT     . (10.3) 
 
This approximation is applicable to both the metal in the left lead and to the 
semiconductor since all energies considered lie above cE  and, hence, far above FE . 
Consequently, 
  /( ) ( ) 1 exp{( )/ }AeV kT

L R Ff E f E e E E kT     
 
and so 
 

  / / /
2 3

0 0

1 ( , ) .
2

A FeV kT E kT E kTeeAmI e e e T E E dE dE


 


      



  

 
As we have indicated, the transmittance may, in general, depend on both 
components of the kinetic energy. In systems with perfect translational invariance 
along the interfaces, however, phase-matching requires conservation of the 
perpendicular component of the wave vector k



 and accordingly of 2 2 /2 eE k m 
. Separation of perpendicular and parallel variables then shows that only the latter 
are involved in the tunnelling process. Consequently, T is independent of E  and 
integrating over this degree of freedom leads to 
 

   // /
2 3

0

1 ( ) .
2

A F E kTeV kT E kTeeAm kTI e e e T E dE



   

 



 (10.4) 

 
This expression is a valuable tool for the calculation of currents in various types of 
junctions. It is also clear that we expect a rather universal behaviour / 1AeV kTI e 

 
for 
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different devices. As we shall see next, a fully classical analysis of the pn junction 
diode agrees precisely with this expectation. 
 
10.2 PN Junction Diode 
 
In diode applications, an external bias voltage AV  is applied across the diode. For 
definiteness, we take the n-side to be grounded so that this potential remains fixed at 
a value nV . Hence, by a positive bias we understand a positive voltage applied to the 
p-side raising the potential here from pV  to p AV V . In the biased case, the potential 
follows the dashed line in Fig. 10.2. 
 
 
 
 
 
 
 
 
 
 

Figure 10.2. The electric potential V across the junction. The solid and dashed lines 
illustrate the cases without and with and external bias AV  assuming the n-side grounded. 

 
The full analysis of the biased pn junction is a complicated numerical problem, even 
for the present one-dimensional case. It consists in solving the coupled drift-diffusion 
equations. The first of these is the Poisson equation for the potential 
 

 
2

2
0

1 ( )d V x
dx




 ,  

 
where   is the charge density. Secondly, we need the expressions for electron and 
hole currents 
 

 ( ) , ( )e e e h h h
dpdnJ x eD J x eD

dx dx
      .  

  
Here,   is the electric field whereas i  and iD  are conductivities and diffusivities of 
electrons (i = e) and holes (i = h). Under the effective mass approximation, the 
conductivities can be assumed proportional to carrier densities as shown in Eq.(8.2). 
Hence, we write  and h he p  , where i  is the mobility. The diffusivities 
are connected to the mobilities via the Einstein relation /i iD kT e  [1]. To complete 
the system of equations, we need to look at the way currents change with position. 

e ee n 
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The total current J flowing through the junction is a sum e hJ J J   of electron and 
hole currents and, moreover, independent of position x. Hence, 
 

 0e hJ J
x x

 
 

 
. 

 
However, the individual currents do vary across the junction. This follows from the 
continuity equation, which for electrons reads as 
 

 1 e
e

Jn G
t e x


 

 
, 

 
where eG  is the net generation rate of electrons. Similarly for holes 
 

 1 h
h

p J G
t e x

 
 

 
, 

 
where hG  is the net generation rate of holes. In steady state, subtracting the two 
equations shows that e hG G G  . This makes sense, as electrons and holes are 
always produced in pairs. Several different mechanisms contribute to carrier 
generation and recombination. The most important ones are (i) band to band, (ii) trap 
mediated and (iii) Auger processes. We will focus on the important case of trap 
mediated carrier generation and recombination. In this case, an analysis of the 
relevant transition rates (see the exercise) leads to the result 
 

 
2

0 0( ) ( )
i

e h

n npG
n n p p 




  
.  

 
Here, e  and h  are electron and hole lifetimes and  0n  and 0p  are factors 
proportional to the conduction and valence state densities subject to the condition 

2
0 0 in p n . This is the famous Shockley-Read-Hall expression for the carrier 

generation rate. To simplify matters even further, we may assume that things are 
roughly symmetrical in that  and 0 0 in p n  . In that case,  
 

 
21

2
i

i

n npG
n p n




 
. (10.5) 

 
When combined under steady-state conditions, the drift-diffusion equations 
therefore read 
 

e h   
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  (10.6) 

 
These must be supplemented by the density expressions 
 
 3 3( ) exp{[ ( )]/ }   and   ( ) exp{[ ( ) ]/ }F c v Fn x N E E eV x kT p x P E eV x E kT      . 
 
Solving the full set is difficult and can only be done using numerical tools. However, 
a simple approximation can be constructed by the following reasoning: Far to the left 
of the depletion region in a wide device there is practically no electric field. Hence, 
the current is purely diffusive. By combining the last two lines of equations, it then 
follows that 
 

 
2 2

2 2( ) ( )e e
d n d nkT eG x D G x
dx dx

    . 

 
Moreover, far to the left we may take AIp N  and so using the generation rate 
Eq.(10.5) and the fact that ,AI iN n n  leads to 
 

 
22

2
i AI

e
AI

n nNd nD
dx N


 . 

 
At the extreme left, near the metal contact, thermal equilibrium is restored because 
all excess carriers are forced to recombine via metal and interface states. Hence, the 
electron density is . The simple second order equation above can now be 
solved under the boundary conditions 2( ) /i AIn n N   and 

 that lead to 
  

   
2

( )//( ) 1 1 p eA x W LeV kTi

AI

nn x e e
N

   , 

 
where e eL D  is the electron diffusion length. A similar expression is found for 
the hole density to the right of the depletion zone. Taking the gradients, we therefore 
find the currents 

 
2

2
0

( ) ( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ) ( )

( ), ( ).

DI AI

e e e h h h

e h

d V e n x p x N x N x
dx

dpdnJ x e n x x kT J x e p x x kT
dx dx

dJ dJeG x eG x
dx dx



   

   

   

 

 
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The total current is ( ) ( )e hJ J x J x  . The problem, however, with these expressions is 
that they cannot simply be added because they are valid in different regions. Of 
course, we can always write 
 
 ( ) ( ) , ( ) ( )h n e p scr scr e n e pJ J W J W J J J W J W       .  
 
Here, scrJ  is the space charge region current that accounts for the change in electron 
current over the depletion region. We can rewrite this quantity using the generation 
rate 
 

 .  

 
At both edges of the depletion region we have 2 exp{ / }i Anp n eV kT . Hence, as a 
simple estimate we will take exp{ /2 }i An p n eV kT   throughout the zone so that 
 

 .  

 
As a consequence, this contribution varies as exp{ /2 }AeV kT  at large bias in contrast 
to the diffusive part varying as exp{ / }AeV kT . Taken together the total current can 
be approximated as  
 
  0( ) exp{ / } 1A AI V I eV kT  , (10.7) 
 
where   is an ”ideality factor” and  is a constant related to the electric properties 
of the materials. 
 
10.3 Tunneling Current 
 
In a low or moderately doped pn junction diode, the depletion region is sufficiently 
thick that carriers cannot tunnel directly between valence and conduction bands. In 
contrast, in highly doped structures the barrier thickness is greatly reduced. 
Consequently, when the barrier becomes sufficiently thin (about 10 nm) tunneling of 
carriers is expected to occur. This phenomenon is the basis of the tunneling diode, also 
known as the Esaki diode after its inventor. Because carriers simply tunnel through 
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a thin barrier, the tunnel diode is an extremely fast device capable of operation at 
several hundred GHz. Hence, it is an important application of nanoscale features in 
electronics.  
 
It is noted that the built-in voltage DV  is reduced to D AV V  in the presence of the 
bias. In turn, replacing DV  by D AV V  in Eq.(9.3) shows that AV  tends to reduce the 
depletion width, i.e. 
 

 . (10.8) 

 
This expression breaks down if A DV V  and is, therefore, restricted to the low bias 
range A DV V . The depletion region forms a quantum mechanical barrier for 
electrons to tunnel directly between valence and conduction bands. We will analyze 
this problem using the WKB tunneling formula derived in Chapter 5 
 

 , (10.9) 

 
in which ( )U x  is the varying potential energy and 1,2x  are the endpoints of the barrier 
given by the solutions of 1,2( ) 0U x E  . In the present context, the tunneling barrier 
can be understood from Fig. 10.3.  
 
 
 
 
 
 
 
 
 
 
 

Figure 10.3. Tunneling geometry showing the potential energy of electrons in the two  
bands. The green and blue areas are occupied by electrons and the red triangle is the 

tunneling barrier. 
 
This figure illustrates the x-dependence of the potential energy across the junction. 
For an electron in the conduction band, the potential energy is c cU E eV   and 
similarly for the valence band v vU E eV  . These energies are displayed as the solid 
lines in the figure using the simplification that the electric potential varies roughly 
linearly across the barrier rather than having the actual curved shape shown in Fig. 
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10.2. The two bands are separated by the band gap gE . Also, the green and blue areas 
illustrate occupied electron states. In general, the Fermi levels on the two sides of the 
junction will not be equal since equilibrium is disturbed when a current is flowing. 
We ignore this complication here, however, and take a single value FE  as the Fermi 
energy throughout the structure. 
 
Consider an electron with energy equal to the Fermi energy moving from right to left 
in the n-side. It obviously belongs to the conduction band. At a certain point inside 
the depletion layer, the electron encounters a region that is classically forbidden, that 
is, the potential energy cU  exceeds the total energy FE  of the electron. This is 
indicated as the red area in the figure. The electron cannot move further to the left 
within the conduction band and normally would be reflected back. There is, however, 
a possibility that the electron tunnels through the red barrier into the valence band, 
where it is free to keep moving to the left. This is the origin of the tunneling current.  
As shown in the figure, the full height of the triangular barrier is the band gap gE  
and the width is denoted B. This width B is not known but by comparing congruent 
triangles in the figure it is seen that 
 

  

 
With an x-coordinate running from right to left, the barrier height is given by 

( ) / .c F gU x E E x B   Thus, the transmittance in Eq.(10.4) is easily obtained as 
  

  

 
If finally the expression for the barrier width B is inserted we find 
 

  

 
When we combine with Eq.(9.3) for the depletion width we can rewrite this 
expression in a simple form highlighting the bias dependence:  
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 (10.10) 

 
Having determined the barrier transmittance allows us to calculate the tunneling 
current TI  by means of the low-bias Landauer formula Eq.(4.6): 
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22( ) ( )T A A F

eI V V T E
h

  

 
per occupied channel. In fact, we don’t fulfill the conditions applied in deriving the 
Landauer formula in the present case. The problem is that electrons are incident in 
one channel (conduction band) and tunneling into a completely different one 
(valence band). However, we expect a similar behavior and we might therefore 
assume ( ) ( )T A A FI V V T E . Thus, we can formulate the tunneling current as 
 

 ( ) exp ,B
T A T A

D A

VI V G V
V V

        
 

 
where TG  is an effective conductance related to 0T . To get a sizable tunneling current 
we need a small BV . From Eq.(10.10) is it clear that this requires a small effective mass 

em  and a large doping concentration. Thus, heavily doped GaAs is a good candidate 
and in Fig. 10.5 below, we have taken 26 -310  mDI AIN N  . This choice yields 

300 VBV   and 1.6 VDV  . The figure illustrates the tunneling current as well as 
the normal current given by Eq.(10.7) and the total current.  
 
 
 
 
 
 
 
 
 

Figure 10.5. Tunnel, normal and total current vs. applied voltage for heavily 
doped GaAs.   

 
Experimentally, the tunneling effect was first observed in Germanium pn junctions 
by L. Esaki. Eventually, Esaki was rewarded with the Nobel Prize for this work. The 
plot below is taken from his original publication from 1958. 
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Figure 10.6. Experimental tunneling current as a function of voltage for a narrow 
Ge pn junction. Taken from [2]. 

 
 
Exercise: Trap-assisted carrier generation and recombination. 
 
In this exercise, we analyse electron and hole generation and recombination via a trap 
state located in the band gap. The situation is illustrated in Fig. 10.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.7. Schematic of the four processes by which carriers  

hop between bands and trap states. 
 
Four processes, denoted 1R  through 4R  in the figure, contribute to the charge 
balance. They are given by 
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In these expressions, tf  denotes the Fermi functions evaluated at the trap level, i.e. 
the probability that a trap is occupied. Also, nC  and pC  denote characteristic trap 

capture/emission coefficients that are proportional to trap density. Finally, 0n  and 

0p  denote the density of available electron states in the conduction band and 
available hole states in the valence band, respectively. Obviously, 2 1eG R R   and 

.  
 
a) Show that by equating these rates, we are lead to the balance 
 

  

 
b) Show that applying the results immediately provides the carrier generation rates 
as 
 

 0 0

0 0
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e h
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  
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.  

 
Now, this expression should hold also in the unbiased cased for which 0e hG G   
and 2

inp n . Hence, it follows that 2
0 0 in p n . Also, we will introduce carrier lifetimes 

1/e pC   and 1/h nC   so that 
 

 
2

0 0( ) ( )
i

e h

n npG
n n p p 




  
.  

 
This famous expression for the carrier generation rate was first derived by Shockley, 
Read, and Hall. 
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11. Metal-Semiconductor Junctions 
 
 
Junctions between metallic leads and semiconductors are of great practical 
importance. As we shall see, under appropriate conditions currents flowing across 
the junction are “rectified” in that current flow is only possible if electrons move from 
the semiconductor into the metal. This is the basis for “Schottky” diodes and the 
physical barrier preventing currents flowing in the opposite direction is known as a 
Schottky barrier. We will consider the specific geometry illustrated in Fig. 11.1. Here, 
the “system” again is positioned between two leads: left (L) and right (R). The right 
lead is grounded and the left lead is biased at a potential AV .  
 
 
 
 
 
 
 
 
 

Figure 11.1. Biased metal-semiconductor junction with the semiconductor side grounded. 
 
11.1 Schottky Diode 
 
As in the previous chapter, we base the analysis on the general current-voltage 
relation for three-dimensional degenerate devices, c.f. Eq.(10.4) repeated here: 
 

   // /
2 3

0

1 ( ) .
2

A F E kTeV kT E kTeeAm kTI e e e T E dE



   

 



 (11.1) 

 
When a metal is brought into contact with a semiconductor, charge will be 
redistributed near the interface. If the semiconductor is n-type, electrons will flow 
into the metal until a balance is reached. Electrons move into the metal because low-
energy states are available there. The flow soon stops, however, because a surplus of 
negative charge is build up on the metallic side of the junction. This negative space 
charge produces an electric field that counteracts the electron flow. Stated in a 
different way, a potential energy barrier is formed and the tunnelling transmittance 
T of this barrier is precisely the one needed to calculate the I / V characteristic of the 
Schottky diode using Eq.(11.1). We now seek to describe the barrier in the un-biased 
case, i.e. assuming vanishing applied voltage. 
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Figure 11.2. Schematic of the metal-semiconductor junction formed by contacting 
metal and semiconductor pieces. After contact, charge redistribution leads to band 
bending. 
 

To compute shape and height of the barrier, we consider Fig. 11.2, which illustrates 
the situation before and after a metal is brought into contact with an n-type 
semiconductor. An important consequence of the contact is that the Fermi levels of 
the two materials equilibrate. This is a requirement if thermal equilibrium without 
charge flow is to establish. The potential curves really display the electron energies 
in the presence of the electrostatic potential in the junction. Hence, the conduction 
band energy c cU E eV   contains the constant band edge cE  and the electrostatic 
“band bending” eV  of the electrons. Similarly, the “vacuum” level consists of the 
overall vacuum level and the band bending vac vacU E eV  . As indicated in the 
figure, no band bending is assumed in the metallic region. The reason for this is the 
much higher density of screening charges in the metal that, as we shall see below, 
leads to a negligible variation of the potential inside the metal. Inside the metal, the 
vacuum level is separated from the Fermi level by the bulk metal work function M
. Similarly, well into the semiconductor side, all bands are flat and the distance from 
the Fermi level to the vacuum level S  is a sum of the electron affinity vac cEA E E   
and the conduction band off-set c FE E . These observations allow us to calculate the 
barrier height   if we make the following assumptions: (1) the vacuum level is 
completely flat inside the metal and (2) the vacuum level in continuous across the 
junction. In reality, assumption (2) is of course always fulfilled. However, charges 
may accumulate in an extremely thin layer at the interface due to defect and interface 
states. Such a localized charge layer will contribute to the electrostatic potential V 
and effectively cause all bands to appear discontinuous at the junction. Under the 
two assumptions, though, Fig. 11.2 immediately shows that the barrier for an electron 
in the semiconductor conduction band to tunnel into the metal is M S  . 
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The spatial width of the barrier is of importance as well. To find it, the spatial 
dependence of the electrostatic potential V must be calculated. As in Chapter 10, the 
basic relation to be used is the Poisson equation 
 

 
2

2
0

d V
dx




 , 

 
where   is the spatially varying charge density and   is the relative dielectric 
constant of the material. As in the analysis of the pn junction in Chapter 10, we will 
assume total depletion of electrons in a layer of width nW  inside the n-type 
semiconductor. As we have seen, this amount to saying that the potential is a constant 

nV  for nx W  and follows a quadratic behaviour  
 

 2

0

( ) ( ) ,
2

DI
n n

S

eNV x V x W
 
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for . Here, S  is the relative dielectric constant of the semiconductor and 

DIN  is the density of donor impurities. On the metallic side of the junction, an 
estimate of the charge density is found using the Thomas-Fermi model. Here, the 
metal is assumed to be a simple free-electron metal with a density of states given by 
Eq.(8.4), i.e. ( )D E E  with 3/2 2 32 /m   . It follows that the electron 
concentration is 3/22

0 3 Fn E  under normal circumstances. However, if an 
electrostatic potential V is applied while the Fermi level is kept fixed, all energies are 
lowered by eV , which amounts to raising the Fermi level by an amount eV  just 
as in Eq.(10.3). Now, in a neutral bulk material the density of positive charge must be 

0n  to compensate the electrons. Hence, the net charge in presence of the potential 
must be  
 
 , (11.2) 
 
where we have Taylor-expanded to first order under the assumption that Fe V E

. 
When used in the Poisson equation, it follows that 
 

 
2 22

2 20 0
2

0 0

3 3,
2 2TF TF

M F M F
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   , (11.3) 

 
where M  is the relative dielectric constant of the metal and TFk  is the Thomas-Fermi 
wave number. We choose as a boundary condition ( ) 0V   , i.e. a vanishing 
potential in the bulk of the metal and so the solution to this equation is a simple 
exponential 
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 0( ) exp( )TFV x V k x , 
 
where 0V  is a (yet undetermined) constant. To determine 0V  and the remaining 
constant nW  we now compare the charges inside the metal to that in the 
semiconductor. Integrating Eq.(11.2) for the metal we find a total charge per area of 
 

 
0 0

23
0 0 0 02 / TFk x

M F M TFQ dx n e E V e dx k V  
 

    . 

 
As in Chapter 9, we find for the semiconductor S DI nQ eN W . Putting 0M SQ Q   
provides one equation for the unknowns. A second is obtained from the requirement 
of continuity of the potential at 0x  , which is equivalent to the condition 

2
0 0/2n DI n SV V eN W    . Taken together, we find 

 

  

 
(the minus-solution is discarded as we’re obviously looking for a positive quantity). 
To evaluate this result we need to compare two length scales: 1

TFk  and 1/2( / )n DIV eN . 
Using the definition in Eq.(11.3) we see that 1 2 1/2

0( / )TF Fk E e n  . Since for any real 
metal-semiconductor junction 0 DIn N , we must have 1/2 1( / )n DI TFV eN k

  and so 
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By the same token, 2

0 0/2 0n DI n SV V eN W      follows by insertion. Thus, as 
promised above, band bending inside the metal is negligible. A direct consequence 
is that neV   and so 
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 (11.4) 

 
Having established height and width of the tunnelling barrier we may now compute 
the tunnelling current using Eq.(11.1). If the barrier is approximated by a triangular 
one of height   and width nW  and the WKB-approximation is applied, we can write 
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Hence, the total current can be split into two parts: A genuine tunnelling contribution 
from states with E 



 and a so-called thermionic current produced by states with 
energy E 



. The latter is easily evaluated and we find 
 

  (11.5) 

 
The constant 2 2 3( ) /(2 )eR em kT    is known as Richardson’s constant and for fixed 
temperature it only depends on the effective mass of the semiconductor material.  
 
The tunnelling current is found from a similar integral 
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To evaluate this expression, we first introduce a new variable ( )/z E kT 



 and a 

new dimensionless constant 3/24 2 ( ) /3e nm W kT   . Considering the typical 
magnitude of nW  (100-1000 nm) it is clear that normally 1 . In terms of these 
quantities, the tunnelling current can be written as 
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The integral cannot be evaluated analytically but thanks to the large value of  , the 
upper limit may be extended to infinity with little loss of accuracy. The resulting 
integral can be expressed exactly in terms of hypergeometric functions. To simplify 
the final result, however, a Taylor expansion in 1  can be applied whenever 1
, i.e. for wide barriers. In this manner, 
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The final tunnelling current then becomes 
 

 

 (11.6) 

 
It follows that the ratio between tunnelling and thermionic current is simply 
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We take the example of GaAs ( 0.066em m ) to evaluate the current ratio as a 
function of barrier width. For room temperature and 1 eV , the result is shown in 
Fig. 11.3. As expected, the tunnelling current dominates for a sufficiently narrow 
barrier (  250 nmnW  ). Finally, for completeness, we note that a drift-diffusion 

current exists as well. It also follows the form  /0 1AeV kT
d d d dI I e    but we will not 

prove this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.3. Ratio between tunneling and thermionic currents in a GaAs 
Schottky diode at room temperature. 

 
According to our results, the ratio between tunnelling and thermionic currents is 
independent of the applied voltage. In reality, the barrier itself is influenced by the 
voltage and so the current ratio may depend on voltage as well. 
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Exercise: Nano-scale Schottky diode 
 
This exercise is built on Ref. [2]. We consider the geometry in Fig. 11.4 consisting of a 
circular metallic pad on top of an n-type semiconductor. The radius a of the pad is in 
the 10-1000 nm range. The problem of the exercise is to calculate the electrostatic 
potential for this geometry in the case of vanishing bias voltage. The boundary 
conditions for the potential are (1) 0V   on the contact area between metal and 
semiconductor, i.e. for  0 0z r a     and (2) nV V  outside the border   in the 
figure. 
 
 
 
 
 
 
 
 

Figure 11.4. A nano-scale Schottky diode formed as a circular metallic pad on 
top of an n-type semiconductor. The hatched area in the right panel illustrates 

the extent of the depleted region with boundary curve  . 
 
The Poisson equation for this problem is  
 

 2

0

1 above curve 
   

0 below curve .
DI

S

eNV
 

    
 

 
To simplify the mathematics, we switch to so-called oblate spheroidal coordinates 
( , )s t  related to ( , )r z  via the transformations 
 

 
2 2(1 )(1 ),

0 , 1 1
r a s t z ast

s t
   

    
. 

 
The Laplacian in these coordinates reads as 
 

 2 2 2
2 2 2

1 (1 ) (1 )
( )

s t
a s t s s t t

                  
. 

 
a) Consider first the case of vanishing doping for which 2 0V   throughout. Show 
that the solution is of the form ( ) ( )V f s g t  and that 1( ) tan ( )f s A B s   and 

1( ) 1 tanh ( )g t C t  . Hint: 1 2 1tan ( )/ (1 )d s ds s    and 1 2 1tanh ( )/ (1 )d t dt t   . 
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b) The contact area between metal and semiconductor  0 0z r a     
corresponds to  0 1 1s t     . Also, z   is equivalent to s  . Use the 
boundary conditions to show that 0A C   and 2

nB V . Hence, the full solution for 
the un-doped case is 12 tan ( )nV V s

 . 
 
The fact that the un-doped solution is independent of t indicates that the general 
solution will depend only weakly on t. Hence, in the Poisson equation we will ignore 

/V t   and so the full problem for the depletion region (region above curve  ) is 
approximately 
 

 
2

2 2 2

0

(1 ) ( ) , DI

S

eN aVs s t v v
s s  
 

   
 

. 

 
c) While the homogeneous solution is still of the form 1( ) ( ) tan ( )V A t B t s  , show 

that the particular one is  2 2 2(1 3 )ln(1 ) /6V t s s v    . The full solution is the 

sum of these. Use the boundary condition for the contact area to show that ( ) 0A t  . 
 
d) On the boundary curve   the boundary condition is nV V . In addition, 

/ 0V s    on the curve  . We denote by 0( )s t  the values of s found by tracing the 
curve   as t varies between -1 and 1. Show that the condition / 0V s    on   
implies 2 2

0 0( ) ( 3 ) /3B t s s t v  . 
 
The condition nV V  on   now means that 
 

 2 2 1 2 2 2
0 0 0 0 0

6 2 ( 3 )tan ( ) (1 3 )ln(1 )nV s s t s t s s
v

      . 

 
e)  Taking 0.4 VnV   and 2 21.5 V/ mv a  , which are realistic values, solve this 
equation numerically for 0 1t  . Use the coordinate transformation to calculate 
corresponding ( , )r z  points. In this manner, the curve   is computed. Take 

1 m, 0.3 m and 0.1 ma     and plot the   curves that, if successful, should look like 
the ones in Fig. 11.5. 
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Figure 11.5. Calculated boundary curves   for three different radii of the metallic 
pad. 
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12. Semiclassical Transport 
 
 
In this chapter, we try to establish the link between quantum and classical approaches 
to transport. As we will demonstrate, the two agree for metallic structures provided 
momentum and velocity are treated semiclassically, i.e. determined from the slope of 
the true energy bands. In our exposition, we will focus on a single-band metal. 
However, for multi-band structures, the final result should simply be summed over 
bands. 
 
We start by introducing the electron distribution function g that governs the number 
of electrons at a given position, momentum and time: 
 

 
3 3

3( , , ) ( , , )
4

d rd kdN r k t g r k t



 

 

.  

 
Here, the normalization is clearly such that the total number of electron is 
 

 
3 3

3( , , )
4tot

d rd kN g r k t


 




.  

 
In thermal equilibrium at a given position characterized by a local Fermi level ( )FE r  
and temperature ( )T r , the distribution function is just the Fermi-Dirac distribution 
 

 
1( , , ) ( , )

( ) ( )exp 1
( )

F

g r k t f r k
E k E r

kT r

 
       

 

 







.  

 
We restrict ourselves to the relaxation time approximation, in which the rate of 
change of the distribution function is determined by a characteristic relaxation time 
towards equilibrium 
 

 . (12.1) 

 
If we momentarily ignore all but the explicit time dependence, we have 
 

  ( )( ) g t fd g t
dt 


 ,  

 
with the simple solution   /

0( ) ( ) tg t f g t f e     as can easily be verified. Hence, the 
distribution relaxes exponentially toward thermal equilibrium. More generally, the 
rate of change is 

( , , ) ( , )( , , ) g r k t f r kd g r k t
dt 




 

 




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  (12.2)

 

 
Here, we Taylor expanded in the infinitesimals in the second line and applied 

/v dr dt
 

 in the third. This differential equation for the electron distribution is 
known as Boltzmann’s transport equation. We now return to Eq.(12.1) and rewrite as 
 

 ( , , ) ( , ) ( , , )dg r k t f r k g r k t
dt

 
  

   . (12.3) 

 
Under the assumption that we are close to equilibrium, we can write down an order-
by-order expansion for g. In 0th order, we clearly have 
 

 0( , , ) ( , )g r k t f r k
 

 

.  
 
To construct the 1st order result, we note that by inserting the 0th order term in 
Eq.(12.2) it follows that 
 

 ( , , ) ,
k

d dkg r k t f v f
dt dt

   





   (12.4) 

 
as / 0f t   . We then find 
 

 1( , , ) ( , )
k

dkg r k t f r k f v f
dt

       



 

   .  

 

The last term can be evaluated by appealing to semiclassical arguments. First, p k




  

is the momentum, which in an electric field 


  is governed by Newton’s law 
 

 .  

 
Hence, we find 
 

 . (12.5) 

 

( , , ) ( , , )( , , )

.

k

k

g r dr k dk t dt g r k td g r k t
dt dt

gg dr g dk dt
t

dt
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
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
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
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











dp e
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





1( , , ) ( , )
k

eg r k t f r k f v f
      

 


  




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We will apply this expression as an approximation for the general distribution 
function. Since f is known explicitly, all derivatives are easily calculated. Focusing on 
the x-direction we have 
 

   

 
Similarly, for the k-derivative 
 

 .  

 
Semiclassically,  with  so that . Putting it all 
together, we then find 
 

 .  

 
The first two driving terms may be grouped into an effective electric field 

 and so 
 

 . (12.6) 

 
12.1 Transport Coefficients 
 
We now want to apply the distribution function to evaluate certain transport 
coefficients. To simplify matters, we will assume transport in the x-direction only so 
that  and  and so 
 

 . (12.7) 

 
Generally, both charge and energy flows. Thus, we can introduce the (familiar) 
electric current as well as a new energy (or heat) current density given by 
 

.
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The reason that  is subtracted in the last expression is that the heat current is really 
the flow of free energy [1]. Approximating g by Eq.(12.7) we first find a contribution 
from . This contribution clearly vanishes as it represents the current flow in 
the unperturbed state. For the remaining contributions we can generally write 
 

   

 
The coefficients  are the co-called transport coefficients and by insertion it follows 
that 
 

  (12.8) 

 
Throughout, the velocity should be evaluated from . Among these 
coefficients,  is recognized as the usual intraband conductivity. Also, the ratio 

 is often called the thermopower or Seebeck coefficient and  is 
the Peltier coefficient. Note that .  
 
We will now evaluate the transport coefficients for a free electron metal. Such a 
material is characterized by a uniform electron density n given by 
 

 , (12.9) 

 
where  is the Fermi wave number. The density of states is simply 

. Finally, for this isotropic material we make the substitution 

. As  it follows that . 
Thus, converting the integrations from k to E means that 
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If we now (1) assume  independent of energy, and (2) take the low temperature 
limit  we see that  in agreement with the quantum 
result. For  we find by analogy 
 

   

 
This integral is trickier because the energy factor  cancels the naïve low 
temperature contribution. However, using the so-called Sommerfeld expansion it can 
be shown that [1] 
 

 . 

 
For  independent of energy this yields 
 

 , 

 
which means . As the figure shows, this is an excellent 
approximation under realistic conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.1. Comparison of the numerically evaluated thermopower to the low-
temperature approximation for a free electron gas. 
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Exercise: Transport in graphene 
 
Graphene is a two-dimensional material and so it is more appropriate to talk of sheet 
transport coefficients given by (with the notation ) 
 

  (12.10) 

 
Moreover, the energy spectrum is especially simple in the so-called Dirac 
approximation, where the actual band structure is replaced by two Dirac cones with 
the dispersion , where  is the Fermi speed (see Chapter 
17 for details). To account for the two cones, all coefficients should simply be 
multiplied by two. Finally, the  solutions for the energy should be summed over.  
 
We take the graphene sheet to lie in the (x,y) plane and for such an isotropic material 
we may make the replacement . 
 
a) Show that . 
 
Utilizing this result and the fact that means that 
 

 .  

 
To express the results we introduce . Also, to evaluate the required 
integrals you will need 
 

   

 
where  is a so-called polylogarithm. 
 
b) Assume  independent of energy to show that 
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Quite similarly, we find 
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 .  

 
c) Show that 
 

 . 

 
For positive Fermi energy and moderately low temperatures . Thus, we may 
expand using 
 

   

 
d) Use the expansion to demonstrate that at low temperature 
 

 .  

 
These results could also have been obtained directly using the Sommerfeld 
expansion. 
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13. Field Effect Transistors 
 
 
Field effect transistors are arguably the most important semiconductor devices ever 
fabricated. They form the basis of logical circuits and largely paved the way for the 
computer revolution. This chapter is aimed at providing a physical understanding of 
field effect transistors and, in particular, the dependence of current on gate and drain 
voltages. Both three-dimensional (MOSFETs) and two-dimensional (MODFETs) 
transistors will be studied. The MOSFET geometry is illustrated in Fig. 13.1. 
 
 

 
 

 
Figure 13.1. Schematic of the MOSFET. Left: The central part is the channel connecting  
 source and drain. The channel is separated from the metallic gate by a thin oxide.  

Taken from [1].  Right: Simplified model. 
 
The source electrode and substrate are grounded but gate and drain are biased. We 
need to calculate the electrostatic potential inside the semiconductor. To this end, we 
consider the potential diagram in Fig. 13.2. 
 
 
 
 
 
 
 
 
 
 

 
Figure 13.2. Variation of the electrostatic potential across metal, oxide and semiconductor. 

 
The spatial variation of the electrostatic potential  inside the semiconductor is 
governed by the Poisson equation 
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where  is the spatially varying charge density and  is the relative dielectric 
constant of the material. The boundary conditions are  (the surface 
potential) and . We consider a p-type semiconductor so that the charge 
density is given as  
 
 , (13.1) 
 
where  is the density of acceptor impurities. The hole density follows the potential 
according to . In the absence of a source-drain voltage, the 
electron density would simply vary as . By requiring charge 
neutrality at infinity in this situation, it follows from the boundary condition 

 that . However, with the source grounded and the drain 
at a potential , a drain current flows and we no longer have thermal 
equilibrium. As the name says, the drain contact drains electrons from the 
semiconductor. As a consequence, the electron density at the source  is still given 
by . At the drain, however, the effective Fermi level (or quasi-
Fermi level) is lowered by  and so the electron density is reduced to 

. Between source and drain, the density varies according 
to , where the counter potential V varies between 0 at the 
source and  at the drain (holes are not affected due to the n+ regions that block hole 
transport c.f. Fig. 13.1). Hence, writing  the charge density is 
 

 . (13.2) 

 
At this point it is highly convenient to introduce normalized potentials , 

,  and . Hence, the Poisson equation yields 
 

 . 

 
This differential equation is not solvable but a first integral can be obtained by the 
standard procedure. Thus, 
 

 . (13.3) 

 
Here and throughout, it is understood that the positive sign of the square root in g is 
to be used if  and the negative if . The boundary condition relating the 
potentials in the oxide and semiconductor is 
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 . 

 
The slope of the normalized potential inside the oxide is simply . Hence, 

, where  is the capacitance per area of 
the oxide layer. The right-hand side is given by Eq.(13.3) and in combination we get 
  
 , (13.4) 
 
where . For given parameters, Eq.(13.4) must be solved 
numerically in order to determine the surface potential. We now want to determine 
the electron fraction of the total charge. At any given y point, the electron charge per 
area  is given by 
 

 . 

 
By substitution, this result can be rewritten as 
 

  (13.5) 

 
In Fig. 13.3, the solution of Eq.(13.4) is plotted together with the electron charge 
Eq.(13.5) assuming room temperature (kT = 0.026 eV) and using silicon parameters: 

 = 11.9, ,  and .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13.3. Surface potential and electron charge vs. counter potential for a Si MOSFET. 
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13.1 MOSFET I/V Characteristic 
 
At any given point, the y component of the current density  consists of a drift and 
a diffusion part 
 

   

 
using . Hence, for a device of thickness Z in the z-direction 
we find that the drain current follows as 
 

 . 

 
Our problem here is that we don’t know how v depends on y. Following Pao and Sah 
[2], one possible way around this obstacle is to integrate over the length of the channel 
L 
 

  

 
Note, that this expression is exact because  is independent of y and so “averaging” 
over y doesn’t change the result. Thus, we can finally write 
 

 . (13.6) 

 
Hence, to compute the current in Eq.(13.6) we first need to solve Eq.(13.4) for a given 

 to obtain  as a function of v. This method provides a very accurate expression 
for the current but due to the two integrals that have to be done numerically, this 
method is also rather cumbersome. An alternative approximate expression can be 
found by observing that the total charge Q is the sum of the electron charge  and 
a depletion charge . The latter is approximately  . Thus, 
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Now, Q is given as . We still don’t know the dependence of  on 
V, however. Consequently, as a simplification we’ll assume that the surface potential 
varies in direct proportion to the counter-potential, i.e. . This implies that 
we change integration variable from V to , provided integration limits are also 
changed. Hence, as V varies between 0 and , the surface potential varies between 

 and . It follows that the current integral becomes 
 

   

 
In terms of  defined in Eq.(13.6), the current finally becomes  
 

  (13.7) 

 
It is clear that to evaluate this expression only the surface potentials at the ends of the 
channel are needed. A comparison of full and approx. expressions is shown in Fig. 
13.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 13.4. Drain current versus drain voltage for different values of the gate potential. 

Solid and dashed curves represent full and approximate calculations, respectively. 

Parameters are  and . 

 
It is clear from Fig. 13.4 that a threshold condition for the gate voltage exists. In the 
figure, the threshold apparently is about 0.6 V. The requirement for inversion is that   
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, where  is the bulk Fermi level. 
Following Eq.(13.4), the normalized gate voltage needed to achieve inversion is 
 
 . 
 
In fact, a slightly different threshold of  is closer to the 
numerical value. For the parameters of Fig. 13.3 we find  or . 
Above threshold, the saturation value of the drain current  is quite closely 

matched by the parabolic approximation . 

 
13.2 Modulation Doped Field Effect Transistors  
 
Modulation doped field effect transistors (MODFETs) also go by the names HEMT 
(High Electron Mobility Transistor) and HFET (Heterostructure FET). Several 
differences between MOSFETs and MODFETs are worth noting: 
 
1. The oxide is replaced by an n-doped AlxGa1-xAs layer 
2. The semiconductor is undoped GaAs 
3. Band bending is sufficiently strong that electrons donated by the AlxGa1-xAs layer 

accumulate in a very thin layer on the GaAs side of the junction. 
 
The geometry of the structure is illustrated in Fig. 13.5. 
 

 
Figure 13.5. Schematic structure of a MODFET. The right-hand diagram illustrates  

the profile of the electrostatic potential 
 
The donor density in the AlxGa1-xAs layer is denoted  and we will assume that all 
donors are ionized and the electrons transferred to the GaAs side. For simplicity, we 
will assume that all electrons occupy a single state with quantization energy . Also, 
we will ignore the variation of the potential across the quantum well and simply take 
it to be , the surface potential. In this case, the electron density per area is 
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A consequence of the AlxGa1-xAs doping is that the layer becomes an “imperfect” 
capacitor. In a normal capacitor, the potential drops linearly across the layer but in 
the present case the Poisson equation for the layer (using the normalized potential) 
becomes 
 

 . 

 
Here, we have ignored the small difference in dielectric constant between the two 
semiconductors and denoted the common value by . The general solution is 
obviously a parabola . With the boundary conditions  
and  it follows that  
 

 . 

 
As the dielectric constant is assumed independent of position, it follows that the 
derivative of the potential is continuous across the boundary. Hence, just inside the 
GaAs side, the potential derivative  is given by 
 

 . (13.8) 

 
If a drain voltage is applied, charge neutrality is broken. In this case, the counter 
voltage V varies between 0 and  at source and drain, respectively. Accordingly, 
the electron charge is now 
 

  , (13.9) 

 
This charge is the total charge per area in the GaAs layer. We may consequently apply 
Gauss’ law to a box enclosing the GaAs layer and write . Combining 
the results above we finally find 
 

 . 
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Introducing the auxiliary potential  the balance equation can be written 

 
 . (13.10) 
 
This is the equation we need to solve to compute  as a function of v. First, however, 
the location of the Fermi level must be determined.  This is a complicated problem 
related to “pinning” by the AlxGa1-xAs donors. For simplicity, therefore, the Fermi 
energy can be determined by requiring charge balance whenever the gate and drain 
biases are absent. In this case, electron charges must be balanced by donor charges in 
a AlxGa1-xAs layer of thickness d, and so we have , which means that 
 

 , (13.11) 

 
where  is the surface potential in the absence of biases. In terms of the auxiliary 
potentials defined above, this means that . On the other 

hand, Eq.(13.10) with  shows that . Taken 
together, it follows that  and so the balance equation finally becomes 
 
 . (13.12) 

 
An example of the surface potential profile is shown in Fig. 13.6. Here, the following 
parameters representative of GaAs MODFETs have been applied: 
 
•  

•  
•  = 12.9 
•  

 
These values correspond to  and . 
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Figure 13.6. Surface potential and electron charge vs. counter potential for a GaAs MODFET. 

 
13.3 MODFET I/V Characteristic 
 
Similarly to the MOSFET, the drain current is given as . To 
avoid computing  we again integrate over y and find 
 

 .  

 
Now, using  as well as Eq.(13.8) we can write 
 

  (13.13) 

 
In Fig. 13.7, the I/V characteristic for the GaAs MODFET is illustrated. 
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 Figure 13.7. Drain current versus drain voltage for different values of the 
gate potential in a GaAs MODFET at room temperature. 

 
Again, a pronounced saturation of the current is found as the drain voltage increases. 
As for the MOSFET, an analytical estimate of the saturation current can be given. 
First, we note from Fig. 13.6 that to a good approximation the surface potential profile 
is piecewise linear. Ignoring the factor “1” inside the curly brackets of Eq.(13.10) we 
therefore find 
 

 . 

 
If this approximation is used and  is assumed, we find for the saturation 

current  as can easily be verified. Hence, just as 
for the MOSFET, the saturation current varies quadratically with gate voltage. 
Comparing Figs. 13.4 and 13.7 it would appear that the MOSFET current is much 
larger than the MODFET current. However, it is easily shown that 
 

 . 

 
Using the same parameters as above, this ratio equals  and so the two currents 
are, in fact, roughly equal. 
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13.4 Analytical MOSFET/MODFET Model 
 
The models of the last sections are rather accurate and general but, also, 
mathematically complicated and involve solving balance equations numerically. We 
now try to establish a very simple, approximate model that can be applied to 
illustrate the essential physics of the devices without sophisticated mathematics. The 
model relies on three simplifications: (1) The conducting channel is infinitely thin, (2) 
the carrier statistics are “non-degenerate”, and (3) hole contributions to charge and 
current can be ignored. Non-degenerate statistics means that we replace the Fermi 
distribution by . The combination of these assumptions 

leads to the fact that  is the total carrier concentration with  the 
value of the potential in the thin channel. We will assume a gate oxide with no net 
charge and it then follows that the charge balance for the gate capacitor must be 

. This is a rather simple problem with 
the solution 
 

 . 

 
Here, pl is the “product logarithm” defined as the 
solution to the equation , i.e. 

. Also, using the results of the previous 
section in the non-degenerate limit 

, it is easily shown that 

 with  given by Eq.(13.8). An important property of the 

product logarithm is that . We 

apply this formula to compute the drain current  
 

 

 
with  given by Eq.(13.13). The comparison between the full numerical model 
and the simplified, analytical one is shown in Fig. 13.8. We see that the results agree 
to a very high degree of precision. 
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 Figure 13.8. Comparison of numerical and analytical MODFET models. 
 
13.5 Transit Time 
 
For both MOSFETs and MODFETs, the transit time  of an electron traveling 
between source and drain can be computed as the integral 
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Here, u is the electron velocity . Using , it then 
follows that 
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We wish to reformulate in terms of normalized potentials and dimensionless 
quantities. It turns out that for both MOSFETs and MODFETs we can write 
 

  (13.14) 

where 
 

  



0 0

1 1DVL dydy dV
u u dV

    

/eu dV dy  /D e nI ZQ dV dy 

2
2

2
0

DV
e

n
D

Z Q dV
I


  

2
2

2

0 0

D Dv v

n n
e

eL q dv q dv
kT




      
 

0

, MOSFET
( , )

, MODFET.

S v

n

G D S

e d
q g v

v

 




 

  





 125 

To illustrate the results we again consider a Si MOSFET ( ) and a 

GaAs MODFET ( ). We take in both cases the device length to be 
 and otherwise use parameters as above. The results are shown in Figs. 13.9 

and 13.10 below. It should be noted that the transit time provides the ultimate 
physical limit for the cut-off frequency of the devices given by . 
Hence, for the two devices we find approximate cut-offs of 16 GHz and 160 GHz, 
respectively. In a real device, the value will be somewhat lower due to capacitive 
effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 13.9. Transit time vs. drain voltage for different values of the gate 
potential in a Si MOSFET. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 13.10. Transit time vs. drain voltage for different values of the gate 

potential in a GaAs MODFET. 
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Exercise: Variation of the counter potential 
 
An unsolved problem is the y-dependence of the counter potential. Here, we will 
show how this may be computed. 
 

a) Show that for both MOSFETs and MODFETs , where 

 

  

 
b) Show by rearrangement and integration that 
 

 . 

 
c) Integrate numerically to find . If successful, you should find two highly similar 
curves as illustrated in Fig. 13.11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 13.11. Counter voltage vs. y-position for both MOSFET and 
MODFET. 
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14. Nanowire MOSFETs 
 
 

The geometry of a cylindrical nanowire MOSFET is shown in Fig. 14.1. Source and 
drain contact are attached at the ends and along the nanowire an oxide isolates the 
semiconductor core from the surrounding metallic gate. 
 
 
 
 
 
 
 
 
 

Figure 14.1. Schematic of the nanowire MOSFET. The semiconductor core is 
surrounded by a thin oxide and a cylindrical metallic gate. 

 
Our analysis will be based on certain assumptions about the structure and the mode 
of operation: (1) The semiconductor core is undoped and (2) the gate is positively 
biased so that (practically) only electrons need to be considered and (3) the non-
degenerate limit is applicable. In this case, the coupled Poisson-Boltzmann equations 
read 
 

 .  

 
The boundary conditions for the potential  are , where 
the center value  will be determined later. As usual we introduce normalized 
potentials  and  so that we obtain the reduced Poisson-
Boltzmann equation 
 

  (14.1) 

 
It can be shown by inspection that an analytical solution to this equation is given by 
 
 . (14.2) 
 
We also need the potential inside the oxide. We denote radius of the semiconductor 
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Poisson equation . Subtracting the boundary conditions for the two 
faces of the oxide then means that . In addition, the slope 
of the oxide potential is  and we can therefore relate slopes on both sides 
of the oxide-semiconductor interface via 
 

 ,  

 
where  and  are dielectric constants of the oxide and semiconductor, 
respectively. This, in turn, means that 
 

 .  

 
The potential derivative inside the semiconductor is found from Eq.(14.2) and equals 
 

 . (14.3) 

 
On the other hand, it also follows from Eq.(14.2) that 
 
 .  
 
Introducing the oxide capacitance  and putting 
everything together we finally obtain an equation for the centre potential 
 

 . (14.4) 

 
This is the equation to solve to find the centre potential profile along the nanowire as 
a function of the counter voltage v that varies between 0 and .  
 
We need, in addition, the variation of the electron charge  along the wire. Rather 
than integrating the electron density over the cross section, we use Gauss’ theorem 
for a surface bounding a small slab of the cylindrical core:  
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 ,  

 
where . It follows that 
 

 . (14.5) 

 
This means that the potential balance Eq.(14.4) can be reformulated as a charge 
balance 
 

 . (14.6) 

 
From a numerical stand point, it is advantageous to solve Eq.(14.6) and subsequently 
use Eq.(14.5) to compute the potential profile. For later purposes, we note that 
differentiating this relation leads to  
 

 . (14.7) 

 
An example of an actual example is shown in Fig. 14.2. Here, the following Si/SiO2 
nanowire parameters have been used: =11.9, , R = 25 nm, d = 5 nm 

and  leading to .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.2. The charge and potential profile of a nanowire MOSFET. 
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We now proceed to calculate the drain current. Similarly to the MOSFET and 
MODFET cases we write 
 

 .  

 
It turns out that integrations are easier if we use charge rather that counter potential 
as integration variable [1]. Hence, we utilize Eq.(14.7) and write 
 

  

 
Here,  and  are (positive) charges at source and drain, respectively. After 
simple integrations we finally find 
 

 . (14.8) 

 
This result is illustrated in Fig. 14.3 below using  and L = 1 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.3.Drain I/V characteristic of a 1 micron nanowire MOSFET.  
 
We end this chapter by calculating the transit time . In a manner completely 
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 . 

 
The integral in the numerator is easily calculated using the technique explained 
above. As a result, we find 
 

 . (14.9) 

 
For a 1  device, the result is as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.4.Drain and gate dependence of the nanowire MOSFET transit time. 
 
  

Exercise: InAs nanowire transistors 
 
The Physics Group at Lund University produces nanowire transistors made from 
InAs ( = 14.5), see Ref. [2]. The “oxide” in their structures is actually silicon nitride 
( = 6.3) with a thickness d = 50 nm. Also, radius and effective length of the 
nanowires are approximately 40 nm and 1 , respectively. We will take the 
mobility to be  and the unbiased electron density to be 
. Also, measurements are made on 40 transistors in parallel. 
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a) To quantify the device sensitivity one sometimes measures the saturation current 
(the current at high drain voltage) as a function of gate voltage. We expect a quadratic 
dependence , so that plotting  versus  should produce a straight 
line. Use the theory of this chapter to make the plot below by fixing the drain voltage 
at  and calculating for 40 nanowires in parallel. Compare to the 
experimental plot.  

 

 
Figure 14.5.Calculated (left) and experimental (right, taken from [2]) sensitivity 

plot for a 40-nanowire array. 
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15. Optical Properties of Semiconductors 
 
 
The optical properties of semiconductors are applied in an impressive list of devices: 
lasers, light-emitting diodes, CCD cameras, solar cells to name a few. Recently, the 
list has been extended to optical semiconductor devices that actively utilize quantum 
confinement: quantum well lasers, fluorescent quantum dots, solar cells and 
photocatalysts based on semiconducting TiO2 nanoparticles and so on. Also, the 
traditional inorganic semiconductors such as Si, GaAs and GaP have seen 
competition from organic or carbon based ones, most notably conjugated polymers 
and carbon nanotubes. These novel materials are one-dimensional semiconductors 
with properties that deviate significantly from bulk inorganic semiconductors. 
Devices such as displays and light-emitting diodes based on these materials are 
emerging now and may well play an important role in future applications due to 
reduced cost and possible molecular design. In this chapter, we investigate the optical 
response of bulk and low-dimensional semiconductors in order to display their 
differences. 
 
By now, the fundamental approach should be familiar: We need the perturbation and 
the response observable to calculate the induced response. The perturbation is the 
well-known interaction between the optical electric field  oscillating at a 

frequency  and the electric dipole moment  given by . Also, 
the response observable is the dipole moment density , where, as always,  
is the volume. We only consider the z component of the dipole moment, i.e. we 
restrict the discussion to co-linear cases where the induced dipole moment is parallel 
to the incident field. The measurable response is the polarization  that we 
consequently find from 
 

  

 
The ratio between the polarization and the electric field is the electric susceptibility 

 multiplied by  and so 
 

 . (15.1) 

 
We wish to reformulate this in a form that is suitable for both doped and intrinsic 
semiconducting periodic structures. To get there, we need a few tricks. First, the fact 
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summation sign. By averaging Eq.(15.1) with an expression having m and n 
interchanged and using mn nmf f  and nm mnE E  we find 
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The operator z is difficult to handle in extended systems and we therefore prefer to 
reformulate the susceptibility expression. To this end, we apply the commutator trick 
derived in Chapter 2, Eq.(2.2): 
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This is obviously dangerous in the case m = n, but we will deal with this later. For 
now, we will simple write 
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The case m n  is referred to as the interband case when dealing with solids. Hence, 
there are contributions, for which m n , and others with n m . Interchanging m 
and n in the second half shows that 
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We will now specialize to the description of intrinsic semiconductors, in which the 
empty states are separated from the occupied ones by a large energy gap . The 

Fermi level in this case lies close to the middle of the gap and provided  we 
may safely take the temperature to zero. We denote collectively the occupied states 
by v (for valence) and the empty ones by c (for conduction). In the low temperature 
limit, 1nmf   as long as n v  and m c  whereas 0nmf   in all other cases having 
m n . Hence, in the expression above, the sums over m and n are over the occupied 
and empty states, respectively. Thus, the response can be written 
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This result is quite general and can be applied in accurate numerical calculations if 
energies and momentum matrix elements are calculated from a set of eigenstates 
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obtained from e.g. ab initio or empirical quantum methods. In a three-dimensional 
crystal, we can write general occupied and empty eigenstates as 
 

 , 

 
where, again,  and  are the lattice-periodic parts and  is the spin part. 
Summing over occupied states then really means summing over band v and 
integrating over k-vectors. Similar reasoning applies to the empty states. However, 
in the dipole approximation, only transitions between band states at identical k-
vectors survive. Hence, summing over spins and converting to k-integration, we find 
 

   

 
In general, this expression is hard to evaluate. In the special case, for which only a 
single pair of bands needs to be considered, and if the momentum matrix element in 
the numerator can be assumed independent of k-vector and approximated by a 
constant cvp , one finds 
 

 
2 2 2

3
2 3 2 2 2

0

4 | | 1( ) .
(2 ) ( ) ( ) ( )

cv

cv cv

e p d k
m E k E k i

 
  


     




 



   

 
Moreover, in the limit  the imaginary part is easily extracted 
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Here, J is the so-called joint density of states, which counts the number of vertical (k-
vector preserving) transitions across the band gap. Mathematically, it is obviously 
very similar to the usual density of states discussed in Appendix 1.  
 
Let us now return to the slightly more tricky m n  case in Eq.(15.2). In reality, this 
case arises for excitations within a single band, so-called intraband excitations. The 
way to deal with them is by realizing that one must carefully consider the momentum 
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in agreement with chapter 8. At this point, we wish to gain some basic insight into 
the optical properties of semiconductors in various dimensions. For this purpose 
we’ll need some approximations to make the calculation tractable.  
 
15.1 Two-Band and Envelope Approximations 
 
The first simplification we can make is that only two bands are considered: one 
occupied valence band (v) and one empty conduction band (c). Now, even in low-
dimensional geometries we may write the eigenstates in the form 
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reduced dimensions. As an example, the empty states in a quantum well are labeled 
by  for the in-plane motions and  is the quantum number for the 
quantized states perpendicular to the quantum well plane. The envelope approximation 
consists in taking for  and  the wave functions determined exclusively by the 

quantum confinement, i.e. ignoring the lattice-periodic part of the potential energy. 
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Hence, we are assuming that the total wave function can be factored into a rapidly 
varying lattice-periodic part and a slowly varying envelope function. This makes sense 
if the confining potential is slowly varying compared to the lattice constant. The 
envelope function is a mix of running waves for the extended directions and standing 
waves for the confined ones. As the simplest possible case, we may take the 
confinement to be a rectangular potential well with zero potential energy inside the 
well and infinite outside (see Appendix 1). For semiconductors in 0, 1, 2 and 3 
dimensions this corresponds to a cubic box, a rod with square cross section, a slab, 
and infinite space, respectively. Hence, if the width of the potential well is d in all 
cases, the occupied envelope functions in D dimensions are 
 

  

 
Note that we have chosen to normalize the envelope functions within the total 
volume  in each case. We will next assume that the lattice-periodic parts do not 
depend too strongly on wave vector in the relevant part of the Brillouin zone so that 
we may take  and . For transitions between states with 
identical spin, this means that in the general case 
 
 

 

 
The integrand here is comprised of a rapidly varying lattice-periodic part and a 
slowly varying envelope part. To see how such integrals are evaluated we consider 
the product of a rapid lattice-periodic function  and a slow function  in one 
dimension. If we are to integrate this product over N unit cells each of a size a we can 
split the integral as follows 
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where the periodicity of  is used in the last line. Finally, running the argument 
backwards, the sum over l can be approximated by an integral 
 

  

 
Putting things together, we see that 
 

  

 
The essence of this result is that an integral of a product between a rapid lattice-
periodic part and a slow envelope part is approximately equal to the average of the 
rapid part over the unit cell times the integral of the slow part over the entire volume 
of integration. If we apply this to the momentum matrix element we find 
 

  

 
where  is the volume of the unit cell and the first integral in each term is over 

. The orthogonality between  and  means that the first term vanishes and 
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are the interband momentum matrix element and envelope overlap, respectively. 
This notation allows us to reformulate Eq.(15.3) as 
 

  (15.4) 

 
Here, the extra factor of 2 is from summation over spin. The excitation energy  
is the difference between the energy of the empty state  and the energy of the 

occupied state  participating in the transition. These quantities both include a 

quantization contribution in addition to the usual -dependent kinetic part. They are 
given by  
 

 , 

 
where the quantization energies of electrons and holes are denoted  and , 
respectively. In turn, their difference is 
 

  

 
Here,  is the effective band gap and   is 
the reduced mass of an electron-hole pair. In the next chapter, we successively treat 
3, 2, 1 and 0 dimensional semiconductors and for these cases evaluate Eq.(15.4) for 
the optical susceptibility. 
 
Exercise: Envelope functions in parabolic confinement 
 
Suppose that the quantizing potential of a quantum well is parabolic. The curvature 
of the confinement may be different for electrons and holes just as they will have 
different effective masses. This means that the envelope functions will be different as 
well. From basic quantum mechanics we know that the first two eigenfunctions in a 
parabolic potential are 
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where depends on mass and curvature. Electrons and holes will 
consequently be described by these functions but different expressions for  should 
be used:  for electrons and  for holes. 
 
a) Calculate the partial envelope overlaps given by 
 

 , 

 
in terms of  and . Help: 
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b) What happens if ? 
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16. Optics of Bulk and Low-Dimensional Semiconductors 
 
 
We now want to apply the general theory of the optical properties of semiconductors 
developed in the previous chapter to some interesting cases. The general theory 
applies equally well to bulk and low-dimensional materials and by investigating 
their optical responses we can highlight their differences. As will become apparent, 
the mathematical techniques for dealing with the different cases are highly similar. 
Physically, the difference between bulk and low-dimensional structures originates in 
quantization effects. The quantized motion of carriers influences both selection rules, 
strength of transitions and position of resonances. Most obviously, quantization 
tends to blue-shift the absorption edge, i.e. the photon energy threshold for 
absorption, due to the added quantization energy. Hence, the effective band gap is 
increased in a quantized geometry. As we will see below, however, by going from 
3D to 0D materials the shape of the spectra changes dramatically as well. For a bulk 
semiconductor, the absorption strength is a smooth function of frequency above the 
band gap. When quantization increases, a strong absorption feature develops directly 
above the effective band gap. Another important feature is the appearance of 
multiple resonances in the spectra due to transitions between many subbands. 
 
We now systematically study the optical response of 3, 2, 1 and 0-dimensional 
semiconductors using the two-band model and the envelope approximation 
described in Chapter 15. The general starting point is Eq.(15.4), which we repeat here:  
 

  (16.1) 

 
The summations here are over a D-dimensional k-vector  and the indices of the 
occupied ( ) and empty ( ) quantized states. The summation over  can in each 
case be performed analytically leaving us with a summation of the quantization 
indices. For a bulk or 3-dimensional semiconductor there are no quantization effects 
and, hence, the summation in Eq.(16.1) is, in fact, only over . As always, we convert 
the  summation into an integral and so 
  

  

 
The excitation energy for transitions between the two parabolic bands is 
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where  is the reduced mass of an electron-hole pair. We 

evaluate the integral by introducing , which means that 
 

 . 

 
In this manner, the susceptibility integral becomes 
  

  

 
The x-integral can now be evaluated. To this end, we introduce the complex 
frequency  and the normalized 3D susceptibility function  as 
 

  (16.2) 

 
This leads to the result 
 

  

 
The limiting value of the susceptibility function is . The plot in 
Fig. 16.1 illustrates this result using the values  that 
are representative of GaAs. A few things are worth pointing out about this figure. 
First, the absorption is determined by the imaginary part of the refractive index 
. Since , we have  so that the absorption is directly proportional 
to the imaginary part of the susceptibility. From the figure, it is obvious that the 
absorption threshold is located at the energy gap, i.e. if a frequency scan is made, 
strong absorption will set in at .  
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Figure 16.1. Complex susceptibility function of a 3D semiconductor  

with a band gap of 1.5 eV. 
 
A second point is that the susceptibility at low photon energy (well below the energy 
gap) is purely real-valued and corresponds to the usual “refractive index”  of the 

material via  so that . 
 
16.1 Semiconductor Quantum Wells 
 
A quantum well is a semiconductor slab having a smaller band gap than the 
surroundings and therefore being able to confine carriers to the slab. The confinement 
produces a series of subbands offset by the quantization energy. Hence, for the 
’th subband the excitation energy is 
 

  

 
where  is the 2 dimensional wave vector in the plane and  is the effective 
energy gap including the quantization energy. Hence, if infinite square-well 
confinement with a width d is assumed 
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In analogy with the 3D case, we now convert the 2D - summation into an integral 
and subsequently write the susceptibility as 
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using , where A is the area of the slab. Again, we use  so that 
 

 . 

 
This allows us to write the susceptibility as the integral 
 

  

 
Hence, we naturally introduce the 2D susceptibility function  as the frequency 
dependent part 
 

  (16.3) 

 
with the limiting behavior . It follows that the 2D susceptibility is 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16.2. Complex susceptibility function of a quantum well with an effective 

band gap of 1.6 eV. 
 
This new susceptibility function is depicted in Fig. 16.2. Here we have again taken 
data for GaAs and assumed a quantization energy of 0.1 eV so that the effective gap 
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is . By comparison to Fig. 16.1 it is seen that the band gap feature is 
significantly steeper in the quantum well case. 
 
16.2 Semiconductor Quantum Wires and Dots 
 
Quantum wires are one-dimensional in the sense that their extension along one axis 
is much greater than the other two, which we assume to have nanoscale dimensions. 
The calculation of the susceptibility is highly similar to the quantum well case, except 
that now the k-vector is one-dimensional and the sum over  covers the two-
dimensionally quantized stated. We begin by noting that 
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This, in turn, yields a susceptibility given by (remembering a factor of 2 from ) 
 

  

 
In this case, the corresponding susceptibility function is 
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In this case, the DC limit is . The result is illustrated below 
assuming . The trend from the quantum well case is continued and now 
the absorption peak at the band edge is further sharpened. In fact, if the broadening 

 goes to zero the imaginary part of the susceptibility function will diverge. This is 
readily seen from Eq.(16.4). When , the imaginary part can only come from the 
second term in the curly bracket. This term will be purely imaginary if  and 
consequently 
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 Figure 16.3. Complex susceptibility function of a quantum wire with an effective 
band gap of 1.8 eV. 

 
It follows that as the absorption edge is approached from above, the imaginary part 
will diverge as an inverse square root of the frequency.  
 
Quantum dots are semiconductor nanoparticles with no extended dimensions. 
Hence, the spectrum of eigenvalues is purely discrete. If a box shape with side length 
d is assumed for the particle, the excitation energies are 
 

 . 

 
Hence, there is no k-integration is this case and we simply find 
 

  

 
where 
 

  (16.5) 

 
is the 0-dimensional susceptibility function with the limit  as illustrated in 
Fig. 16.4 below. Here,  is assumed in order to follow the trend of 
increased quantization energy as we go through wells, wires and now dots. The 
response of the 0D system is an isolated resonance at the effective gap. It is noted that 
the imaginary part is completely symmetric in contrast to the higher-dimensional 
structures. 
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Figure 16.4. Susceptibility function of a quantum dot with an effective band gap 
of 2.0 eV. 

 
In the plots above, we have displayed the contribution from a single resonance. In 
general, the spectrum will consist of a series of resonances due to transitions between 
multiple subbands. The weight of each transition is given by the envelope overlap 

 in Eq.(16.1). If the envelope functions of conduction and valence band states were 

eigenfunctions of the same Hamiltonian the overlap would simply be  
because of orthogonality. However, the Hamiltonians of the two bands are generally 
different due to different effective masses and differently shaped potential wells. A 
special case is the infinite rectangular well, for which  still holds. The reason 
is that, in this case, the eigenstates are simple standing waves that do not depend on 
effective masses anywhere. Hence, the wave functions remain orthogonal. As an 
example of several subbands contributing to the total response we consider a 
quantum wire with three allowed transitions ,  and 

. We take ,  and  and keep 
. The resulting spectrum for the imaginary part of the susceptibility 

function  is illustrated in Fig. 16.5. Since the separation between the resonances 
is far greater than the broadening of the individual peaks, the three resonances are 
well resolved. If the spacing between the peaks becomes comparable to  the peaks 
will overlap and be hard to distinguish. 
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Figure 16.5. Absorption spectrum of a quantum wire with three allowed subband 
transitions. 

 
 
Exercise: Limits of the susceptibility functions 
 
a) Show that the susceptibility functions have the DC limits stated in the text, that is, 
show that 
 

  

 
b) Find limiting expression for the imaginary parts of the susceptibility functions as 
the broadening  goes to zero. 
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17. Electronic and Optical Properties of Graphene 
 
 
Graphene is a novel wonder material that has stimulated a tremendous amount of 
experimental and theoretical work. For theoretical nanoscience, it is a great material 
because of its extreme simplicity but, nonetheless, intriguing properties. A lot of this 
fascination derives from the fact that carriers in graphene near the intrinsic Fermi 
level behave similarly to massless relativistic particles, albeit moving with an 
effective speed of light of roughly c/300. 
 
We will start this chapter by a brief review of the electronic structure of this material 
and subsequently consider the specific properties derived from the electronic 
eigenstates. More details are given in Appendix 2. Graphene is a truly two-
dimensional material consisting of a honeycomb lattice of carbon atoms. A piece of 
the lattice is shown in the left panel of Fig. 17.1. 
 
 
 
 
 
 
 
 
 
 

Figure 17.1. Honeycomb lattice incl. lattice vectors (left) and  
Brillouin zone incl. reciprocal lattice vectors (right). 

 
The lattice constant of graphene is Å. Correspondingly, the elementary lattice 
vectors are 
 

 . 

 
Clearly, there are two atoms per unit cell. Also, the reciprocal lattice vectors are easily 
found from the requirement  to be 
 

 . 

 
The Brillouin zone spanned by these vectors is shown in the right panel of Fig. 17.1. 
Here, the so-called irreducible Brillouin zone is also highlighted as the red triangle 
along with high symmetry points. 
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The simplicity of graphene derives from the fact that each carbon atom comes with 4 
valence orbitals: . Among these,  has odd parity with respect the 

reflections in the (x,y) plane whereas the remaining ones are even. Thus, - states 
completely decouple from the rest. As a consequence, extended Bloch states formed 
by coupling - orbitals (called - states) also decouple from those formed by the 
remaining orbitals ( - states). The - states are loosely bound and responsible for all 
electronic and optical properties in the usual low-energy range. Conversely, the - 
states are largely responsible for holding the material together but are very difficult 
to excite and, therefore, irrelevant for most response properties.  
 
The simplest, realistic electronic model is constructed by assuming that each - 
orbital is coupled to its nearest neighbors only. As a basis for extended Bloch 
eigenstates of the full lattice, we take Bloch sums formed by summing - orbitals 
belonging to the two atoms A and B in the unit cell (so-called sublattices), separately. 

In a unit cell at position , the position of the atoms A and B will be denoted  and 

, respectively. To simplify the notation, we will designate the - orbitals 

belonging to the two sublattices by  and , 

respectively. Forming the two Bloch sums  and  for the A and B sublattices, 
we find 
 

 , 

 
where N is formally the number of unit cells that is eventually taken to infinity. The 
Hamiltonian in this basis is given by 
 

 . 

 
Assuming only nearest neighbor coupling, the diagonal elements both equal the on-
site energy  that we will set to zero by choosing it as our energy zero 
point. The off-diagonal elements are non-zero, however. The nearest neighbor 
coupling, sometimes denoted the hopping integral or tunnel coupling, is 

 (the minus sign is introduced for numerical convenience as the 
matrix element itself is actually negative). Hence, it is straightforward to show that 
 

 , (17.1) 
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and . At this point, it is then clear that the eigenvalues are 

, i.e. 
 

 . (17.2) 

 
The band structure is illustrated in Fig. 17.2. Importantly, the bands touch at the K 
point . In fact, near the K point, the bands form a cone. This 

is readily seen if we expand the eigenvalues around K, i.e. by writing  and 

subsequently expand in . In this manner, we find that . 

The constant phase can be absorbed by redefining  and 
. This means that the Hamiltonian becomes 
 

 . 

Hence, the eigenvalues are of the form . The quantity  is the Fermi 

velocity. The hopping integral is found to be around eV implying that 
m/s. Thus, carriers really resemble massless relativistic ones (since the energy 
dispersion is linear in the momentum ) moving with a velocity . This 
linearized approximation is usually called the Dirac model of graphene. Each carbon 
atom supplies precisely one electron to the - bands (the other 3 are bound in 
chemical bonds with the neighbor atoms). Thus, for intrinsic graphene, the lower 
band is filled while the upper is empty at low temperatures. This means that the 
Fermi level coincides with the so-called Dirac point, at which the bands cross. Note 

that the eigenvectors are simply  with  the polar angle of . 
 

 
 

Figure 17.2. Full tight-binding band structure compared to the Dirac model (left).   
In the linearized model, a Dirac cone sits in each corner of the Brillouin zone (right). 
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17.1 Electronic and Optical Properties 
 
In the following, we will focus on the Dirac model because the simplicity allows us 
to compute many quantities analytically. At various points, we can then compare to 
more complicated results obtained for the full tight-binding theory. First, we will 
consider the density of states. In order to perform the computation, we note that the 
contribution from a single Dirac cone should be multiplied by a factor of 4: first there 
are two cones per unit cell (valley degeneracy) and secondly there is spin degeneracy. 
Hence, density of states per area for an area A and energy E > 0 is 
 

      (17.3) 

 
A similar result is found for E < 0 and generally we can write . In 
a more elaborate treatment using the full tight-binding model one finds [1, 2] 
 

 , (17.4) 

 
where K is the complete elliptic integral of the first kind and we have introduced 
normalized energies . Using the limit   shows that 

the two expressions agree in the low-energy range. The results are compared in the 
figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.3. Comparison of the tight-binding and Dirac model results for the density of states. 
 
Because graphene has a vanishing band gap but, at the same time, a vanishing 
density of states at the Dirac point, it can be classified as a material in between 
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semiconductors and metals, i.e. a so-called semimetal. The obtained density of states 
enables us to compute the excess electron density. As mentioned above, intrinsic 
graphene is characterized by a Fermi level located at the energy zero point. We 
therefore find the excess carriers, that is the number of additional electrons per area, 
by the integral 
 

 .  

 
Here,  is the Fermi-Dirac distribution and 

 is the reference for the intrinsic case, . Inserting and 
reformulating, it turns out that 
 

  (17.5) 

 
Here,  is the second polylogarithm. At low and high doping levels, we find 
 

   

 
Next, we go on to calculate the conductivity of graphene. First, however, a word 
about the current response of 2D systems. In the usual 3D case, we write the response 

to an electric field  as , where  is the 3D conductivity and  is the 3D 
current density defined as current per area. For a very thin 2D sheet, we may 
integrate over the thickness assuming that the field does not vary across the sheet. 
Hence, we define a sheet conductivity  that relates the sheet current 

density (current per length) to the electric field. In this manner, we need a sheet 
plasma frequency 
  

 . 

 
Again, the factor of 4 is due to spin- and valley-degeneracy. Also, we summed over 
the two bands. Converting to an integral, it is found that 
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The optical response generally consists of an intraband  contribution and an 

interband contribution . Given the plasma frequency, the former is easily 
evaluated, c.f. Eq.(3.11) 
 

 , 

 
where  is a phenomenological broadening parameter. The interband term is 
significantly more complicated. In the limit of vanishing broadening, the general 
result for the real part after summation over spin for a two-dimensional material is 
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Here, the sum is over occupied valence bands (v) and empty conduction bands (c). 
Also,  is the momentum matrix element. We evaluate this matrix element using 

the commutator  and the completeness of the - states, i.e. 
 
 .  

 
Thus, 
 

  

 
We continue assuming that our orbitals are sufficiently localized that only on-site 
terms matter. Hence,  and  etc. We therefore see 
that 
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An important point, now, is that  and 

. Thus, 
 

  

 
As a consequence, the interband momentum operator can be replaced by 

. For the Dirac model, this implies that 
 

 . 

 
The matrix elements, therefore, are exceedingly simple 
 

 . 

  
When this result is used in the interband expression we see that (remembering to 
include valley degeneracy) 
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In the low-temperature limit, the full interband conductivity becomes 
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If the full tight-binding model is considered, an analytical calculation shows that in 
the low-temperature, intrinsic limit  [1, 2] 
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where  and K and E are elliptic integrals. It can be shown that taking the 
zero frequency limit of the above expression leads to a minimum graphene 
conductivity of . A comparison of the two models for  is shown 
in Fig. 17.4. We also include a plot of real and imaginary parts in doped graphene 
(right panel), with the tight-binding imaginary part found using the Kramers-Kronig 
relation. 

Figure 17.4. Comparison of the tight-binding and Dirac model results for the interband conductivity. 
Left: real part with doping. Right: real and imaginary parts of doped graphene. 

 
In actual measurements, only the sum of intra- and interband terms is measured. As 
an example, this sum (real part) is illustrated in Fig. 17.5 for some reasonable values 
of the relevant parameters (compare to experiments in Fig. 17.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.5. Full conductivity (real part) for a graphene sample doped to = 200 meV. 
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In a transmission experiment, the transmittance of light with different wavelengths 
is measured. Hence, a measured spectrum can be related to our calculations in the 
following manner. First, for a graphene slab of thickness d, the dielectric constant is 

. Secondly, the transmittance is exp{ 2 Im }cT d n  , where Im n  is 
the imaginary part of the refractive index . Assuming weak absorption, we 
can approximate  and so 0Im Re /(2 )n d   . Approximating 
further, we find that 
 
 0exp{ 2 Im } 1 2 Im 1 Re /( )c cT d n d n c         . (17.9) 
 
Thus, for graphene in the low-energy interband range, where , we find 

, where  is the fine-structure 
constant. It follows that the absorption loss for monolayer graphene is roughly 2.3%. 
In Fig. 17.6, this is seen to be confirmed experimentally. Note also the absorption peak 
around 250 nm that corresponds to the tight-binding resonance in Fig. 17.4. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.6. Experimental optical spectra in the UV/VIS range [V.G. Kravets et al., Phys. Rev. B81,  
155413 (2010)] (top) and infrared [Z.Q. Li et al., Nat. Phys. 4, 532 (2008)] (bottom). 
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Exercise: Gapped graphene 
 
Many ideas have been suggested to provide graphene with a band gap, so that a true 
semiconductor would result. Notable ones include interactions with substrates, 
adding electric fields to multilayer structures and antidot lattices [3]. A common 
phenomenological model of such “gapped” graphene is obtained with the 
Hamiltonian (with valley index 1 ) 
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a) Show that for this model the eigenvalues are  so that a band 
gap of  results. The corresponding eigenvectors are 
 

 
( )/ ( )/1 1,

2 2( )/ ( )/

i ie E E e E E
v v

E E E E

    

 

 
   

 

   

                  

  . 

 
b) Using the new eigenvectors, demonstrate that 
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c) Show that the interband conductivity is given by the integral 
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 (17.10) 
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 18. Models of Excitons 
 
 
At this point, one might wonder about the accuracy of the optical response calculated 
in the previous chapters. So far, we have been treating the electrons as independent 
particles and the question is to what extent this is sufficient. For bulk semiconductors, 
the single-particle calculations predict an absorption edge that is essentially a square 
root, c.f. Fig. 16.1. As a classic example of the failure of this prediction, Fig. 18.1 shows 
a comparison between experimental spectra [1] and theoretical single-particle spectra 
computed from Eq.(15.3) for the wurtzite semiconductor ZnO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.1. Measured spectra (left panel) and calculated single-particle spectra (right panel) for 
ZnO. The ordinary and extraordinary spectra correspond to light polarized perpendicular and 

parallel to the crystal c-axis, respectively. 
 
It is obvious that single-particle theory fails miserably in this case. In most materials, 
however, the discrepancy is less pronounced but still noticeable. The aim of this 
chapter is to describe a method for the inclusion of effects beyond the single-particle 
response. It involves a much more accurate calculation of many-body excited states 
usually referred to as excitons. In subsequent chapters, the effects of excitons in low-
dimensional semiconductors will be investigated. We will demonstrate that excitons 
are even more important for those cases. 
 
Applying the single-particle approximation means, in effect, approximating all-
electron wave functions by Slater determinants. To demonstrate this fact, we turn to 
the more general expression for the optical susceptibility 
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   (18.1) 

 
This expression differs from the single-particle result Eq.(15.3) in that the sum is over 
all excited states  with excitation energy , i.e. energy measured relative to the 

ground state . The prefactor of 2 (rather than 4) is used because the summation 

also covers spin. Also, the operator  is the many-body momentum operator, which 
for a system with 2N electrons is given as the sum of single-electron operators 
 

 , 

 
where  operates on the n’th electron coordinate only. The ground 
state is a Slater determinant 
 
  
 
with all single-electron valence states occupied by spin-up and –down electrons. The 
total spin of the ground state is zero and since optical excitations don’t flip spins we 
look for excited states with vanishing spin. These are so-called singlet states. To 
construct them, we first examine two types of singly-excited states  
 

  

 
in which a single occupied spin-up or –down orbital is replaced by unoccupied 
(conduction) states with similar spin. Neither of these states have definite total spin. 
However, the combination  is a singlet 

with total spin S = 0. We now use the rules for matrix elements between Slater 
determinants [2] to calculate for the momentum  
 
 . 
 
Moreover, the energy difference between the singlet and the ground state is simply 

. Hence, Eq.(18.1) reduces exactly to Eq.(15.3) in this case. 

 
We now wish to be somewhat more accurate. To this end, we write the excited states 
as linear combinations of the singlets above, i.e. 
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 , 

 
where  are unknown expansion factors. The problem is how to find matrix 
elements of the total Hamiltonian for any two singlets 
 
 . 
 
The total Hamiltonian is given by 
  

 , 

 
where  is the single-electron Hamiltonian. As a start we look at the energy of the 
ground state 
 

 .  

 
Note that the additional factors of 2 appear because the spin-summation has already 
been performed. Next, we look at the diagonal elements for the state . 

Compared to the ground state,  should be replaced by . It follows that 
 

 

 
We now introduce the quasi-particle energies 
 

  

 
Note that there is no restriction on the summations, i.e. all valence states are summed. 
In terms of these quantities we have 
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where the last two terms serve to correct the unrestricted summations in the quasi-
particle energies. The exact same expression is obtained if the spin-down Slater 
determinant is considered. The cross-term yields 
 
 . 
 
Combining, we find the full diagonal matrix element for the singlet excitation 
 
 .  

 
It can be shown that coupling between singly excited states and the ground state is 
identically zero, i.e. that  [3]. The non-zero off-diagonal terms 
follow in much the same style as the diagonal ones 
 

  

 
As  is the ground state energy, which we use as a zero-point of energy, we 
finally find 
 
 . (18.2) 

 
The matrix problem then reads as 
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from which exciton wave functions and energies are computed. In turn, the exciton 
momentum matrix elements become 
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We now specialize to periodic solids for which orbitals are labeled by a band index 

(v or c) and a wave vector . In an optical process, the only relevant excitations are 

those that preserve  (neglecting the small momentum lost/gained by the photon). 
Thus, the singlets are of the type . In turn, the sought matrix elements 
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where Coulomb and exchange matrix elements are defined as 
 

  

 
In a more rigorous derivation [4], it turns out that the Coulomb interaction should be 
screened by surrounding charges, so that introducing the dielectric constant  we 
find 
 

 . 

 
This full matrix equation (using the screened Coulomb interaction) is known as the 
Bethe-Salpeter equation. 
 
18.1 Wannier Model 
 
The framework above is terribly complicated and extremely difficult to handle 
numerically. Fortunately, a much simplified version can be applied in many cases 
provided the Coulomb interaction is not too strong. To derive this “Wannier” model 
we first note that the eigenstates of a periodic solid can be written as 
 

 , 

 
where  is the lattice-periodic part normalized so that  
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with the integral taken over the unit cell volume . We first turn to the Coulomb 
matrix element. The product  has a rapidly varying periodic 
part and slow part. In analogy with Chapter 15, we will approximate the integral 
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In a completely analogous manner, the exchange integral becomes 
 

 . 

 

Now, at  we have . Hence, if the k-dependence is not too severe we 

may assume that  hold approximately to a reasonable degree even when 

. In this case, we find the much simpler approximations 
 

  

 
Hence, the bands decouple and we can focus on a single pair v and c. The 
Hamiltonian matrix elements become 
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where we have skipped the band indices on the matrix elements. Also, the unknown 
expansion coefficients can be re-labeled according to . It follows that the 
exciton eigenvalue problem is now 
 

 . 

 

Here, the  summation can be turned into an integral, i.e. 
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The final approximation of the Wannier model consists in applying the effective mass 
dispersion for both bands so that 
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In this way, the k-space eigenproblem can be transformed into physical space by 
means of a simple inverse Fourier transform: 
 

 . 

 
The  factors are inserted to ensure that  is normalized. Moreover, the 
Coulomb term above is simply the convolution between the wave function and the 
Coulomb potential and, hence, we finally find 
 

 . (18.5) 

 
It is apparent that this so-called Wannier equation is mathematically similar to the 
Schrödinger equation for the hydrogen atom. The differences are that  replaces 
the reduced electron-nucleus mass and that  screens the Coulomb term. The 
physical interpretation is that the positive hole and negative electron interact via an 
attractive Coulomb potential. We note that only the relative motion of the electron-
hole pair is present in the problem, so that the states have a vanishing centre-of-mass 

momentum. This is a consequence of our retaining only  excitations in the 
expansion, i.e. neglecting photon momentum. Hence, the centre-of-mass momentum 
must vanish both before and after the photon is emitted/absorbed. 
 
To eventually calculate the optical properties, we need the momentum matrix 
element Eq.(18.3), which now reads as 
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As a simplification, we may take the single-electron momentum matrix element 

independent of  so that , which means that  

 

 , 

 
where  is the exciton wave function in physical space evaluated at the origin. 
This leads to a simple expression for the optical response 
 

  (18.6) 
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In this approximation, only exciton states that are finite at the origin (“s-type”) 
contribute to the response. In the following, we evaluate the imaginary part in the 
limit of vanishing broadening 
 

  (18.7) 

 
for bulk and low-dimensional cases. 
 
Exercise: Natural exciton units 
 
The Wannier equation Eq.(18.5) is formulated in SI units and it is advantageous to 
switch to more natural units. 
 
a) Show that using  as the unit of length and  as 
the energy unit, the Wannier equation reduces to 
 

 . 

 
b) Show that  and  (m is the free electron 
mass) and evaluate both for GaAs:  
and for ZnO: (including effective 
phonon contribution). 
 
References 
 
[1] G.E. Jellison and L.A. Boatner, Phys. Rev. B58, 3586 (1998). 
[2] J.P. Dahl Introduction to the Quantum World of Atoms and Molecules (World 
Scientific, Singapore, 2001) 
[3] L. Salem The Molecular Orbital Theory of Conjugated Systems (W.A. Benjamin, New 
York, 1966). 
[4] M. Rohlfing and S.G. Louie, Phys. Rev. B62, 4927 (2000) 

2 2
2

2 2
0

2 | |Im ( ) (0) ( )vc
exc exc

exc

e p E
m


   

 
   

2 2
04 /B eha m e  

2 2/2 eh BRy m a 

 2 2( ) ( ) ( )g exc exc exc excE r r E r
r

     
  

0.529Å /B eha m m   213.6eV /ehRy m m  
0.066 , 0.5  (heavy hole), 12.9e hm m m m   

0.28 , 0.59  (heavy hole), 6.7e hm m m m   



 167 

19. Excitons in Bulk and Two-dimensional Semiconductors 
 
 
The Wannier model derived in the previous chapter provides a simple framework 
for the inclusion of excitons in the optical properties of semiconductors. In this 
chapter, we will evaluate the optical response for 3D and 2D semiconductors. As will 
become apparent, excitonic effects in low-dimensional semiconductors are hugely 
enhanced. The reason is that excitonic effects originate from the attractive interaction 
between electrons and holes. The stronger the attraction, the more pronounced the 
excitonic corrections to the response. But an additional confinement will also tend to 
localize electrons and holes in the same region of space and, hence, increase the 
overlap of their wave functions. This may increase the Coulomb attraction 
significantly.  
 
We begin by investigating the 3D or bulk case. The starting point is the Wannier 
equation written in natural exciton units (using  as the units of length and 
energy, respectively) 
 

 . 

 
The expression for the susceptibility Eq.(18.6) shows that only s-type eigenstates are 
relevant. These are nothing but the usual eigenstates of the hydrogen atom. For the 
bound states with energy below  we have in terms of the principle quantum 
number n = 1, 2, 3,…, 
 

 . 

 
Here,  is an associated Laguerre polynomial. As we use  as the unit of energy 
it follows that these states form a series of resonances located spectrally between  

and . Hence, bound excitons lead to discrete absorption peaks below the 

band gap. The continuum states with  are harder, in part because they cannot 
be normalized in the usual sense. To circumvent this problem, we enclose the exciton 
in a large sphere of radius R [1]. We let the wave function vanish on the surface of 
the sphere and eventually let the radius go to infinity. We write  so that 
the radial Schrödinger equation becomes 
 

 . 

 
A solution is  
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 , 
 
where F is called a confluent hypergeometric function (see e.g. [2] for details). We 
need to study the behavior as r approaches R to fulfill the boundary conditions. Since 
R is eventually taken very large, we can use the asymptotic expression for F. We can 
also apply the asymptotic expression to determine the normalization constant N 
because we mainly integrate over a region with r large. The asymptotic limit is 
 

  

 
Hence, to normalize we integrate within the sphere 
 

 . 

 
It follows that the wave function at the origin is given by 
 

  

 
The main remaining problem lies in summing the continuum solutions while taking 

. For this purpose we introduce the weighted joint density of states 
 

 , 

 
where the sum is over all continuum states. From the asymptotic expression for the 
wave function above, it is clear that the allowed values of  fulfill , 
where p is an integer. Hence, the distance between allowed values of  is 
. We can therefore write the sum as 
 

 . 

 
Taking  means  and so, converting to an integral, we find the simple 
result 
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  (19.1) 

 
where  is the unit step function. Reverting to SI units means reintroducing  and

. Since S has units of  we need to divide by a factor 

 using the relation  and we can then 
write the final result as 
 

 , 

 
with . This formula is called the 3D Elliott formula. Based on this 
result, the real part can be obtained using the Kramers-Kronig relations and 
broadening can be introduced through convolution with a Lorentzian broadening 
function. This leads to the expression  
 

 , 

 
where  is now the excitonic susceptibility function given by [3] 
 
 

 

where  and  is the energy of the n’th bound exciton. In Fig. 

19.1, the real and imaginary parts are plotted for a 3D material with = 1.5 eV and 
varying values of the effective Rydberg and broadening. 
 
To see that the Elliott formula has the correct limiting behavior if Coulomb effects 
become negligible (if e.g.  becomes very large) we should take  and 
accordingly . We note that   
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 . 

 
Also, the contribution from bound excitons vanishes. Hence, we find the approximate 
expression 
 

  

 
This expression is identical to the imaginary part of the independent-electron result 
Eq.(16.2)  if vanishing broadening is assumed.   

 
Figure 19.1. The excitonic susceptibility function for a bulk semiconductor. The plots illustrate the 

effect of varying the strength of the Coulomb interaction (left panels) and broadening (right 
panels). 

 
19.1 Excitons in Quantum Wells 
 
We will consider the case of an electron-hole pair confined to a thin quantum well. It 
is assumed that light is polarized along the quantum well plane so that the motion 
perpendicular to the plane (taken as the z direction) is not excited. As in the 3D case, 
we therefore require a vanishing centre-of-mass momentum in the plane. Hence, for 
the in-plane motion only the relative part is retained and the electron-hole pair is 
characterized by a Hamiltonian (in polar coordinates) 
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 . (19.2) 

 
Here,  is the Hamiltonian for the z motion of the electron 

confined by the quantum well potential  and  is the analogous term for the 
hole. We will now specialize to the idealized case of an exciton confined to an 
extremely thin quantum well. The strong confinement means that  and so we 
will use the simplifying approximation 
 

 . (19.3) 

 
This means that the Hamiltonian becomes a sum , where 

 describes the in-plane relative motion. As a consequence, the exciton wave 

function is a product , where  is an eigenstate of  
and similarly for the hole. We assume that the z-motion of both electrons and holes 
are frozen in the lowest eigenstates. This amounts to replacing the true band gap  

by the effective one , where  is the sum of electron and hole 

quantization energies (in previous chapter we used the notation  for ). The in-
plane relative motion then leads to a purely two-dimensional Wannier equation 
given in polar coordinates by 
 

 . 

 
This problem is mathematically identical to a hydrogen atom in two dimensions. The 
s-type bound states (with no angular dependence) are quite similar to the 3D case 
and can be written 
 

 . 

 
Here, the principle quantum number n is again an integer, but now the allowed 
values include zero, i.e. n = 0, 1, 2, … The most important feature of this result 
compared to the 3D case is that the binding energy of the lowest exciton is now  

whereas excitons in bulk were bound by no more that . This is a direct 
manifestation of the increased electron-hole overlap in low-dimensional geometries.  
The continuum states are also highly similar to the bulk case and found to be 
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 , 
 
with a normalization condition that is now 
 

 . 

 
This result corresponds to normalization within a circle of radius R. Eventually, it 
follows that the wave function at the origin is given by 
 

  

 
Summing over the continuum states leads to a result identical to Eq.(19.1) except that 
sinh is replaced by cosh. Finally, we arrive at a 2D Elliott formula describing the 
excitonic absorption in an ultrathin quantum well of width d: 
 

 . 

 
Here,  and the relation  has been utilized. Also, 
it is clear that in the limit of independent electrons we find 
 

 , 

 
in agreement with Chapter 16. Again, broadening can be introduced and the real part 
can be added so that the full 2D excitonic susceptibility becomes  
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with the susceptibility function [4] 
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where  and  is the energy of the n’th bound exciton. 
In Fig. 19.2, we have plotted this result. It is clearly seen that excitons lead to a 
complete reorganization of the spectra. A huge excitonic resonance located  
below the band gap emerges but also the continuum part of the spectrum is severely 
modified. 
 

 
Figure 19.2. The excitonic susceptibility function for a semiconductor quantum well.  

In the plots, the effective band gap is taken as 1.6 eV. 
 

Exercise: Variational treatment of quantum well excitons 

In this exercise, we will return to the quantum well Hamiltonian Eq.(19.2) and look 
for more accurate solutions. Primarily, we will not apply the simple approximation 
Eq.(19.3). However, we will still look for solutions of the form 

 with  an eigenstate of  and similarly for the hole. 

Hence, the improvement lies in finding a better estimate for  and for this purpose 
we will use the variational method. 

 

a) Show using Eq.(19.2) that the expectation value for the energy is 
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with an effective potential 
 

 , 

 
As a simple example, we consider a quantum well of width d with infinite barriers. 
This means that the eigenstates for the z-motion are . 
 
b) Using  and  show that  
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Evaluating the v integral, we find 
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with . As a particular variational ansatz, we will 
try the form . 
 
c) Show that the ansatz is normalized and that the kinetic energy is . Use these 
results to demonstrate that 
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where . 

 
In can be shown that , where  
are Bessel and Struve functions, respectively. If d is sufficiently small, this rather 
complicated expression may be approximated by the 1. order expansion 

. 
 
 
d) Show that  
 

2

2 2

( ) ( )
( ) 2

( )
e e h h

e h
e h

z z
V r dz dz

r z z
 


 



2( ) sin( )z
d dz  

( )/e hu z z d  ( )/e hv z z d 

1

2 2
0

( )2( )
( / )

h uV r du
d r d u






3
2( ) (1 )[2 cos(2 )] sin(2 )h u u u u    

2( ) rr e 


 


2

1
2

0

( ) ( )gE E h u W u du  

2 2

2 2
0

8( )
( / )

re rW u dr
d r d u

  






 2 2
1 1( ) 4 (2 ) H (2 )W u u d Y u d u d      1 1 and HY

2( ) 4 8W u u d  



 175 

 , 

 
and that by minimizing with respect to  that the optimal energy  is given by 
 

 . 

 
In the plot below, the exciton binding energy is plotted versus the width of the 
quantum well, both in natural exciton units. 
 
 
 
 

 

 

 

 

 

 

 
 
 

Figure 19.3. Variational calculation of the binding energy of excitons in a  
semiconductor quantum well.  
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20. Excitons in Nanowires and Nanotubes 
 

 
We have seen that confinement in quantum wells leads to enhanced excitonic effects 
in the optical response of semiconductors. The binding energy of the strongest bound 
excitons increase by a factor of 4 in the ideal 2D case. Consequently, one expects this 
trend to continue to 1D-structures with even stronger binding of excitons. As we will 
see, this is precisely what happens even to the point, where excitons completely 
dominate the response. 
 
Following the previous chapter, we will limit ourselves to variational calculations of 
excitons in 1D-structures. These structures are assumed to be infinite along the long-
axis direction and strongly confining in the two transverse dimensions. Also, the 
system is excited along the long-axis so that centre-of-mass momentum for this 
direction is to remain zero throughout. We take the z-axis as the long-axis and so the 
confined electron-hole pair is described by the Hamiltonian 
 

 . (20.1) 

 
Here,  is the Hamiltonian for the 

transverse motion of the electron confined by the potential  and  is the 
analogous term for the hole. In this expression, the effective electron and hole masses 
should be taken in units of the reduced electron-hole pair mass, which is taken as the 
unit of mass. In a purely variational treatment, we attempt to describe the exciton 
state by the variational ansatz . The corresponding 
expectation value for the energy is then 
 

 , (20.2) 

 
with  and an effective potential 
 

 . (20.3) 

 
At this point, it is instructive to consider some specific examples of transverse 
confinement: 
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A. Rectangular nanowire with transverse dimensions  (Ref. [1]): 
  

 

 
B. Hexagonal nanowire with diameter  (Ref. [2]): 
 

 

 
C. Circular nanotube with radius r (Ref. [3]): 
 

 

 
We note that in the nanotube model, the wave function is completely localized to the 
cylinder wall and rather than giving the wave function itself, we give the normalized 
square. In cases A and B, the effective potential can only be computed numerically. 
However, for the nanotube model an analytic result can be found. To this end, we 
introduce polar transverse coordinates  and . Due to the 
complete localization on the cylinder wall, we always have . In this manner, 

 . Hence, in polar coordinates, 
 

  (20.4) 

 
In the last line, K is a so-called complete elliptic integral of the 1st kind defined by  
 

 . 

 
From this definition, it is seen that  and the potential approaches the bare 
1D Coulomb potential  in the limit . From Eq.(20.3) it is clear that 
this must always be the limit of a 1D effective potential whenever the confining 
potential becomes sufficiently narrow that  and  because of the 
confinement.  
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Figure 20.1. Effective Coulomb potential for three different 1D confinements 
compared to the bare potential. 

 
The actual effective potentials for the three models listed above are illustrated in Fig. 
20.1.  When compared to the bare Coulomb potential, it is clear that the behaviour as 

 is must less singular. Hence, for models A and B, the singularity is completely 
removed and for C, the singularity is now logarithmic instead of . However, 
in all cases the bare potential  is found as a limit when the diameter of the 
nanowire or –tube becomes very small. It might then be thought that a viable and 
simple model for 1D excitons would result from using the pure 1D potential 

 in Eq.(20.2) similarly to the 2D quantum well case. To look at the 
properties of this simple model we need to start with a “regularized” potential, 
however. For this purpose, we will take  as our potential, where 
c is a positive constant, which should eventually be taken to zero. This “Loudon” 
model was originally analyzed by R. Loudon [4]. The form is mathematically simpler 
than any of the alternatives above. As our variational ansatz we will, as usual, try the 
exponential . Differentiating twice leads to  

. Thus, the expectation value Eq.(20.2) is 
 

 . 

 
Evaluating this integral leads to yet another complicated function: the exponential 
integral :  
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However, as c should go to zero we can use an expansion based on partial integration 
valid for small c 
 

  (20.5) 

 

where the integral  with = 0.577… as Euler’s constant 

has been applied. Differentiating, one finds . With a few 
manipulations this condition can be reformulated as 
 

 . 

 
The solution to this equation is given by the “product logarithm” (pl), c.f. Chapter 13. 
Thus, the solution for  is  
 

 , 

 
where the second expression is the expansion for low c. Accordingly, the energy is 
 

 . 

 
As the plot of the product logarithm in Chapter 13 shows, it is a monotonically 
increasing function that diverges logarithmically as the argument increases. The 
extremely important conclusion is this: as c goes to zero, we find  and 
. Hence, the wave function becomes completely localized to the point . This is 
not an artefact of the variational approach because the variational estimate for the 
energy is always higher than the true value. We therefore conclude that the 1D 
Coulomb model is “pathological” in that the ground state collapses and the ground 
state energy diverges. In Fig. 20.2, we illustrate the behaviour of the energy as c 
becomes smaller. 
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Figure 20.2. Binding energy and variational parameter (inset) in the Loudon model 
as a function of the potential cut-off. 

 
20.1 1s Excitons in Carbon Nanotubes 
 
Even though the pure 1D Coulomb model is clearly unphysical, it is still correct that 
the true potential for all realistic models approaches this strange situation as the 
confinement becomes stronger. Hence, even if actual exciton binding energies 
obviously do not diverge, they can still grow extremely large compared to bulk 
values. As an example of this, we now consider the true nanotube potential given by 
Eq.(20.4). With the same exponential ansatz as above, we find the energy expectation 
value 
 

 , 

 
where  and  are Bessel functions of first and second kind, respectively, and  
is a generalized hypergeometric function [5]. The similarity with the Loudon model 
above becomes apparent if we again use partial integration to approximate to lowest 
order in r. Using the definition of the elliptic integral, we have 
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The indefinite integral of  is  and it follows that 
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Comparing to Eq.(20.5), we see that r takes the place of 2c. We therefore expect to find 
precisely the same behavior as above when r goes to zero. It should be noted that this 
similarity is obtained even though the nanotube potential is actually (logarithmically) 
divergent at the origin whereas the Loudon model potential is finite. The exciton 
binding energy for the nanotube model is illustrated in Fig. 20.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.3. Binding energy and variational parameter (inset) of excitons in carbon 
nanotubes as a function of nanotube radius, all in natural exciton units. 

 
From Fig. 20.3 it is apparent that the exciton binding energy may become very large 
if the nanotube radius is sufficiently small. The question is then: what are the actual 
values of ? We recall that  and  

. Hence, to answer this question we need the reduced effective 
electron-hole pair mass and a value of the dielectric constant. The latter is relatively 
straight-forward since most experiments are performed in liquid suspensions and a 
reasonable value describing the screening in this case is  [3]. To compute  
we need to consider the band structure. For nanotubes excited along the long-axis the 
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allowed transitions are between bands symmetrically positioned above and below 
the Fermi level. In a simple nearest-neighbor tight-binding model of graphene, the 
transition energy is given by Eq.(17.2) 
 

 , (20.6) 

 
where eV is the hopping integral and a = 2.46 Å is the lattice constant. Using 
zone-folding, this also applies to nanotubes as discussed in App. 1. The nanotube is 
characterized by the chiral indices  and in terms of these, the components of the 
k-vector are 
 

  

 
Here, k is the continuous long-axis component of the k-vector and q is the quantized 
short-axis component given by , where p is an integer and r is the radius. 

Also,  is the radius in units of , i.e. . An important 
point about the energy dispersion Eq.(20.6) is that  with 

. Thus, the band gap is found at the allowed k-point closest to 
. To simplify the analysis, we expand the dispersion in the vicinity of  and find 
 
 . 
 
We introduce  and  as unit vectors for the long-axis and short-axis, respectively. 

If we express  and  in terms of the projections along these directions we find 
 and similarly , where it can be shown that 

. Hence, setting q = Q, leads to the condition . This condition can only 
be fulfilled if  is an integer in which case the nanotube is a metal. If not, 
the minimum difference becomes . In this case, the minimum 
transition energy, i.e. the band gap , then becomes 
 

 . 

 
To find the effective mass, we consider an approximately parabolic dispersion  
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so that, to lowest order, the square becomes . On the 
other hand, the square of the energy dispersion for the nanotube near the minimum 
is 
 

  

 
Hence, a comparison demonstrates that . Consequently the 
effective mass is proportional to the band gap. Plugging in the numbers it turns out 
that  and . An extremely important point is then 

that the effective Bohr radius  becomes a linear function of r 

given by . As a consequence, the radius r measured in units of  is always 
roughly 0.1!. At this value, the exciton binding energy as computed above and 
illustrated in Fig. 20.3 is around -7.44 . A more accurate calculation [3] finds a 

binding energy of approximately -8.1 . It is noted that these values are 

substantially higher than the maximum value -4  found for 2D structures. In 
analogy with the effective Bohr radius, the effective Rydberg also depends on r and 
inserting values we find . It therefore follows that the ratio 
between exciton binding energy and band gap is a near constant of around -40%. This 
is obviously a huge value, which will completely rearrange the optical response. 
 
As an example, we consider the (7,6) nanotube with a radius of r = 4.4 Å. For this 
structure, the exciton binding energy is then -0.39 eV. Unfortunately, there is no 
simple way to sum all the contributions to the optical response analytically. Instead, 
a numerical calculation of bound and unbound excitons can be made using a finite 
basis set [6]. Summing the different terms leads to the spectrum shown in Fig. 20.4, 
where the independent-particle result is included for comparison. The very large red-
shift of the resonance corresponds to the value of the exciton binding energy. Also, it 
is noticed that the peak is now much more symmetric than the inverse square-root of 
the independent-particle spectrum. 
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Figure 20.4. Normalized absorption spectra of a (7,6) carbon nanotube. The curves 
show the spectra including and neglecting excitonic effects, respectively. 

 
Exercise: 2p nanotube excitons 
 
In this exercise, we will attempt to compute the energy of the 2p exciton in a nanotube 
and for this purpose the ansatz  will be used. Note that it is always 
orthogonal to the ground state.  
 
a) Show that  is normalized and that the kinetic energy is . 
 
The difficult part lies in determining an approximate expression for the Coulomb 
energy valid for small but finite r. It is given by  
 

 . 

 
As a start, we will consider the definite integral 
 

 . 

 
The first few indefinite integrals of the square-root are denoted  so that  
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b) Under the assumption that , show by repeated use of partial integration 
that 
 

  

 
At this stage, no approximations have been made. However, to actually calculate the 
integral, we will now use the small-x expansion 
 

  

 
In the present example, f is the function  and so  
 

 
 
With this form and the approximate  we find 
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In turn, W becomes  and we then have 
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The total energy is therefore . 
 
c) Show that the minimum energy is approximately 
 
 . 
 
This result is plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.5. Variational 2p exciton binding energy. 
 
References 
 
[1] T.G. Pedersen, P.M. Johansen and H. C. Pedersen, Phys. Rev. B61, 10504 (2000). 
[2] T.G. Pedersen, Phys. Stat. Sol. (c) 2, 4026 (2005). 
[3] T.G. Pedersen, Phys. Rev. B67, 073401 (2003). 
[4] R. Loudon, Am. J. Phys. 27, 649 (1959). 
[5] I.S. Gradsteyn and I.M. Ryzhik Table of Integrals, Series and Products (Academic 
Press, San Diego, 1994). 
[6] T.G. Pedersen, Carbon 42, 1007 (2004). 

 

 2 3 2
2 2 8 1 ln( )p gE E r r         

 2
2 1 8 1 lnp gE E r r    



 187 

21. Electro-Optics 
 
 
The term “electro-optics” refers to the fact that the optical properties of a material can 

be altered by the presence of an electrostatic field . Basically, such a field displaces 
the electrons (and ions), thereby changing the eigenstates of the system. This, in turn, 
is reflected in the optical response. If the electric field is weak, the change can be 
treated as a perturbation. Hence, the dielectric constant is perturbed, i.e. 

. Here,  is the linear (or Pockels) and  is the quadratic 
(or Kerr) electro-optic correction. In certain simple cases, however, it is possible to 
include the electrostatic field to all orders. This “non-perturbative” theory is 
applicable even when the field becomes comparable to the inter-atomic fields of the 
material itself. In this chapter, we will investigate this situation for semiconductors 
in the effective-mass approximation. If the k-dependence of momentum matrix 
elements can be ignored we will show that the model is sufficiently simple to allow 
including the field to all orders. This leads to the so-called Franz-Keldysh theory for 
the electro-optic response. The prerequisite for such a calculation is an exact solution 

for the stationary eigenstates of the semiconductor in the presence of . We therefore 
need to compute these states.  
 
Before turning to the states themselves, however, we will discuss the approach to the 
response calculation. The slightly subtle point here is that we will apply the 
framework developed for the excitonic response even if electron-hole interactions are 
ignored. Recall that for Wannier excitons the imaginary part of the optical response 
was given by Eq. (18.7) 
 

 . (21.1) 

 
Here,  is the relative-motion part of electron-hole pair wave-function and  is 
the associated energy measured relative to the ground state. To make sure that 
Eq.(21.1), in fact, agrees with the expectations even if there is no Coulomb attraction, 
it is instructive to consider a free electron-hole pair. Hence, we start our analysis by 
revisiting the simple case of free carriers in a one-dimensional semiconductor. 
 
21.1 One-Dimensional Materials 
 
Specifically, we choose a one-dimensional material with a width d and length L and 
the long-axis along the z-direction. Hence, the relative-motion part of electron-hole 
pair wave-function is simply  and the energy is . It 
is then a simple matter to show that 
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  (21.2) 

 
in full agreement with Eq. (16.4) in the limit of vanishing broadening.  
 
Having established the validity for free carriers, we now turn to the problem in a field 
oriented along the 1D structure [1]. All the corrections result from the effect on the 
electron-hole given by  as the electrons and hole have negative and 
positive charges, respectively. We therefore should solve the “Wannier equation” 
 

 . (21.3) 

 
What are the natural distance and energy units for the problem? To answer this, we 
write  with  a constant and equate the prefactors of the kinetic and potential 
energy terms:  leading to . Defining, 

moreover,  and  we find 
 

 . 

 
From Airy’s differential equation, which we encountered in Chapter 5, it is then clear 
that . 
 
In Fig. 21.1 below, we have plotted the Airy function together with its asymptotics as 
the argument goes to plus or minus infinity. As the argument increases, the function 
decays exponentially as expected for the range, in which the energy is less that the 
potential, i.e. when . In contrast, the function oscillates as a damped sinusoidal 
at large negative arguments. This last fact allows us to provide a quantization 
condition for the energies and a normalization condition for the wave function. What 
we imagine is a “hard wall” erected at  with L a large positive distance that is 
eventually taken to infinity. Using the sine-asymptotic that is valid near the wall it is 
then found that the allowed energies are 
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Figure 21.1. Airy function and its asymptotic expressions for large positive and negative arguments. 
 
To normalize the wave function we should obviously integrate between  and 

. To evaluate the integral, a useful property of the Airy function is that 
 
 , (21.5) 

 
where  is the derivative of the Airy function. This indefinite integral vanishes at 

 because of the exponential decay and at  we are allowed to use sine-
asymptotic. In this manner, it follows that the normalized wave function is 
 

 . (21.6) 

 
At this stage we can then write the optical susceptibility as 
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Because of the delta-function and using  we immediately see 
that 
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increase. Now, suppose we fix our attention on some large n that contributes to the 
response for a particular frequency . Near n we find 
 

   

 
The point is that the derivative decreases with n and higher derivatives decrease even 
faster. Hence, the expansion can safely be terminated at first order. The allowed 
values of n are spaced by  but the allowed values of  apparently lie closer 
and closer as n increases. This eventually means that we can convert the sum over n 
to an integral over  as follows 
 

(21.7) 

 
This important result is our analytical expression for the Franz-Keldysh effect in one-
dimensional semiconductors. To verify that it conforms to the usual field-free result 
Eq.(21.2) we again use the asymptotics of the Airy function. As  goes to zero the 
Airy function dies exponentially if . On the other hand, if  the function 
approaches an increasing rapidly oscillating sine function. If we add a little 
broadening, the square of this wildly oscillating sine is approximately ½ and so we 
find 
 

   

 
This obviously agrees as it should. 
 
21.2 Two- and Three-Dimensional Materials 
 
Adding additional dimensions to the problem is, in fact, completely straight-forward. 
Since the dimensions are decoupled in the effective-mass approximation the wave 
function is a simple product and the energy is a sum of contributions from the 
different dimensions. For a two-dimensional semiconductor we then need to add the 
transverse kinetic energy to the band gap , where k is the wave 
vector component perpendicular to the electrostatic field. If the added dimension is 
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in the x direction (and has an extent ) and we now take d to designate the thickness 
of the 2D slab, the Wannier wave function becomes 
 

 . (21.8) 

 
Thus, the upshot is a response given by 
 

 .  

 
Converting both sums to integrals, we then find 
 

  

 
This integral cannot be evaluated in closed form except in terms of hypergeometric 

functions. However, introducing the indefinite integral  it can be 

shown that [2] 
 

 . (21.9) 

 
The function  approaches the step function  at large negative arguments 
and so the entire expression is in agreement with our previous result Eq.(16.3). The 
three-dimensional case is even simpler [2]. Here, we take k to be the magnitude of the 
transverse wave vector and by simple generalization of the result above we see that 
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Due to the additional k under the integral we immediately see that using Eq.(21.5) 
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  (21.10) 

 
The complicated Airy expression has the limit 
 

    

 
This means that also Eq.(21.10) is in agreement with the field-free expression. To 
illustrate the effect of dimensionality on the response it is instructive to consider the 
electro-optic susceptibility functions with  
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21.2. Electro-optic susceptibility functions for various dimensions. 

 
As shown in Fig. 21.2, the modulation of the spectrum increases gradually as the 
dimension decreases. Hence, low-dimensional systems are most strongly affected by 
the field. 
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21.3 Beyond the Wannier Model 
 
All of the results above relied on the Wannier approximations: effective-mass 
dispersion for the band structure and ignored k-dependence of the momentum 
matrix element. We now aim to improve this framework at the price of abandoning 
fully analytic results. First, we Fourier-transform the wave function, i.e. write  
 
 , 

 
where  denotes the k-component perpendicular to the field. Next, if we Fourier-
transform the Wannier equation, such as Eq.(21.3), we find 
 

 . 

 
This expression is really much more general than it appears. As it can be 
demonstrated using the approach in Chapter 18, it actually holds for any band 
structure, not only parabolic bands. Furthermore, this equation has a general solution 
 

 . 

 
Here, the normalization is chosen such that . Thus, we 

are now able to go beyond the effective mass approximation. In fact, we can also 
easily include a k-dependent momentum matrix element if we apply the generalized 
response expression 
 

 . (21.11) 

 
Here, A is the area of the perpendicular dimensions. Applying this to a strictly 2D 
material such as graphene, it is convenient to introduce the sheet conductivity 

 so that 
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The property that ensures that our results have the right behaviour in the field-free 
limit is that 
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 , 

 

where  is understood to satisfy the resonance condition . This result 
follows from the saddle-point approximation to the integral in Eq.(21.11). 
 
Exercise: Franz-Keldysh effect in k-space 
 
We consider the simplest possible case of a one-dimensional semiconductor in the 
effective mass approximation so that and introduce the 
scaled wave vector  
 
a) Show that 
 

 . 

 

Using the integral representation  it then follows that 

 

 . 

  
b) Show that 
 
 . 

 
 
c) Using  demonstrate that 
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22. Semiconductor Lasers and LEDs 
 

 
Lasers and light-emitting diodes (LEDs) are arguably among the most significant 
optoelectronic applications of semiconductors. These devices are central in optical 
communication, LED displays, laser printers and CD/DVD drives. In fact, lasers and 
LEDs are not fundamentally different and a laser run at a current below lasing 
threshold will operate as an LED. In both devices, spontaneous emission is present. This 
light is diffuse and covers a relatively broad frequency range. In a laser, however, 
population inversion produces gain inside the light emitting material. If the optical 
gain exceeds the optical losses at some frequency, light will be amplified as it 
propagates along the material. As light of this particular frequency is amplified, the 
amount of stimulated emission at the same frequency is greatly enhanced since the 
stimulated emission rate is proportional to the light intensity. This, in turn, stimulates 
emission even further and, eventually, nearly all available energy is channeled into 
light emitted with one specific frequency, direction and polarization mode. Thus, a 
prerequisite for lasing is gain and in an LED the injected current just isn’t enough to 
produce amplification and, consequently, only spontaneous emission is obtained. In 
the present chapter, we will first investigate spontaneous emission and study the 
spectrum of the emission. Secondly, we will consider the condition for gain in bulk 
semiconductors and quantum wells. 
 
The structure of lasers and LEDs is similar to pn junction diodes discussed in 
Chapters 9 and 10. Hence, we consider a structure comprised of two halves: to the 
right the n-doped half having an excess of electrons and to the left the p-doped half 
containing excess holes. An essential point in this respect is that lasers and LEDs are 
not in equilibrium. This means that the population of electrons in different states does 
not follow the usual statistical mechanical Fermi distribution. The reason is that we 
have placed the device in a circuit and keep injecting electrons from the right and 
extracting electrons (injecting holes) from the left end of the junction. This constant 
supply of carriers drives the device out of equilibrium. Consider now the n-doped 
half, in which additional electrons are injected. If all the electrons here thermalize, i.e. 
establish a local equilibrium among themselves, this amounts to pushing up the 
Fermi level locally. Similarly, adding holes to the p-side amount to a lowering of the 
Fermi level there. Hence, under the assumption of separate quasi-equilibria on both 
sides the electron concentration n in the n-side and the hole concentration p in the p-
side are characterized by specific electrochemical potentials denoted  and , 
respectively. Clearly, in true equilibrium we would have . The actual 
non-equilibrium situation is illustrated in Fig. 22.1. This figure shows the band edges 

 and  in the junction and the position of the electrochemical potentials in cases 
with low (a) and high (b) injection. Panel (a) corresponds to the LED regime, for 
which injection is too small to achieve population inversion. Panel (b) is the laser 
situation, where the electrochemical potentials are pushed into the bands and a 
substantial density of excess electrons and holes is present. 

e h

e h FE  
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 Figure 22.1. Biased pn junction in non-equilibrium. The red arrows indicate 
electron-hole recombination across the gap. In (a), the injected current is small 
and we are in the LED regime. In (b), we are in the laser regime for which the 

electrochemical potentials may be pushed into the bands. 
 
A special situation arises in the interface where the two halves meet. Here, excess 
electrons in the conduction band have a chance to relax down into empty states in 
the valence band. This relaxation process is often referred to as electron-hole 
recombination. If the energy lost by the electron is given off in the form of radiation, 
the device is a light-emitting diode. The minimum energy loss is the band gap energy 

 and we therefore expect emission with a spectrum centered slightly above . If 
the probability of radiative emission is assumed independent of the initial and final 
energy of the electron, a simple calculation of the spectrum can be done. To this end, 
consider an electron jumping from the conduction band into the valence band while 
emitting a photon with en energy equal to that lost by the electron. If the final energy 
of the electron in the valence band is E and the emitted photon energy is , it 
follows that the initial electron energy of the transition must be . The number 
of emitted photons will be proportional to the number of recombining electron-hole 
pairs. Thus, we can evaluate the intensity distribution as the integral 
 

 , 

 
where the final electron energy E is restricted to the valence band . Note that 
this simplified model completely ignores “selection rules” in that all transitions are 
equally probable. The lower limit in the integral is derived from the requirement that 
the initial energy lies in the conduction band, i.e. . In this integral,  
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should be understood as the number of holes in the interval  and similarly 
for the electrons. With an electrochemical potential , the Fermi function for the 
electrons is given by 
 

  (22.1) 

 
The electron density per unit energy is given by this function, evaluated at an energy 

, times the density of states in the conduction band. Hence, in a bulk 
semiconductor the result is 
  

  

 
taking the electron density of states from Eq.(8.4). In the LED regime, the position of 

 ensures that  and so 
 

 . 

 
The probability that a level is occupied by a hole must equal one minus the 
probability that the level is occupied by an electron. Hence, with an electrochemical 
potential  the hole Fermi function is 
 

  (22.2) 

 
Using arguments similar to those used for electrons, the hole density per energy 
interval is 
 

 . 

 
Taking the product of electron and hole densities we find the following result for the 
emitted spectrum 
 

  (22.3) 
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The step-function here indicates that the energy of the emitted light must be at least 
the band gap energy, as expected. The spectral shape based on this result is depicted 
in Fig. 22.2 for a GaAs based LED operating at room temperature. 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

 Figure 22.2. LED spectrum at room temperature. 
 
22.1 Gain in Semiconductor Lasers 
 
If the injected current is sufficiently high it may lead to gain inside the semiconductor. 
In this situation, light is amplified as it travels along rather than being partially 
absorbed as it normally would. To understand the conditions for this special 
situation, we need to describe the propagation of light in a material. If the complex 
refractive index is  the complex amplitude of a wave propagating in the 
positive z direction evolves as 
 

 , 

 
where  is the wavelength. The intensity of the wave is proportional to  given 
by  
 

 . 

 
It is seen that the behavior of the intensity is determined by the imaginary part of the 
refractive index : If  the field is damped and if  the field is amplified. 
As  it follows that the sign of  is given by the sign of  the imaginary 
part of the susceptibility (  is always positive in semiconductor laser materials). 
Hence, the condition for gain, which is a prerequisite for laser action, is that . 
To investigate this condition we return to the susceptibility expression. In the present 
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discussion, we wish to include a finite temperature and so the appropriate expression 
is 
 

 , (22.4) 

 
in which  is now the generalized occupation factor given by 
 
 . 

 
The fact that  is the electron Fermi factor is used to obtain this result. It is 
seen that for the usual case of materials in thermal equilibrium at low temperatures 
with neither mobile electrons nor holes we’ll have  in agreement with the 
results of the last two chapters.  
 
We wish to simplify the discussion by taking the broadening to zero, i.e. . 
Furthermore, we will focus on the imaginary part of the susceptibility exclusively. 
The starting point is therefore to extract the imaginary part of Eq.(22.4) in the 
following manner: 
 

 

 
Used in Eq.(22.4) we find that 
 

 . (22.5) 

 
It is this general but simple result we now wish to evaluate for semiconductors of 
various dimensions just as we did for the ordinary susceptibility in the equilibrium 
situation. 
 
We begin by looking at bulk semiconductors, for which size quantization is absent 
and states are labeled by  alone. The susceptibility above then becomes 
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 . 

 
To evaluate the integral, we rely on the technique used in the previous chapter and 
introduce . Now, in terms of x we have 
 

 . 

 
Thus, upon changing the integration variable from  to x we find 
 

 

 
The two electrochemical potentials are not completely independent because we 
expect partial neutrality. If we assume that the electron and hole densities are equal, 
then the results of Chapter 8 for a 3-dimensional semiconductor show that, as far as 
we are in the low-injection regime,  
 

 .  

 
We use this relation below even if we are not strictly in the low-injection regime to 
determine  once  has been specified. For GaAs at room temperature, the right-
hand side of this relation is approximately 1.58 eV if . The spectra for four cases 
covering low, moderate and high injection are shown in Fig. 22.3. In the low-injection 
limit,  is well below the conduction band edge . In this case, the imaginary part 
of the susceptibility is always non-negative as shown in the figure. This corresponds 
to the usual material absorption, for which the spectrum follows a square root 

 behavior as derived in the previous chapter. When  is pushed above  
a region of negative absorption or, equivalently, positive gain develops. This range 
begins precisely at the band gap and the endpoint can be found by setting the gain 
expression to zero, which corresponds to the condition 
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Hence, the spectral gain range is  This clearly shows that at least 
one of the electrochemical potentials must be pushed into the band in order to achieve 
gain. The condition for gain  is precisely that of population inversion: The 
population of electrons in the conduction band must exceed that of the valence band. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 22.3. Spectra of the imaginary part of the susceptibility for different 

electron electrochemical potentials. Positive and negative values correspond 
to absorption and gain, respectively. 

 
Next, we turn to a semiconductor quantum well for comparison. The calculation 
proceeds precisely as for the susceptibility in the previous chapter. Converting the 
sum over the two-dimensional  to an integral, Eq.(22.5) yields 
 

 . 

 
Writing again  we have 
 

  

 
The final result is therefore 
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In Fig. 22.4, we plot the gain spectra for the quantum well similar to those of the bulk 
material. We have considered only the lowest subband transition  in the 
plot and taken the band edge as . To relate the electrochemical 
potentials we now use 
 

 . 

 
The most striking difference between the 2D and 3D cases is the abrupt jump at the 
band edge in the 2D case. This difference simply reflects the difference in density of 
states: For 3D and 2D cases, the density of states varies as a square-root and a step 
function of the energy measured from the band edge, respectively.  Hence, the steep 
profile in Fig. 22.4 is easily explained. If a quantum wire were considered, an even 
more abrupt inverse square-root behavior would have resulted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 22.4. Absorption/gain spectra for a quantum well assuming different 
values of the electron electrochemical potential.  

 
Thus, the laser gain directly reflects the density of states. In order to reduce the 
injection threshold for lasing in a given semiconductor structure it is obviously 
crucial that gain is maximized. As a consequence, lasing in low-dimensional 
structures is achieved at lower injection levels and more efficient lasers can be 
produced from these structures. At present, extremely efficient quantum well lasers 
are produced and serious efforts are put into developing lasers in quantum wire and 
even quantum dot structures in order to exploit their potentially large gain. 
Moreover, the low-dimensional structures may be used as waveguides for the optical 
field that will focus the intensity in the gain region. This will lower the lasing 
threshold even further. 
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22.2 Elementary Laser Model 
 
In this section, we investigate a simple laser model. In fact, the model is not restricted 
to semiconductor devices and could apply to other types as well. The main point is 
to show how pumping, i.e. injected current, determines the laser output above and 
below threshold. To make things maximally simple, we consider a single 
electromagnetic mode, assuming that all emitted photons go into this mode. Einstein 
showed that a collection of excited electronic systems will emit into this mode 
through both spontaneous and stimulated emission. Hence, the number of photons 

pN  will change in time according to  
 

 p
p

dN
N

dt
  ,  

 
where the two terms represent stimulated and spontaneous processes, respectively, 
and Einstein used detailed balance to show that identical factors   enter these rates. 
The rate   is obviously related to gain. However, to obtain a realistic model, we 
should also include losses. These derive from two sources: absorption in the medium 
and outcoupling of photons through mirrors or end-facets of the laser. Since both 
losses are proportional to pN , we may write 
 

 ( )p
th p

dN
N

dt
   , 

 
with th  the threshold gain, i.e. the gain required to perfectly balance losses. 
Assuming (0) 0pN  , this equation has the simple solution 

( ) /( ){exp( ) 1}p th thN t t    . Thus, if th  the photon number increases 
indefinitely and otherwise it approaches a constant. This behavior is clearly 
completely unphysical. The reason is that we have to include the exchange of energy 
between the photons and electronic system. 
 
We previously found that the optical power varies as 0 0( ) exp( 2 )iP z P n k z  . If we 
follow a pulse travelling at speed / rc n , this result can be converted into a time 
dependence 0( / ) exp( 2 / )r i rP z ct n P n t n    and, hence, / 2 /i rdP dt n n P . Since 

pP N  it follows that   is related to the imaginary part of the susceptibility via 
22 / /i r i rn n n    . As we have seen, i  decreases with the density of injected 

electrons, eventually providing gain as 0i  . If we assume an approximately linear 
dependence on the number of injected electrons eN , we can write eGN . Then, 
the coupled dynamics of electrons and photons is given by 
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( 1) ,

( 1) .

p
e p th p

e
e p e

dN
GN N N

dt
dN GN N N I
dt



  

   

 

 
The first term in the electron rate is de-excitation: if a photon is emitted, an electron 
has dropped to the valence band. Hence, the electron and photon terms for this 
process are identical but opposite in sign. The second term eN  is the rate, at which 
electrons relax to the valence band without emitting light. Finally, I is the pump flux 
of injected electrons, i.e. essentially the current. The coupled rate equations can only 
be solved numerically. However, at steady-state ( t  ), the time-derivatives 
vanish and we find 
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Figure 22.5. Illustration of steady-state photon and electron numbers in the laser model. 
 
These quantities, of which ( )pN   is essentially the laser output, are shown versus 
injected current in Fig. 22.5. The laser output rises dramatically above a threshold 
current /th thI G   that marks the onset of lasing. As expected, the threshold 
current increases with the non-radiative relaxation rate   and decreases with gain 
coefficient G. 
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Exercise: LED peak wavelength. 
 
It can be shown, that for a D-dimensional material, the LED spectrum is given by the 
following generalization of Eq.(22.3): 
 

  

 
The different spectra are illustrated in Fig. 22.5. To simplify the analysis, we introduce 
a normalized photon energy  and the normalized band gap . 
Note that . In this manner, the spectrum can be written 
 
  
 
a) Show that for a three-dimensional LED the spectrum peaks at a normalized photon 
energy z given by 
 

  

 
b) Repeat the question for a two-dimensional LED and show that here 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 22.5. LED emission spectra for 3, 2 and 1 dimensional cases. 
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23. Solar Cells  
 
 
The solar cell combines several aspects of both optical and electric properties of 
semiconductors. The optical aspects involve, obviously, absorption of solar radiation. 
But more subtle issues such as radiation produced by electron-hole recombination 
are important as well. The electric properties are equally significant as the bulk of the 
cell is a pn junction and the transport of carriers is clearly of great importance for the 
cell. In this chapter, we investigate the ideal solar cell.  This means that all 
imperfections of real solar cells that could, in principle, be eliminated are assumed 
eliminated. Nevertheless, there are strict limits to the efficiency of the solar cell. The 
starting point is the flux of photons from the sun. The sun is approximately a black 
body radiator with a surface temperature of  corresponding to 

. The photon flux (photons emitted per area×time×energy) is then 
given by 
 

 ,  

 
where E is the photon energy and  is Planck’s constant. The radiation spreads 
out as it travels from the sun, and on earth (outside the atmosphere) we receive a flux 

 given by 
 

 ,  

 
where  and  is the radius of the sun ( m) and the radius of earth’s orbit 
around the sun ( m). We therefore find that the number of photons per area 
and time reaching us is 
 

 ,  

 
where  is the Riemann zeta function. As each photon carries an energy E the 
intensity of the solar radiation becomes  
 

 .  

 
Plugging in numbers, we find 
 
 .  
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In reality, the sun is only approximately a black body radiator. Moreover, the 
influence of the atmosphere on earth means that a strongly modified spectrum is 
received. The flux corresponding to the actual spectrum is denoted  and looks 
as shown in Fig. 23.1. The spectrum received on earth when the sun is at an angle of 
48 degrees relative to the normal is called the AM1.5 spectrum [1]. Numerical 
integration reveals that for this spectrum 
 
 . (23.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.1. Experimental solar spectra above and below the atmosphere.  
The black line is the black body Planck distribution. 

 
23.1 Ultimate Efficiency 
 
A practical solar cell consists of semiconductor material characterized by a band gap. 
In ordinary cells, only a single layer is used but in more advanced “tandem solar 
cells”, several different layers are combined with the highest band gap material on 
top, as illustrated in Fig. 23.2. The layers are doped to form pn junctions that produce 
built-in electric fields, which serve to dissociate the photo-excited electron hole pairs. 
If a solar cell is held at a temperature of 0 K, no energy is lost to radiative 
recombination. A calculation of the efficiency in this situation leads to the so-called 
“ultimate efficiency”. Ideally, if every photon is absorbed, this might lead to an 
efficiency of 100%. However, immediately after absorption, an electron is a “hot 
carrier” with an energy higher than the conduction band edge. A certain time is 
needed before the electron is collected in a contact and during this time, the electron 
is practically certain to lose this excess energy to heat (phonons) because this process 
takes place on an extremely short time scale. As a consequence, the useable electron 
energy is reduced to that of the band edge. An analogous process applies to the holes 

( )En E
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and, in turn, the useable energy of each electron-hole pair equals the band gap . 
Hence, the band gap should be large to maximize this energy. However, with a large 
gap only a tiny fraction of the solar spectrum will be absorbed.  

 
 
 
 
 
 
 
 
 
 

Figure 23.2. Schematic illustration of an ordinary single-layer solar cell (left)  
and a two-layer tandem solar cell (right).  

 
Following this line of thought, the ultimate efficiency for a single-layer device is 
 

 . (23.2) 

 
Note that the lower limit of the integral in the numerator is . The result is 
illustrated in Fig. 23.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.3. Ultimate efficiency of an ideal solar cell operated at zero temperature 
 simulated using real (red) and black body (black) solar spectra.  

 
 
Using the Planck distribution, a maximum of 44% is found at a band gap around 1.1 
eV, which is very close to the value in silicon. To increase efficiency, multi-layer cells 
can be constructed. For example, a two-layer tandem device (Fig. 23.2) consists of two 
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different materials with the top layer having the highest band gap  and the 

bottom layer having a lower value . In this structure, the ultimate efficiency 
becomes 
 

 .  

 
As shown in Fig. 23.4, a maximum efficiency of around 60% is obtained with = 

0.76 eV and = 1.64 eV. With even more layers, the efficiency increases further and 
eventually reaches 100% for infinitely many layers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.4. Ultimate efficiency of an ideal tandem solar cell operated at zero temperature. The 
maximum efficiency of 60.4 % is found for low and high band gaps of 0.76 and 1.64 eV, respectively. 
 
It can be noted that band gaps of 0.76 and 1.64 eV match quite closely the values of 
the direct band gaps in Ge and GaAs, respectively. 
 
23.2 Shockley-Queisser Limit 
 
A solar cell at a temperature  cannot attain the ultimate efficiency for a simple 
reason: the increased number of electrons and holes produced by absorption will 
increase the number of recombination events. The smallest possible rate is obtained 
when only radiative recombination occurs. Hence, energy is lost as thermal radiation 
emitted by the cell. This case, which was first analyzed by Shockley and Queisser [2], 
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leads to the maximum efficiency for a cell at a temperature . In the literature, 
it is sometimes referred to as the “radiative” or “detailed balance” limit.  
 
The useable power in the ultimate efficiency calculation is derived in terms of optical 
properties. It has, however, an equally simple physical interpretation in electrical 
terms. Hence, in the ideal limit each absorbed photon produces one electron-hole 
pair. This means that the cell produces an electric current density, which is just the 
absorbed photon flux times the elementary charge. This maximal current, which is 
called the short circuit current , is therefore given by 
 

 .  

 
It follows from Eq.(23.1) that for a zero band gap material with perfect absorption a 
current density of 69 mA/cm2 can be produced. On the other hand, each 
electron-hole pair carries an energy  or, equivalently, a voltage of . This 

voltage would be the open circuit voltage of an ideal cell at 0 K, i.e. . 

Thus, the power produced by the ideal solar cell is simply the product . 
This product obviously equals the numerator in Eq.(23.2) as it should. 
 
We now turn to calculating the energy lost by radiative recombination inside the 
solar cell. To analyze this effect, we first consider the situation, in which the cell is not 
illuminated. In this case, the product of electron and hole densities is simply , i.e. 
the square of the intrinsic density, c.f. Chapter 9. The rate of radiative recombination 
events  is proportional to the product of electron and hole densities so that 

. This energy is emitted as thermal radiation characterized by a Planck 
distribution with a temperature  following the expression 
 

 .  

 
In this expression,  is the emissivity for photons of energy E. Moreover, the factor 
of 4 (instead of 2) accounts for the fact that the planar cell has two surfaces (front and 
back). In our model of a solar cell with perfect absorption above the band gap  and 

perfect transparency below, the emissivity is simply . By balancing 
recombination events and thermal emission we therefore find that 
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  (23.3) 

 
Here, the fact that  has been used. Now, when the cell is illuminated, a bias 

V develops across the cell. In the case, the carrier product increases from  to 

. Accordingly, the total radiative recombination current becomes 
 
 .  
 
The total current is then . It is convenient to write  so that  
 
 .  
 
It is clear that  is the actual short circuit current at . Similarly, we can 
find the open circuit voltage from the zero-crossing of the I/V characteristic: 
 

 .  

 
Using simple manipulations it follows that 
 

 .  

 
The quantity inside the curly brackets is much less than unity and so the correction 
is negative, i.e. . The temperature dependence of the open circuit voltage is 
shown in Fig. 23.5. It is apparent, that it decreases roughly linearly with temperature 
and for = 1.2 eV the open circuit voltage has dropped to 0.93 V at room 
temperature.  
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Figure 23.5. Open circuit voltage as a function of temperature and band gap. 
 
The I/V characteristic can be written in the simple form 
 
 . (23.4) 
 
This I/V characteristic is illustrated in Fig. 23.6. The power per area that is extracted 
from a cell operating at a certain voltage V is given by . The optimum 
working point (max power point) is found by differentiating  and the 
voltage at this point is the max point voltage .  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 23.6. Illustration of the I/V characteristic. The maximum power is extracted  
when the cell voltage is at the max point . 
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Using Eq.(23.4) we find 
 

 .  

 
The solution is given in terms of the product logarithm pl (see Chapter 13): 
 

 . 

 
This result for the power density is usually written in terms of the fill factor FF 
 

 . (23.5) 

 
In turn, the actual efficiency becomes 
 

 . (23.6) 

 
In Fig. 23.7, the temperature dependence of the efficiency is illustrated for three 
characteristic values of the band gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.7. Solar cell efficiency as a function of temperature and band gap. 
 
It is seen that the efficiency drops roughly linearly with temperature in the relevant 
range. Also, it is clear that at high enough temperatures, a higher band gap becomes 
favorable. For example, the efficiencies corresponding to band gaps of 1.2 and 1.5 eV 
cross around a temperature of 400 K. Fixing the temperature at room temperature 
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 300 K, the efficiency as a function of band gap is illustrated in Fig. 23.8. A 
maximum of 33.1% is found at a band gap of 1.35 eV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 23.8. Room temperature efficiency as a function of band gap  

calculated in the Shockley-Queisser limit. 
 
Exercise: Tandem solar cell in the Shockley-Queisser limit 
 
In this exercise, we will study a tandem solar cell at finite temperature. The total 
voltage across the device is V and the voltage drops across the low and high gap 
regions are  and , respectively,  such that .  
 
a) Show that the radiative recombination currents generated in the higher gap front 
cell  and the lower gap back cell  are 
 

   

 
To compute the total currents, it is important to realize that each layer illuminates the 
other layer. Hence, half of the recombination radiation of the front cell is emitted in 
the direction of the back cell and vice versa. Hence, the total current in the high gap 
layer is 
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b) Show that the current generated in lower gap back cell is 
 

   

 
The power generated by the tandem cell is . We introduce 

. 
 
c) Show by differentiating that the conditions for obtaining maximum power are 
 

 .  

 
These simultaneous equations reduce to 
 

   

 
Their solution can only be obtained numerically. However, from these solutions the 
efficiency is immediately calculated. The result for room temperature conditions is 
illustrated in Fig. 23.9. The corresponding analysis for more than two layers can be 
found in Ref. [3]. 
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Figure 23.9. Room temperature efficiency of a tandem solar cell. 
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24. Photonic Band Gap Structures 
 
 
The previous chapters have dealt with the microscopic background for the 
susceptibility of materials. The susceptibility determines the refractive index 

 and thereby the optical properties of the material. Since there is this link 
between the electronic structure and the optical properties we can to some extent 
design the optics by means of the atomic constituents of the material. In the 
discussion so far, however, we have focused on homogeneous materials. If we want 
even greater flexibility in the design we should go to inhomogeneous materials. That 
is, we should piece together regions of different materials in order to produce brand 
new composite materials with properties that are entirely different from those of the 
constituents. The simplest such example is a stack of alternating layers of two 
optically different materials. As we shall see, the properties of such a stack are 
radically different from a homogeneous material. To have a pronounced influence on 
the optical properties, the alternation of the materials should happen on a scale 
comparable to the optical wavelength. In a layered structure, for instance, the 
thickness of the different layers should be less than a wavelength and generally the 
typical length scale is around a few hundred nanometers. 
 
An especially important application of such artificial optical materials is as reflectors. 
Typically, metals are used as reflectors (basically mirrors) but metals are not perfect 
reflectors, in particular not for small wavelengths. A different problem is that metals 
are highly absorbing materials that cannot be used with high power optical fields in 
e.g. lasers because they are destroyed by the heating. Finally, metallic reflectors 
cannot easily be designed to serve more general purposes. For instance, you might 
want a structure that reflects 95% at a particular wavelength but only 5% at a nearby 
wavelength. Such a “clever” mirror can only be made using artificial materials. To 
see how, we should think about band structures of ordinary materials such as GaAs 
shown in Fig. 8.1. The band structure is characterized by alternating regions of 
allowed energy bands and forbidden energy gaps. If an electron has an energy lying 
inside one of the gaps, it cannot propagate inside the material. This means that if such 
an electron is incident on a piece of the material, it will be reflected back. The idea 
behind photonic band gap (PBG) structures is to exploit this idea for optical fields. 
Hence, the periodic potential that is responsible for the band structure of electrons is 
mimicked by a periodically varying refractive index. By a proper design of the unit 
cell, optical fields of particular wavelength, propagation direction and polarization 
will be prevented from propagating in the structure. They are, therefore, necessarily 
reflected if the structure is composed from non-absorbing constituents. In the present 
chapter, we study the general principles behind the design and properties of PBG 
structures. For simplicity, the discussion is restricted to one and two dimensional 
PBG structures. For these cases, the refractive index varies along only one and two 
directions, respectively. 
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 Figure 24.1. A simple one dimensional PBG structure with alternating layers 
of different thickness and refractive index. 

 
24.1 One-Dimensional PBG Structures 
 
A periodic arrangement of dielectric slabs can clearly be very complicated. However, 
the PBG effect appears even in the simple double-layer arrangement in Fig. 24.1. 
Here, the period consists of two slabs: one of thickness a and refractive index  and 
another of thickness b and refractive index . The total period is . The 
starting point for the analysis is the wave equation for the electric field. We take the 
z-axis as the direction, in which the refractive index varies. Furthermore, we make 
the simplifying assumption that the field propagates along z, i.e. perpendicular to the 
slabs. Hence, the polarization vector of the field is parallel to the slabs and, therefore, 
the field is entirely tangential. In this case, the wave equation for the amplitude of the 
field reads as 
 

  

 
where  is the free-space wave number and  is the z-dependent 
refractive index. The key to solving this equation is the Bloch theorem, well known 
from electron wave functions in periodic solids. The theorem says that for a 
periodically varying potential the wave function  satisfies the condition 

. In perfect analogy, the electric field satisfies , 
where k is a wave number labeling a particular solution and restricted to the Brillouin 
zone . Now, inside slabs of type a and b having refractive indices 

 and , respectively, the complete solution is  
 

  

 
where . We need to determine the coefficients A, B, C and D and for this 
purpose we require continuity of the field and its derivative at  and . 
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When considering the latter point , we should know the field to the right of this 
point. This field is found directly from the field specified above together with the 
condition . Thus, the four boundary conditions are 
 

  

 
The simplest way of dealing with this set of equations is to rewrite them in the form 

, where  is a 4 by 4 matrix containing the coefficients of A, B, C 

and D in the equations above. For non-trivial solutions we require , which 
readily leads to the condition 

  (24.1) 

What does this equation tell us? Well, the left-hand side clearly only involves the 
wave number k. The right-hand side, on the other hand, does not involve k but rather 

. Hence, we may view this equation as a relation between the wave number 
k of a particular field mode and the frequency  of this mode. A set of solutions to 
the equation is easily obtained: We simply find k from ! 
This provides us with k as a function of frequency. If we then invert this set of data 
we get frequency as a function wave number, just as a regular band structure. An 
example of such a calculation is shown in Fig. 24.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 24.2. Photonic bands for a 1D PBG structure with parameters as listed in the legend. 
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Actually, if we simply evaluate k from Eq.(24.1) we find that it is sometimes complex. 
Those solutions clearly cannot be used because they don’t correspond to propagating 
waves but, rather, exponentially damped waves. Hence, what is plotted in Fig. 24.2 
is solely the purely real-valued solutions. What is crucially important about this 
result is the appearance of gaps in the band structure: For some values of the frequency 
there are no propagating solutions! The physical consequence of this fact is clear: If light 
of this frequency is incident on the structure it is certain to be reflected since it is not 
allowed to propagate into the material. From the plot, we see that the first gap is 
encountered if  lies in the range from  to . In fact, those 
limits can be found analytically since the parameters chosen obey the condition 

. Hence, using some trigonometric equalities [2] it can be shown that the 
band gap covers the range 
 

  

 
where the specific parameters of the example are inserted in the last line. This is a 
rather substantial gap amounting to roughly 38% of the frequency at the midpoint of 
the gap. It is seen from the limits of the interval that such a large gap requires a large 
dielectric contrast, i.e. the difference between  and  must be large. If the two 
indices are nearly equal the size of the gap is  if the condition 

 still holds. Hence, if we want a perfect mirror over a large range of 
frequencies we should choose layers with very dissimilar refractive indices. It is 
notable, however, that a band gap can always be obtained even if the indices are 
almost identical. This is not the case in higher dimensions, for which a minimum 
index difference is required in order to produce a full band gap. Similarly, there are 
strict requirements for the geometries capable of producing a full band gap in 2 and 
3 dimensional structures. In 1D, slabs of all thicknesses can produce gaps, albeit not 
necessarily large ones.  
 
24.2 Two-Dimensional PBG Structures 
 
A potential problem with the one dimensional PBG structure is that the band gap is 
highly directional. If light is incident at an angle rather than perpendicular to the 
stack of slabs the size of the gap shrinks and eventually disappears at sufficiently 
large angles of incidence. A solution to the problem is to make the periodic 
arrangement two dimensional as illustrated in Fig. 24.3. Hence, we imagine columns 
of one material embedded in another material in a periodic fashion.  
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Figure 24.3. Two dimensional PBG structure with a square geometry. 

 
The analysis of this situation is much more involved and we begin by considering the 
Maxwell equations 
 

 , (24.2) 

 

where  is the impedance of vacuum. We can isolate  in these 
equations if we divide the latter by , take the curl and use the former to substitute: 
 

 . (24.3) 

 
This wave equation is simpler than the corresponding one for the electric field. For 
simplicity we consider a case for which the electric field vector  is perpendicular 

to the columns, i.e. lies in the xy plane of Fig. 24.3. Accordingly,  will be directed 
along the z axis and, therefore, perpendicular to the plane in Fig. 24.3. This 
configuration of the field is sometimes known as TE polarization and other times as 

p-polarization. A straightforward way of solving is by Fourier transforming  as 

well as . In our particular case,  is of the form  where 
 is a two dimensional Bloch wave vector. The amplitude  is a 

lattice-periodic function that can be Fourier transformed according to 
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where  is a complete set of reciprocal lattice vectors. In the simple square lattice, 
 with p and q integers. Similarly, we write the inverse square of the 

refractive index as 
 
  (24.4) 

 
The coefficients in this expansion follow from the Fourier transform of  as 
 

 . (24.5) 

 
To see the use of these expansions we go through their use in the wave equation 

Eq.(24.3) step by step. First, we apply the curl operation to  
 
  

 
Second, we multiply this result by  using the expansion Eq.(24.4) but relabeling 

from  to  to avoid confusion: 
 
  

 
Third, we apply the curl to this expression 
 
  

 

Because all vectors ,  and  are perpendicular to  it is easily demonstrated 
that 
 
 , 

 
and so 
 
  

Fourth, we insert this expression as well as the expansion of  in the wave equation 
Eq.(24.3) 
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Fifth, we see by comparison that term-wise  or, equivalently,  
and therefore equating identical terms yields 
 
  

 
Relabeling yet another time provides the final result 
 
  (24.6) 

 

In this form, it is apparent that  is an eigenvalue of a matrix having  and  as 

indices and elements given by . Thus, the relation between wave 
vector and frequency is now formulated as an eigenvalue problem that can be solved 
using standard numerical routines if a finite set of reciprocal lattice vectors is 
selected. Typically, a few hundred is sufficient for convergence in such two-
dimensional problems.   
 
Generally, Eq.(24.5) is difficult to evaluate but in the present simple example 
illustrated in Fig. 24.3 the Fourier integral can be carried out analytically and the 
result is 
 

 . 

 
The band structure calculated from this expression is illustrated in Fig. 24.4. To 

produce the plot all  vectors of the form  with  have been 
included giving a total of 225 vectors. The matrix problem is therefore of dimension 
225 times 225. The parameters chosen are   and  so that, actually, the 
structure consists of an array of air holes in a high-index material such as GaAs. The 
ratio between hole size and lattice constant is taken to be . Again, the 
appearance of a band gap is noted, just as for the 1D case. In the present case, the 
magnitude of the gap corresponds to roughly 30% of the midpoint frequency. Due to 
the 2D nature of the structure, however, the gap will exist for light propagating in all 
directions within the xy plane. If light is incident at an angle to this plane, the gap 
may disappear and others may appear. Also, our results are valid only for light 
polarized with the electric field lying in the xy plane. For light of the perpendicular 
polarization, no gap is observed. 
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 Figure 24.4. Band structure of a 2D PBG structure with a square array of holes in 
a high-index material. Light is TE polarized and the notation on the horizontal 

axis represents high symmetry points of the 2D Brillouin zone. 
 
Exercise: TM polarized solutions 
 
By combining the Maxwell equations in Eq.(24.2) so that  is isolated we get the 
wave equation for the electric field 
 

  

Because  using , this reduces to 

. In this exercise, we look at TM polarized solutions, for which  can 

be written in the general form . 
 

a) Show by applying Eq.(24.4) and the expansion  that the 
following eigenvalue problem is obtained: 
 
  

 

b) Show using  that this equation can be recast in the Hermitian 
form 
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25. Optical Processes 
 

 
The optical properties of nanostructures (as well as atoms and molecules) manifest 
themselves via optical processes. Most prominent among these is absorption, which 
is associated with the imaginary part of the susceptibility as discussed in the previous 
chapters. But other processes such as scattering and fluorescence are of importance. 
The processes are not independent. The energy emitted in as scattering and 
fluorescence processes must originate from energy transferred from light to matter, 
ultimately absorption in a broad sense. In this chapter, we will study the balance 
between these processes and study their connection.  
 
Quite generally, the exchange of energy between light and matter is governed by the 

balance of electromagnetic power density (the Poynting vector ) reaching 
matter, on the one hand, and energy stored in the fields (electromagnetic energy 
density u) plus absorbed power, on the other. The energy balance is expressed as 
 

 .  

 
The electromagnetic energy density u is given by . We will make 
the simplifying assumption that all processes are elastic. Hence, if we restrict 
ourselves to monochromatic incident fields with a frequency  all fields vary with 
this frequency and we find that u contains terms varying at twice the frequency 2
as well as temporally constant terms. Taking the time derivative, the constant terms 
vanish. In addition, we will average the energy balance over one period of the field. 
This kills off the 2 terms as well. It should be noted that the elastic assumption 
means that fluorescence is ignored. Also, conversion of electromagnetic energy into 
heat is neglected. We write the time-averaged quantities using pointed brackets such 

as  and find 
 
 .  
 
Next, we integrate this relation over a finite volume V and use Gauss’ theorem to 
transform into an integral over the bounding surface S 
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where  is the outward pointing normal. The left-hand side has a simple 
interpretation as the net electromagnetic intensity radiated into the volume. Also, the 

 term is the absorbed optical power inside the volume Both electric and magnetic 
fields contain an incident (subscript “0”) and a scattered (subscript “scat”) part and 
so the Poynting vector has three contributions 
 

   

 
The integral over  vanishes because of conservation of electromagnetic 

power in the absence of matter. The integral of  is the power radiated by 
scattering. Hence, the energy balance yields 
 
 ,  
 
where the three terms are, respectively, the extinction, scattered, and absorbed power 
given by  
 
 .  

 
25.1 Single Dipole 
 
We now specialize to a single point dipole, that is, a single nanostructure, atom or 
molecule that is sufficiently small compared to the optical wavelength that it can be 
regarded as a point source. The dipole moment varies with time as 

 and taking the dipole position as the origin, the associated 

density is . The accompanying current density is 
 

 . (25.1) 

 
With an electric field  it then readily follows that 

 

   

 
In our case, the dipole is induced by the electric field and we therefore write 

, where  is the polarizability (tensor). The subscript “0” 
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signifies that it is the “bare” polarizability, which relates the dipole moment to the 
total driving field. Writing the field vector as  we subsequently have 
 
 . (25.2) 
 
This result demonstrates that the absorbed power is proportional to the imaginary 
part of the polarizability. 
 
Our next step is to compute the fields radiated by the dipole, i.e. the scattered fields. 

The simplest strategy is to obtain the vector potential  (choosing Lorentz gauge) 

and then find the magnetic field via  and finally the electric field from the 
magnetic field [1]. We write . For a dipole source 

embedded in a homogeneous medium with refractive index  (assumed real i.e. 
without absorption),  is governed by the wave equation 
 

 , 

 
where the current amplitude is given by  c.f. Eq.(25.1). The 
solution is then 
 

 . (25.3) 

 
In turn, the magnetic field becomes  with 

 

  

where we have applied the far-field assumption that  is much faster varying than 
, which is clearly the case whenever . Similarly, the electric field in the far-

field limit becomes 
 

 . 

( , ) ( , ) 


  r r e 

  21
02 Im ( ) | (0, )|     

 


absP e e 









 

 1
2( , ) ( , ) . .  

 

  i t
scat scatr t r e c c 

( )n 

( , )scat r 






2
2 2

2 2
0

( , ) ( , ) ( , )scat scat
ir n r j r

c c
 

  


  
  

  

 

( , ) ( ) ( )j r i p r   


  

0
0 0

0

( , ) ( ) , , ( )
4

ikr

scat
ik er p k k n k

c r c


  


  


 



 1
2( , ) ( , ) . .  

 

  i t
scat scatr t r e c c 

0

0

0

0

0

0

( , ) ( , ) ( )
4

( )
4

( ),
4

ikr

scat scat

ikr

r

ikr

r

ik er r p
c r

ik e e p
c r r

kk e e p
cr

  








       
       

 




  

 

 

 

ikre
1r 1kr

2 2
2 2 0 0

0 0

( , ) /( ) ( , ) [ ( )] [ ] ( )
4 4

ikr ikr

scat scat r r r r
k e k er ic n r e e p U e e p

r r
    

 
       

  

       

 



 228 

 
The last form is obtained by considering the direction of . From these 
fields we now compute the time-averaged Poynting vector of the dipole radiation 
 

 . 

 
The last equality follows from the direction of the cross product between  

and . Introducing  as the angle between  and  as illustrated in 

Fig. 25.1 we realize that  and so  
 

 . 

This result can be integrated over a large sphere to provide the scattered power 
 

  (25.4) 

using the fact that . 

 
 
 
 
 
 
 
 
 
 

Figure 25.1 Vector diagram for the directions of scattered vector potential ( ),  

magnetic field ( ) and electric field ( ). 

 
25.2 Bare and Dressed Polarizabilities 
 
Will a particle be influenced by the scattered field that it emits? This may sound as a 
strange question but, in fact, it’s important for a full understanding of optical 
processes. The answer is yes and the basic reason is simple. In the process of emitting 
light, momentum is lost and so a force acts on the particle. This effect, however, can 
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be incorporated into the response of the particle. Hence, instead of a “bare“ particle 
interacting with both incident and scattered fields we find an equivalent picture of a 
“dressed” particle interacting with the incident filed only. To set up this equivalent 
picture, a careful analysis of external and local fields is needed. Primarily, we need 
to consider the fields without using the far-field approximation. To this end, we use 
the identity 
 

  

 
and write the vector potential as 
 

 .  

 
Taking various curls, the electric field is then readily found as 
 

   

 
This field, which is radiated by the dipole, also acts on the dipole! In fact, the total 
local field is the sum of the incident field and this radiated field evaluated at . 
The imaginary part is particularly important because it acts as a damping force being 
90 degrees out of phase with the dipole. The real part (which, incidentally, cannot be 
correctly handled in a classical scheme but requires a fully quantum-
electrodynamical theory) leads to a frequency shift of the resonance, the so-called 
Lamb shift. The imaginary part of the field evaluated at  is called the Radiation-
Reaction field . It is obtained from the imaginary part of the pole, i.e. 
 

  (25.5) 

 
The effects of radiation reaction are clear if we note that the total field driving the 
dipole becomes . Hence, the induced dipole moment is 
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Applying the expression for the radiation-reaction field, this result can be rearranged 
as 
 

   

 
Here,  is the so-called dressed polarizability relating the dipole moment to the 
incident field alone. Hence, the effects of radiation reaction have been absorbed into 
the dressed polarizability. The bare polarizability was calculated previously in 
Chapter 2 
 

 .  

 
Here,  is the many body energy eigenvalue of the n’the state measured relative to 

the ground state. Also,  is the many-electron transition dipole 
moment. We now make the simplifying assumption of isotropy in the polarizability 
as appropriate for atoms or spherical nanostructures. Also, the approximations 
applied above are only expected to hold when we are close to a resonance 

. Hence,  
  

  

 
and, thereby, with  
 

 .  

  
Using simple manipulations, this result can be rewritten as 
 

 , (25.6) 

 
where 
 

   
  (25.7) 

  
  

12
0

0 0 0
0

0

( ) ( ) ( ) (0, )
6

( ) (0, ).

ikkp U     


  

          

 

 


 












2
0 0 02 2 2( ) 2 





 





n
n n

n n

Ee D D
E

nE

0 0 




n ee
D r n

/  n nE

22
0

0
| |( ) 
 










n

n

De U

/n nk c

13 2 22 2
0 0

0

| | | |( ) 1
6

n n n

n n

ink D De e U 
    

          





 

22
0

1
2

| |( ) 
 


  







n

n n

De U
i

2 3 2
0

0

| |
3

n n
n

e nk D


 




 231 

This quantity, which is actually the spontaneous decay rate of the n’th excited state 
[2], then results in a finite line width equal to  for the resonance. Without , the 
resonance would diverge precisely at . This modification should be done for 
every transition and so 
 

 . 

 
We have defined the dressed polarizability so that  This 
means that the correct versions of Eq.(25.2) and (25.4) can be written as 
 

 .  

 
We wish to introduce cross sections for the two processes and, to this end, need the 
intensity of the incident field . Dividing the power expressions 
above by this intensity provides absorption and scattering cross sections 
 

 .  

 
Now, if energy is not accumulated in the particle and it is not dissipated by other 
means, the absorbed power must equal the scattered power. Thus, equating the 
above cross sections yields 
 

 . (25.8) 

 
This condition is only expected hold exactly at a resonance  so that Eq.(25.6) 

yields . Plugging this into Eq.(25.8) shows that the 
requirement is precisely obeyed if  is given by the expression Eq.(25.7). Hence, our 
expression for the spontaneous decay rate is consistent with all absorbed power 
eventually being re-emitted as scattering. 
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Exercise: Near-field relations 
 
The calculation of the scattered field above relied on the far-field approximation 

. If all terms are retained, a somewhat tedious computation shows that 
 

 . 

 
a) Show by expansion around x = 0 that 
 

 . 

 
b) Use this result to show that the radiation-reaction field is precisely the imaginary 
part of the scattered field in the limit . 
 
c) Show that the near-field, i.e. the electric field very close to the dipole, is 
approximately given by 
 

 . 

 
The same expression is obtained for the electrostatic field produced by a dipole. In a 

static calculation, we put , where  is the electrostatic potential. 
 
d) Show that the accompanying near-field potential is 
 

 . 

 
We now consider a small nanosphere of radius a and refractive index  embedded 
in a medium with refractive index  subjected to a constant incident field 
. Hence, the incident potential must be . In polar coordinates, 

 and we therefore write the full solution as . 

Laplace’s equation for the potential  consequently simplifies to 

. 
 
d) Show that  and  are solutions to Laplace’s equation. 
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e) Of the above, only the first type is allowed inside the sphere while both forms are 
applicable outside. Apply the boundary conditions  and 

 to demonstrate that the full solution outside the sphere is 
 with  

 

 . 

 
Comparing to the general expression for the near-field potential, this demonstrates 

that the polarizability is . 
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26. Optical Properties of Nanospheres 

 
There are two limits, in which the optical properties of an object are relatively simply 
described: Either the object should be much smaller than the optical wavelength or 
the object should be much larger. In the former case, the electric field practically 
doesn’t vary across the object and the field can be approximated by a constant in 
space. In the latter case, we enter the macroscopic regime and so-called geometric (or 
ray) optics can be applied. This is the regime of ordinary lenses and similar optical 
components. The scientific field of nanooptics deals with the complicated regime in 
between these extremes. In nanooptics, objects are typically comparable to the 
wavelength and so the optical fields vary inside and around the object in a very 
complicated fashion. This leads to quite novel phenomena such as the extraordinarily 
large transmission through sub-wavelength holes in metallic films [1].  
 
To enter the field of nanooptics, we will restrict ourselves to a simple but important 
example: A nanosphere illuminated by a plane wave. This case has a sufficiently 
simple geometry that it is possible to calculate the optical field exactly. At the same 
time, however, it is a case of great practical relevance. For instance, it describes the 
optical properties of colloidal metal particles. Also, natural phenomena such as the 
rainbow and light scattered by fog is explained by this example. In the present 
chapter, we formulate a theory for such phenomena. Basically, light interacting with 
a nanosphere can be either scattered or absorbed by the particle. If a detector is placed 
behind a sample containing such spheres it will record the amount of light lost in 
both processes. The combined effects (scattering and absorption) are known as 
extinction and to compare with measurements we should discuss how scattering, 
absorption and extinction depend on particle size, optical wavelength and refractive 
indices of spheres and the surrounding medium. 
 
Our strategy is as follows: Given an incident field, we need to find the scattered field 
as well as the field inside the sphere. We do this by decomposing the incident field 
in a sum of spherical waves. Then, we write the unknown fields as similar expansions 
but containing unknown expansion coefficients. Finally, the usual boundary 
conditions are invoked in order to determine the expansion coefficients. Once the 
fields are determined, the scattered and absorbed power can be calculated. This 
approach was established by G. Mie in 1908 and the scattering of light from particles 
comparable to the wavelength in size is known as Mie scattering. We start by 
introducing general solutions to the Helmholtz equation 
 
 , 
 
where  is the wave number of a field in a homogeneous medium with a 
refractive index n. Later, we will use these solutions to build the different fields in 
the problem. For a very small particle, the relevant solution is the simple outgoing 
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spherical wave . In a more general calculation, though, we should 
consider all possible solutions. We obviously should take advantage of the simple 
spherical geometry and consequently find solutions with a simple spherical 
symmetry. The appropriate spherical coordinates are  and we seek solutions 
that are separable in these variables. By direct calculation it can be shown that these 
solutions are 
 

  (26.1) 

 
where  is an associated Legendre polynomial, is a spherical Bessel 
function and  is a spherical Hankel function. The superscripts are used to 
distinguish between these two kinds of radial behavior. Also, subscripts e and o are 
used for even and odd functions of , respectively. The radial functions are defined 
by 
 

   

 
where  and  are ordinary Bessel functions of first and second kind, 
respectively. At large values of x these functions behave as 
 

  (26.2) 

 
On the other hand, when x is small  while . This behavior 

means that only the - type solution can be used inside the sphere. For the 
scattered field, only the - type solution can be used because it approaches an 
outgoing spherical wave at large r.  
 
The next step is to construct solutions for the actual vectorial fields in a spherical 
geometry. In regions of space with a constant, isotropic refractive index, the vectorial 

 and  fields satisfy the wave equations 
 
   
 
as well as the transversality conditions 
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  (26.3) 

 
where  is the impedance of the medium whose refractive index is n. We 
may now apply the set of g’s to construct solutions to the field equations in spherical 
coordinates. To get from the scalar g’s to the vectorial fields we introduce the operator 
 

 . (26.4) 

 
The expression of this operator in spherical coordinates is demonstrated using the 
relation 
 

 .  

 
In these formulas,  are the usual unit vectors of spherical geometry. The 

operator commutes with the Laplacian, i.e. . Hence, it follows directly 

that if  then  fulfils the equation 
 
 .  
 
However, if for instance  contains M functions then Eq.(26.3) shows that  will 
contain N functions given by 
 

 .  

 
These functions also satisfy the wave equation and can be written in terms of the g’s 

according to , where the new operator is given by 
 

 .  

 
Using the Laplacian in spherical coordinates 
 

 .  
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and the fact that , the B operator can be written as 
 

 . (26.5) 

 
It might be thought that, in turn, this would introduce entirely new functions 

 and so on without end. However, 
 

   

 
using the fact that the divergence of a curl vanishes.  
 
26.1 Finding the Fields 
 
As explained above, the analysis proceeds by (i) expressing the incident field in terms 

of spherical waves, i.e. the  and  functions introduced above, (ii) expressing the 
unknown fields in a similar form, and (iii) determine the unknowns by means of the 
boundary conditions of the problem. We choose the geometry (angles) as indicated 
in Fig. 26.1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 26.1. Illustration of the spherical coordinates and their relation to the electric 
field. 

 
The incoming field is represented by a standard plane wave propagating along z and 
polarized along x as shown in Fig. 26.1 and, consequently, given by 
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The phase  can be rewritten using the identity (using the positive sign 

convention for , i.e. )  
 

 . 

In addition, we need to re-express the polarization vector  using the spherical unit 
vectors. The transformation between Cartesian and spherical coordinates is given by 

 and consequently  
 

 (26.6) 

The crucial point is now to express  in terms of M and N functions, i.e. as a sum 

of terms given by  and . Looking at the expression above, it is obvious 
that we don’t need all the g’s defined in Eq.(26.1) to construct the field. The 
simplifying point is that among all the associated Legendre polynomials only  
appears in Eq.(26.6). As a consequence, we should put  in Eq.(26.1) and focus 
on the corresponding M and N functions given by  

  

and  

  
In addition, type-2 M and N functions (with superscript 2) are given by identical 
expressions except that  is replaced by . Now, a direct comparison 
between these results and Eq.(26.6) demonstrates that 
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 .  

 
We now write the remaining fields in analogous ways. As argued above, only type-
2 solutions are applicable for the scattered field  while the field inside the sphere 

 must be constructed from type-1 solutions in order to remain finite at the origin. 
Thus, 
 

   

 
and 
 

 .  

 
The unknown coefficients must now be determined by matching 
boundary conditions for the radial and tangential components of the fields: 
 
 ,  

 
where  are refractive indices outside and inside the sphere, respectively. In 
this manner, for a sphere with radius a the boundary conditions require that 
 

   

 

Here, the notation  and  is used. Solving the four 

coupled equations yields 
 

  (26.7) 
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26.2 Scattering, Absorption and Extinction 
 
To calculate the scattered intensity, we need the scattered magnetic field as 
determined by Eq.(26.3) 
 

 .  

 
The corresponding intensity is the radial component of the Poynting vector 
 

 .  

 
The power scattered into a solid angle  at a distance r from the scatterer is given 
by . Also, the intensity of the incoming field is . The scattered 
power per solid angle divided by the intensity of the incoming beam is the so-called 
differential scattering cross section, i.e. the cross section per solid angle, and it can be 
obtained via the relation 
 

 .  

 
The cross section should be independent of distance from the scatterer and for that 
reason we may look at the fields far away from the sphere where the asymptotic 
expansions Eq.(26.2) apply. Hence, we find 
 

   

 
where 
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We subsequently find 
 

 , (26.8) 
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where  and  are the cross sections for two special cases: scattering observed in 

the plane containing the x-axis ( ) and scattering observed in the plane 

perpendicular to  ( ). These cases correspond to  and , 
respectively. Their expressions are 
 

    . (26.9) 

 
Figure 26.2 below illustrates  for two cases. Here, a wavelength of  is 
assumed and the refractive indices are taken as those of latex spheres in water. This 
is a common test system for the angular dependence of optical scattering.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 26.2. Differential scattering cross section for spheres of two different radii 

and wavelength . The refractive indices correspond to latex spheres in 
water. 

 
In addition, we wish to calculate the total (integrated over solid angle) scattering 
cross section. To this end, we need the result 
 

 .  

 
We therefore find 

 . (26.10) 

 
In a similar manner, the total extinction cross section is given by [2] 
 

p s

p


xe s  0   /2

       
 

 

 
   

  
2 2

2 2
1 11 1

(2 1) (2 1)1 1( ) ( ) , ( ) ( )
( 1) ( 1)p n n n n s n n n n

n n

n na b a b
k n n k n n

 ( )p 0.5 m

0.5 m

 


      


 


2 2

0

2 ( 1)sin
2 1n m n m nm

n nd
n

 






   2 2
2

11

2 (2 1)scat n n
n

n a b
k



 242 

 . (26.11) 

 
The absorption cross section is given by the difference between these results. If a 
series expansion with respect to a is made the first non-vanishing term comes from 

: 
 

. 

  (26.12) 
 
The real part is then 
 

 .  

 
and the extinction (actually absorption) cross section becomes 
 

 . (26.13) 

 
This is the celebrated Rayleigh cross section, which is valid for small particles. We 
see that it emerges as a special case of the general theory. Also, since 

 we find in this limit 
 

   

 
which shows that scattering from very small particles predominantly is in the plane 
perpendicular to the polarization of the incident light. The plots below show 
numerical spectra (extinction cross section vs. photon energy) calculated for 
diameters of 40 nm, 80 nm and 160 nm assuming  and using a free electron 
model for , c.f. Chapter 3  
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with 9.3 eV, 0.15 eV and  6. These parameters are appropriate for 
silver nanospheres. Looking at Eq.(26.12) it is clear that in the Rayleigh limit, a 
resonance appears when  is small. The approximate minimum value is 
found at the frequency, for which the real part vanishes. In the free electron model, 
the happens when  so that . For silver the 
resonance occurs at  corresponding to a wavelength of 415 nm. This 
value is only correct for very small spheres, however. From Fig. 26.3 it is seen that 
even for 40 nm spheres the resonance is slightly shifted (by roughly 15 nm) compared 
to the Rayleigh limit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 26.3. Total extinction cross section for silver nanospheres of different radii. 
 
Exercise: Intensity enhancement 
 
At the surface of a metallic sphere, the optical intensity can be significantly larger 
than the incident intensity. 
 
a) Show from the definition of the differential scattering cross section that at the 
surface 
 

 . 

 
It follows that the angular average of this ratio is  
 

 . 

 
b) Show that in the Rayleigh limit, where Eq.(26.12) applies 
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 . 

 
The maximum enhancement is found at the resonance frequency  

at which . 
 
c) Show that provided  
 

 . 

 
d) Evaluate this ratio for silver spheres of radius 10, 20 and 30 nm in a medium whose 
refractive index is 1.35. 
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27. Nanoparticle Optics in the Electrostatic Limit  
 
 
In the previous chapter, we were restricted to nanospheres because a full solution of 
Maxwell’s equation was needed. Such an analytic calculation is only possible for very 
simple geometries. However, if the particles become sufficiently small so that the 
spatial variation of the electromagnetic field can be simplified, more complicated 
shapes can be studied. Hence, in this chapter, we adopt the “electrostatic limit” that 
is equivalent to ignoring the spatial variation of the incident electric field inside the 
particle.  
 
 
 
 
 
 
 
 
 

Figure 27.1. Geometry of metal nanoparticle having a dielectric constant  embedded in a 
homogeneous medium with a dielectric constant . 

 
We consider a nanoparticle such as the one depicted in Fig. 27.1 and apply the 
electrostatic method presented in Ref. [1]. In the electrostatic picture, an electric field 
only induces polarization charges on the surface of the particle. Hence, the total 
electrostatic potential  is the sum of an incident part  and the contribution 

generated by the surface charges. If the surface charge density is , the potential 
is given by 
 

 ,  

 
where the integral is over the entire surface of the particle. We can now use this to 
compute the electric field via the relation . In particular, we wish to 
compute the electric field on the surface. In this situation, care has to be taken because 
the normal component is discontinuous. The normal component is given by 

, where  is the outward unit normal vector at position . The 

discontinuity means that the normal component just outside the particle  is 

related to the one just inside  via the relation  
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Using these relations, we find that 
 

 , (27.1) 

 
where “PV” indicates principle value, and + and – go with the fields outside and 
inside the particle, respectively. Also,  is the (constant) incident field and g denotes 
the so-called Green’s function 
 

 .  

 
However, we also know that the normal components are related via the dielectric 
constants, i.e. . This means that with a bit of rearrangement, Eq. 
(27.1) can be reformulated as 
 

 , (27.2) 

 
where . This formulation is very convenient because it allows us 
to compute the distribution of surface charges from a single equation.  
 
27.1 Cylindrical Nanoparticles 
 
The framework above applies to nanoparticles of completely general shape. It even 
works for collections of nanoparticles if the surface is taken as the sum of surfaces. In 
practice, however, Eq. (27.2) is difficult to solve in the general case. Fortunately, many 
important cases are much simpler. In particular, many relevant nanoparticle 
geometries have cylindrical symmetry, i.e. they have a rotational symmetry axis as 
illustrated in Fig. 27.2. In this case, the general problem can be reduced significantly.  
 
 
 
 
 
 
 
 
 
 
 

Figure 27.2. Cylindrically symmetric nanoparticle. 
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Using the geometry of Fig. 27.2, we can without loss of generality choose to keep the 
incident field   in the (x,z)-plane. The x- and z-axes are the horizontal (h) and 

vertical (v) directions, respectively, and so we decompose . Due to 
the superposition principle we can, in fact, treat the horizontal and vertical cases 
separately. We then benefit significantly from the simple angular dependence of 
these cases. 
 
In a cylindrical geometry, we may express the geometrical vectors using polar angles 
in a simple manner. Hence,  
 

 ,  

 
where  are all functions of  and  is a function of . It follows that  
is  and  in the horizontal and vertical cases, respectively. It is then 
readily shown that the surface charge follows exactly the same dependence on the 
angle . Due to the symmetry, the surface area element dS must be independent of 

 and we may write . We will return to the 
 
dependence later. We 

also need the following relations to reduce the Green’s function: 
 

 .  

 
The simplest case is that of vertical polarization, for which  is independent of 

.  We wish to prove that the surface charge is a function of  only and so we write 
. The charge balance Eq.(27.2) therefore reduces to 

 

 , (27.3) 

 
where  
 

 .  

 
Performing the integral using the geometrical relations we then find 
 

, (27.4) 
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with  and introducing the 
functions 
 

 .  

 
The first few of these functions are 
 

 ,  

 
where K and E are complete elliptic integrals. Higher terms can be generated using 

. The fact that these functions depend only on  and  
completes the proof.  
 
For the horizontal case, we proceed in almost complete analogy but now the surface 
charge is found to follow the  behaviour of . Hence, we write 

 in this case and using elementary mathematical manipulations 

(rewriting  as  and doing the integral before taking the real part) 

find that  
 

 , (27.5) 
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. (27.6) 

 
27.2 Oblate Spheroids 
 
As a relatively simple but still technologically important example we will consider 
oblate spheroids: “pancake” shaped particles obtained by flattening spheres along 
one direction. Such a particle is illustrated in Fig. 27.3. 
 
 
 
 
 
 
 
 
 
 

Figure 27.3. Cross section of an oblate spheroid. 
 
The geometry of the spheroid is taken such that the thickness of the “pancake” is 
unity and the radius is d. Hence, all distances are actually measured in units of half 
the particle height. A particular point on the surface obeys the ellipse 
parameterization 
 

 .  

 
Also, the surface normal is calculated from the requirement that . 
Hence, differentiating and ensuring normalization it is found that 
 

 .  

 
In general, the surface areal function 

 
is to be calculated as  
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To solve equations like Eq.(27.3) and Eq.(27.5) numerically we need to discretize the 
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 , (27.7) 

 
where the appropriate Green’s function and normal vector component should be 
chosen for the two polarizations. Equations of this sort are easily converted into a 
tractable form by introducing vectors  
 

   

 
as well as a matrix 
 

 .  

 
In terms of these quantities, the discretized equation reads as 
 

 . (27.8) 

 
Thus, the unknown surface charges in vector  are found by inverting a matrix and 
multiplying onto a known vector. Furthermore, it is realized that certain eigenmodes 
of the surface charge can be found whenever the determinant  vanishes. 

This is because this condition corresponds to a situation, in which a surface charge 
exists even with a vanishingly small incident field. This is clearly a mathematical 
abstraction but the significance is that, in actual calculations, resonances in 
absorption or scattering cross sections may appear near these eigenmodes. From the 
form of the matrix it is also evident that eigenmodes are found whenever  is an 

eigenvalue of . In practice, the matrix  is slightly problematic because the 
diagonal elements diverge!  By clever usage of the general properties of the Green’s 
function, however, appropriate values of the diagonal elements can be found (see the 
exercise). If the dielectric constant of the metal nanoparticle is assumed to be of the 
lossless Drude form  the relation between eigenvalue and 
resonance frequency is given by  
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 .  

 
As an example, we now take Ag spheroids ( , eV)  embedded in Si (

) . For a particular geometry, the spheroid is characterized by its ellipticity 
, which ranges between 0 for a sphere and 1 for a plane. In Fig. 27.4, 

results for the resonance wavelengths in this case are depicted. It is noted that the 
fundamental horizontal and vertical modes shift towards longer and shorter 
wavelengths, respectively, as the particle is flattened. In fact, for the dipole mode, 
simple analytical expressions for vertical and horizontal eigenvalues can be found  
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Figure 27.4. Resonance wavelengths of Ag spheroids embedded in Si. Solid and dashed curves  
illustrate vertical and horizontal resonances versus nanoparticle ellipticity. 

 
 
The present technique can be extended in several directions. Primarily, based on 
solution of the inhomogeneous equation Eq.(27.8), the absorption cross section is 
calculated via 
 

 , (27.9) 

 
where p is the induced dipole moment that is easily calculated using the formulas 
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 .  

 
In addition, nanoparticles positioned on a surface or embedded in thin layers can be 
handled by proper modifications to the Green’s functions [2]. 
 
Exercise: Properties of the Green’s function 
 
a) Using Gauss’ theorem, show that (remembering that the singularity of g lies on the 
boundary and therefore only contributes half) 
 
 .  

 
b) Based on this result, show that the reduced Green’s function for vertical 
polarization satisfies the condition (note that integration over  and  is equivalent) 
 

 . 

 
This result can be used to handle the singularity of the Green’s function. In a 
discretized version, it reads as 
 

  . 

 
It follows that the diagonal element must be  
  

 . 

 
For the horizontal case, unfortunately, no such simple result applies. Hence, special 
numerical handling of the diagonal terms is needed. 
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28. Cylindrical Waveguides 
 
 
In this chapter, we look at cylindrical waveguides as transmission lines using both 
classical impedance analysis and a full wave equation approach. A transmission line 
is a cable transmitting electrical signals. An example would be a coaxial cable such as 
the one shown in the figure below. The outer conductor is grounded and the signal 
propagates in the core. In communication networks, electrical pulses carry the 
information. The propagation of such pulses, however, can be understood by 
studying signals with a definite frequency using Fourier analysis. We will investigate 
signals propagating along the cable assuming one end to be driven by a sinusoidal 
(i.e. single-frequency or monochromatic) signal generator. In this case, the voltage 
along the cable will also vary sinusoidally in time. The amplitude, however, will 
depend on the properties of the cable. First, a classical impedance or circuit analysis 
will be applied to tackle the problem. 
 
28.1 Impedance Analysis 
 
Generally, a homogeneous cable is described by a characteristic frequency-
dependent impedance, which is determined by (1) ohmic losses, (2) capacitance 
between inner and outer conductor, and (3) inductance due to magnetic effects. We 
will consider a small piece of wire with a length x  having a resistance R , 
capacitance C  and inductance L . All of these are proportional to x , i.e. 

R R x   , C C x   , and L L x    with R, C and L the respective quantities per 
unit length. The insulator between the two conductors is assumed lossless. The model 
for the wire piece is shown in the figure. You might wonder why the capacitance is 
added to the right of resistance and inductance instead of left. The answer is that it 
doesn’t matter as long as we consider an infinitesimal piece, i.e. we take the limit  

0x  .  
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 28.1. Coax cable with circuit representing a tiny piece of length x . Symbols L ,  
R , and C indicate inductance, resistance, and capacitance of the piece, respectively.  

The sketch to the right is a cross section of the cable. 
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We want to construct a model describing the variation of the voltage ( , )V x t  along 
the wire. Both voltage and current naturally also depend on time t. To construct a 
model, we first note that the current running through the capacitor to ground is given 
by ( , )/CI C V x x t t    . Here, however, C is already an infinitesimal and, 
so, if we Taylor expand the voltage, we find ( , )/CI C V x t t    to first order in 

x . This means that the current balance (Kirchhoff’s law) is 
 

 ( , )( , ) ( , ) V x tI x x t I x t C
t


  


. 

 
Similarly, the voltage drop along the wire is found from 
 

 ( , )( , ) ( , ) ( , ) I x tV x x t V x t R I x t L
t


    


. 

 
Now, dividing through with x  and taking the limit 0x  , we find 
 

 ( , ) ( , ) ,I x t V x tC
x t

 


 
 (28.1) 

 
and 
 

 ( , ) ( , )( , )V x t I x tRI x t L
x t

 
 

 
. (28.2) 

 
Differentiating Eq.(28.2) once more and applying Eq.(28.1), it is readily shown that 
the telegrapher’s equation is 
 

 
2 2

2 2

( , ) ( , ) ( , )V x t V x t V x tRC LC
x t t

  
 

  
. (28.3) 

 
This is the equation we wish to solve subject to the boundary condition 

0(0, ) cosV t V t . Physically, this means that the monochromatic voltage source is 
placed at 0x   and we take the wire to lie along the positive x-axis. In the lossless 
case 0R  , finding the solution is a simple matter. With losses, things are greatly 
simplified if we use complex analysis. Hence, we writing ( )

0( , ) i kx tV x t V e  , with the 
understanding that only the real part is retained in the end, it is easily shown that 
 
 ( ) ( ) ( )2 2

0 0 0
i kx t i kx t i kx tk V e i RCV e LCV e        . 

 
This obviously means that 
 
 2k LC i RC   . (28.4) 
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Here, it is understood that if the signal propagates in the positive x-direction, the sign 
of the square-root should be chosen so that Im 0k   to ensure an exponentially 
damped (rather than growing) wave. Splitting according to R Ik k ik  , we have 
 
 ( )

0 0( , ) Re{ } cos( )Ii kx t k x
RV x t V e V e k x t     . 

 
This describes a monochromatic wave that is damped during propagation along the 
wire. Expanding the complex square-root, the damping constant Ik  is given by 
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where the last approximate result is valid at very high frequencies /R L . Not 
surprisingly, the damping is proportional to the resistance. In the same limit, 

Rk LC  and the phase velocity of the signal is / 1 /phase Rv k LC  . 
 
The current follows from Eq.(28.1) and, similarly to the voltage, we write 

( )
0( , ) Re{ }i kx tI x t I e   and find 0 0( / )I C k V . The ratio between the complex voltage 

and current is the impedance  
 

 0

0

( ) V L iRZ
I C C




   . 

 
Now, a coax cable consists of an inner conductor with radius a and an outer 
cylindrical conductor with inner radius b. If the relative dielectric constant of the 
(non-magnetic) insulator is  , the capacitance and inductance are 
 

 0 02 , ln( / )
ln( / ) 2

C L b a
b a
 


  . 

 
Hence, phase velocity is /phasev c   with 0 01/c    the speed of light. Also, the 

infinite-frequency (or “characteristic”) impedance 0Z  is  
 

 0
0

0

ln( / ) ln( / )60 
2
b a b aLZ

C

  

    . 

 
A standard “50 Ω” coax cable has / 3.5b a   and insulation made of polyethylene (

2.25)  leading to 0 50 Z   , in case you wondered. A more realistic calculation 
requires the resistance R that is the series connection between inner and outer 
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conductors inner outerR R R  . This, in fact, is a tricky point because AC currents are 
not uniformly distributed across the wire at high frequency. The current actually 
tends to run on the surface of the conductor and, hence, the effective area of, e.g., the 
inner conductor is much less than the geometric area 2a . At low frequency, however, 
we may approximate 2/( )innerR a  , where 81.7 10  m     is the resistivity of 
Cu. Hence, for a 1/2 mma  cable, 22 m /minnerR   . For simplicity, we will simply 
take 2 innerR R . In the presence of losses, the impedance becomes complex and we 
may split into modulus and phase according to ( )( ) | ( )| iZ Z e    . In the plots 
below, we consider a 50 Ω coax cable with 1/2 mma  . 

 
Figure 28.2. Real and imaginary parts of the wave number (left) as well as modulus and 

 phase of the complex impedance (right) for a 50 Ω coax cable. 
 
If two cables having different impedances are joined at 0x  , it turns out that a 
certain part of the electric pulse is reflected at the junction between the two cables. 
The voltage at the incoming side is 0( )ikx ikx i tV e re e    and after passing the junction 

0(1 ) iqx i tV r e e  , where q is the wave number on the receiving side and the amplitude 
has been found by requiring continuity. If the impedances are 1Z  and 2Z , the currents 
on the two sides, given by Eq.(28.1), are 0 1/ ( )ikx ikx i tV Z e re e    and 

0 2/ (1 ) iqx i tV Z r e e  , respectively. Demanding continuity of the current as well shows 
that the reflection coefficient is 2 1 2 1( )/( )r Z Z Z Z   . Writing, again, | | ir r e   the 
modulus | |r  is the ratio between reflected and incident electric field amplitudes and 
  is the reflection phase. As an example, we assume the cable carrying the incident 
pulse to be the same as above with resistance 1 44 m /mR    and that the other cable 
is similar but has twice the resistance i.e. 2 88 m /mR   . This leads to the amplitude 
reflection and phase shown in Fig. 28.3.  At low frequency 

2 1 2 1( )/( )r R R R R    and at high frequency /2   but | | 0r  . 
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Figure 28.3. Modulus and phase of the complex reflection for a junction between 50 Ω coax 
 cables with resistances 44 m /m  and 88 m /m . 

 
28.2 Wave Equation Analysis 
 
We now want to study the full solution for the electric field based on the wave 
equation. In cylindrical coordinates, the equation for a radially symmetric field of the 

form { ( ) ( ) } ikx
r r x xE E r e E r e e 



 

 is 
 

 2 2 2 2
0 0

( ) ( )1 1{ ( ) } ( ) 0, { ( ) } ( ) 0r x
r x

dE r dE rd dr r k k E r r r k k E r
r dr dr r dr dr

        

 
This is supplemented by the divergence condition { ( )} / ( ) 0r xd rE r dr ikrE r  . Across 
an interface, ( )xE r  and ( ) ( )rr E r  are continuous. If follows that { ( )} /rd rE r dr  is also 
continuous. For simplicity, we take the outer conductor to be perfectly conducting. 
Hence, the field vanishes in this material and we have with 2 2 1/2

0( )i ik k k   
 

 
 

0 1

0 2 0 2 0 2 0 2

( )
( ) ,

( ) ( ) ( ) ( )x

AJ k r r a
E r

B J k r Y k b Y k r J k b a r b
    

 

 
Writing the field in the dielectric in this particular form ensures a vanishing value on 
the outer conductor. We require continuity of ( )xE r  and 2 2

0( )/[ ( ) ] ( )/xr r k k dE r dr  
. In turn, this means 
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 1 1 1 2 0 2 1 2 0 21 2

2 1 0 1 0 2 0 2 0 2 0 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

J k a J k a Y k b Y k a J k bk
k J k a J k a Y k b Y k a J k b








. (28.5) 

 
Expanding to first order in 2

ik , as is allowed at low frequency, we find 
 

 2 2 2
2 0 2 2 2

2 1 2 n( )
4

( ) 2 l /
k k

b a a b a



  

 
  

. 

 
Because 1 2|| | |   we may approximate 
 

 2 2 2
2 0 2

1

2
ln /

k k
a b a





  . 

 
Now, for a metal 2

0 0( ) 1 /( ) /( )i i R a          . The impedance analysis 
Eq.(28.4) above showed that 
 

 2 2 0
0

2
ln /

k k i R
b a


   . 

 
Hence, the two models agree in this limit. In the plot below, you find a comparison 
between losses, i.e. Ik , computed from Eq.(28.4) and the numerical solution of 
Eq.(28.5). One notes that an increased loss at high frequency is seen in the full solution 
but excellent agreement is found at low  . In Fig. 28.5, we plot the radial behavior of 
the field. It is seen that at high frequency, the field is strongly varying inside the 
conductor. This, in fact, is the main reason for the failure of the impedance analysis 
in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28.4. Comparison between losses based on telegrapher’s equation and the full wave equation. 
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Figure 28.5. Radial dependence of the longitudinal electric field normalized by the center value. 
 
Exercise: High-frequency behavior 
 
As apparent from Fig. 28.5, the field behaves as if it is pushed to the surface. Hence, 
the inner parts are poorly “utilized” in terms of spreading out the current. One may 
say that a radial segment is “filled” by a fraction 0 1 0 1Re ( )/Re ( ) exp( ( ))IJ k r J k a k r a 

, where the approximation is valid whenever 1| | 1k r  . Averaging this quantity over 
the entire area produces a measure of the effective area. Hence, 
 

 ( )

0

22 I

a
k r a

eff
I

aA e rdr
k


   . 

 
Comparing to the geometric area 2a , we see that the current is effectively confined 
to a thin annulus of area 2 a  , where 1/ Ik  is the “skin depth”. If we use 

0( ) /( )i     and 1 0( )k k   it follows that 1/2
0 02 (2 ) /effA a k   . In turn, the 

effective resistance becomes 
 

 
 1/2 1/21

020

0

/
2 2 2eff eff

kR A
a a

 


   

       
. 

 
a) Use this expression instead of R in Eq.(28.4) and compare with the full numerical 
solution for the loss versus frequency. Also, try an improved interpolation 

2 2 1/2( )int effR R R  . The results are shown in Fig. 28.6 below. 
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Figure 28.6. Losses based on telegrapher’s equation with geometric area (green solid),  
effective area (green dashed), and interpolated area (green dotted) in comparison  

to the full wave equation solution (red). 
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29. Graphene Plasmonics 
 
 
In this chapter, we will apply the optical characteristics of graphene, derived in 
Chapter 17, to the specific goal of understanding plasmons in graphene. Graphene is 
special in the sense that the extremely low thickness means that charges and currents 
are essentially confined to an infinitely thin layer. We will begin by investigating 
appropriate boundary conditions for a dielectric interface containing the graphene 
sheet. 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.1. A graphene sheet sandwiched between two dielectric media. 
 
We treat a planar interface between media with dielectric constants  and , 
respectively, as illustrated in Fig. 29.1. The presence of the graphene sheet is then 
modelled as the addition of a sheet current  and charges  located at the interface. 
In such a case, the standard Maxwell boundary conditions are modified and read 
 

  (29.1) 

 
Here, subscripts t and n indicate tangential and normal components. Note that the 
sheet quantities are themselves related via the continuity equation . We 
first assume that only a single plane wave exists on either side of the interface. The z-
direction is perpendicular to the interface and the (x,z) plane is taken as the plane of 
incidence. The parallel component of the wave vector  must be identical for all 
waves in order to fulfil boundary conditions. The z-components are different, 
however. We denote these wave vector z-components by  for the i’th side. They are 
related to  via  with . The surrounding dielectric constants 
are assumed real and positive. The sheet current itself is  and we now analyze 
the cases of s- and p-polarization, for which the tangential electric field is along y and 
x, respectively. 
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29.1 S-polarization 
 
In the s-polarized case, we have 
 

 .  

 
Here, the boundary conditions imply 
 
 .  
 
The sheet current is  and so the dispersion relation is simply 
 
 . (29.2) 
 
A similar analysis applies to the computation of reflectances. In this case, the field on 
one side consists of incident  and reflected  components whereas a transmitted 

part  is found on the other side. Hence, taking the field to be incident from the 
 side 

 

   

 
The boundary conditions then lead to the following field relations 
 
 .  
 
The reflection and transmission coefficients are, respectively,  and 

 and solving, we find 
 

 . (29.3) 

 
Note that the plasmon dispersion relation Eq.(29.2) follows by taking . This is 
no coincidence, as a localized mode is precisely one that propagates without 
radiating into the incident direction. In the ideal case of lossless graphene sheets 
sufficiently doped that the intraband response dominates, we have . To 
fulfil Eq.(29.2), it is then clear that both z-components of the wave vector must be 
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purely imaginary, i.e. for both sides we need . However, we are looking for 
field solutions that are localized to the interface. Hence, we require  and 

, where  must be positive on both sides. We then find 
 
 . (29.4) 
 
This equation clearly has no solutions as the signs on either side differ. 
 
29.2 P-polarization 
 
For p-polarization, we have instead 
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2 2
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  

  
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In this case, we find 
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We need the current ( )2 /( )i

t i ij c q       that can be evaluated for i = 1 or 2 with 
identical results. Hence, a non-trivial solution implies 
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Similarly, solving for the reflection coefficient we find 
 

 2 1 1 2 1 2 0
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/( )
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q q q q
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.  

 
Again, the plasmon dispersion follows from setting 0pr  . The dispersion relation 
Eq.(29.5) for p-polarized plasmons can be converted into a polynomial equation. 
However, the generally complicated solution is greatly simplified in the quasi-static 
limit 0xk k . In this limit, it is readily seen that 2 2

1 2( ) /x pk      . In highly doped 

graphene, the plasma frequency is approximately 2 2 2
0/( ) 4p F Fe E c     , where 

/F FE   and   is the fine-structure constant, c.f. chapter 17. It then follows that 
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Thus, writing 0 02 /k    and introducing the surface plasmon wavelength via 

2 /x spk    we have  
 

 0
1 2

4 F
sp
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 

  

       
. 

 
In the experiments of Ref. [1], parameters were 0.13 eV  , 0.4 eVFE  , 1 1   and 

2 1.9  . Thus, we expect 0/ 1/32sp    in agreement with the experiments. The full 
numerical solution is shown in the inset below. Another way of illustrating the 
dispersion relation is by plotting / F   versus /x Fk k , with /F F Fk v  the Fermi 
wave vector and /300Fv c  the Fermi velocity. According to the analysis above, we 
expect a square-root in the electro-static limit 
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. (29.6) 

 
In the main plot below, obtained from the full numerical solution, we see that this 
expectation is borne out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.2. Plasmon dispersion relation. The inset shows a comparison of surface  
plasmon wave lengths for the full (red) and quasi-static (blue) solution. 
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29.3 Graphene Disk Plasmons 
 
We now specialize to an area of increasing interest in graphene physics: plasmons in 
nanostructured graphene. In particular, we focus on plasmons in circular graphene 
disks such as the one shown in Fig. 29.3.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.3. Circular graphene disk on a dielectric substrate. 
 
We will apply the electro-static approximation similarly to the case of small metallic 
particles in chapter 27. The disk is characterized by a sheet conductivity ( )r



, where 
  is the characteristic function of the disk, i.e.   equals unity inside the disk and zero 
outside. As a starting point, the electric potential produced by a sheet charge density

( )r


 is 
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where 0  represents the incident field and 1 2( )/2    . Now, from the continuity 

equation we have  1 1( ) ( ) ( ) ( ) ( ) ( )r i j r i r r        
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 . Moreover, 
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Next, we take advantage of the circular geometry. This implies that all eigenmodes 
will be of the form ( ) ( ) il

lr r e  
  and ( ) ( ) il

lr r e  
  for potential and charge, 

respectively, where l is an integer. This means that we need the integral 
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Unfortunately, no simple expression exists for general l. For l  = 1, the result is given 
by 1(2 )   times 1,0F  defined in chapter 27. Via this function, we find 
 

 0,
0 0
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 The continuity equation Eq.(29.7) can be rewritten 
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To invert this equation, we need the corresponding Green’s function. The appropriate 
function should satisfy the condition 
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In this manner, we can rewrite the equation as 
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The boundary condition for the Green’s function follows from behavior of the field 
on the edge. Hence, we require the current density to be tangential at the edge of the 
disk. The normal component of the current nj  is given by ( / )n n r Rj d dr     . 
Thus, we require ( , )/ | 0l r RdG r r dr   . It then follows that with min( , )r r r   and 

max( , )r r r   
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This may be verified by noting that 
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The second term in the Green’s function is the homogeneous solution added to satisfy 
the boundary condition ( , )/ | 0l r RdG r r dr   , as is readily demonstrated. We finally 
see that, in the absence of an external field, the condition for a plasmon is 
 



 267 

 
00 0

( , ) ( ) ( , ) ( )
2

R R

l l l lG r r r r dr K r r r r dr
i


 


         . 

 
It is advantageous to introduce normalized radial coordinates /x r R  and 

/y r R  so that because 1/K r  
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An elegant way of solving this eigenvalue problem is by expanding in an appropriate 
basis. A.L. Fetter [2] has shown that by using a Jacobi polynomial basis 
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the required (non zero) matrix elements for 0l  are 
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The polynomials themselves can be generated using the recursion relation ,0
0 ( )lP z  = 

1, ,0
1 ( ) (( 2) )/2lP z l z l    and 
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In this manner, Eq.(29.8) is transformed into a generalized eigenvalue problem 
 
 l l

nm m nm m
m m

K c G c   

 
with the eigenvalue 2 2

02 / 2 / pi R R       . Using a basis of 300 polynomials, 
the eigenvalues are plotted in Fig. 29.4. Of particular importance is the fundamental 
dipole ( 1)l   mode, for which the eigenvalue is 1.098 . The associated resonance 
frequency is given by Eq.(29.6) with wave vector /k R  
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. (29.9) 

 
For an 100R   nm disk on glass with 0.4 eVFE  , 1 1   and 2 1.9   this 
corresponds to 0.093   eV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.4. Eigenvalues of the graphene disk plasmon problem for a range of angular modes. 
 

 
29.4 Graphene Nanoribbon Plasmons 
 
Next, a similar treatment will be given to graphene nanoribbons, i.e. infinitely long 
strips. we take the y-axis along the ribbon and so, placing ourselves at 0,y   find 
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To integrate over y , we first consider a finite ribbon of length L so that 
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 . 

 
In the last approximation, we used the fact that L is large. Now, since the induced 
charge is overall neutral, the constant piece 2 ln L  has a vanishing contribution to the 
integral. Thus, for a ribbon of width W we find (taking the L   limit) 
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Finally, using again Eq.(29.7) we have 
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This is the integro-differential equation to solve. Again, in the absence of an incident 
potential and introducing 02 /i W   , we find an eigenvalue problem in 
normalized coordinates 
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 . 

 
Numerically, we solve by discretizing and considering a ribbon that is slightly 
narrower than unity such that the characteristic function   vanishes in the outermost 
four points (two in each side: one outside and one inside the ribbon). Applying a grid 
of 2502 points and midpoint sampling [3] then leads to eigenvalues 

{0.000, 2.316, 5.510, 8.635,...} . The associated eigenmodes are shown in Fig. 29.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.5. Four lowest graphene nanoribbon plasmon eigenmodes. 
 
 
Exercise: Graphene magnetoplasmons 
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In this exercise, we return to the plasmon mode problem for the infinite sheet. Hence, 
we consider the geometry in Fig. 29.1 but in addition to the optical fields we imagine 
that a static magnetic field is applied perpendicular to the graphene sheet. In the 
presence of a  - field, the optical conductivity tensor is no longer diagonal but 
becomes [4] 
 

 xx xy

xy xx

 


 

     



. 

 
In the case of strongly doped graphene, the conductivities in the collisionless limit 
   are (see Chapter 37) 
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Here, 2 /D Fv e    is the Dirac cyclotron frequency. In this case, the plasmon 
eigenmodes are no longer purely s- or p-polarized, but rather a mixture. Hence, a 
general field is of the form   ( )( ) ( ) x ii k x q zi i

x x y y z ze e e e   


  

    . Here, we utilized the 
fact that the tangential field components are the same in the two media. Since the 
fields have both x- and y-components we find a sheet current 
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b) By combining with the boundary conditions Eq.(29.1), show that 
 

 
2 2

1 1 2 2 0 0

0 1 2 0

/ /
0xx x xx xy

yxy xx

k q q k q q
q q

   
   

                     





. 

 
As usual, the mode condition is that the determinant vanishes.  
 
c) Show that this eventually implies 
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Hence, it is obvious that the mode condition is a mixture of the purely s-polarized 
case Eq.(29.4) and the p-polarized case Eq.(29.5) and, in the absence of a magnetic 
field, the two original modes emerge. As before, we apply the quasi-static 
approximation i xk   to solve. In this manner, using the conductivities above, one 
finds 
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.  

 
The second approximate expression holds because 4 / 1Fv c  . It is clear that the 
correct limit Eq.(29.6) is found for 0D  . In Fig. 29.6 below, we plot the dispersion 
relation for three values of the cyclotron frequency. A cyclotron energy of 0.3 eV 
corresponds to a field of about 45 T, so this is a huge energy. Note that the red curve 
is identical to the result in Fig. 29.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.6. Solution of the magnetoplasmon dispersion relation for  
different values of the cyclotron energy. 
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30. Optical Properties of Ultrathin Metal Films 
 
 
In previous chapters, we looked at the optical properties of bulk metals (Chapter 3) 
and metallic nanoparticles (Chapter 27). In addition, we have studied the optical 
response of two-dimensional semiconductors and graphene. The properties of two-
dimensional metals, however, have not been discussed. Such thin films are of 
importance as coatings but, equally, as wave guides for plasmons. Free-electron 
metal films support quantum well states similarly to semiconductors. The large 
density of free carriers leads to quite different material properties in metals, however. 
In the present chapter, we will describe the optical properties of both ideal and 
realistic metal films. 
 
We consider an ideal one-dimensional quantum well such as the one in Fig. A1.2. By 
ideal, we mean a structure, in which the potential only varies along z, while we have 
perfect translational invariance along x and y. In this case, the k-vector k



 is two-
dimensional and the eigenstates and energy eigenvalues are always of the form  
 

 
2 2

1/2( ) ( ) ,
2

ik r
n nnk nk

e

kr A z e E E
m

    




 


  (30.1) 

 
when normalized to a surface area A and labeled by band index n. The thickness of 
the film is d and so the volume is Ad . As usual, the susceptibility in the direction 
perpendicular to the film is given by the standard expression 
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In the semiconducting case, we always assumed that a dominant Bloch part of the 
wave function existed. This was subsequently used to approximate the momentum 
matrix elements in Chapters 15-19 and several other places. Here, however, we will 
assume that our free-electron states are really of the simple form Eq.(30.1) and, hence, 
all bands follow exactly identical dispersions in k-space. Hence, mnmnk

E E  and 

m nmk nk
z z      are actually independent of k-vector. In a two-dimensional 

material at zero temperature, 2/(2 )( ) ( )e F n F nnkk
f m A E E E E    
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  and so 
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This susceptibility can be converted to a sheet conductivity via the relation 

0i d     such that  
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with 2

0 /4e    the usual graphene DC value. Finally, in terms of the oscillator 

strength 
2 22 /mn e m n mng m z E    of Chapter 2, we can write 
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The xx component of the conductivity is given by the Drude form since the x-
direction is translationally invariant. The density is given by 
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Hence, from the free-electron plasma frequency 2 2

0/( )p ee n m   we find the sheet 

conductivity of the Drude form ( ) ( )xx D     with 
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This has the interesting implication that at high frequencies, for which mnE   for 
all important transitions, and using the sum rule 1mnm

g   we find 
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Thus, at high frequencies the material becomes approximately isotropic. What “high” 
means precisely depends on thickness d, but generally we need   much greater 
than the spacing between subsequent energy levels. In a simple square-well model, 
this means 2 2 2/( )em d   . In practice, it is impossible to sum all the infinitely 
many m-levels and, hence, it can be advantageous to write the zz-response in the form 
(using the identity 2 2 1 2 2 2 2 1 2( ) ( )E E E          ) 
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, (30.4) 

 
which ensures an isotropic response at high frequencies because the second term will 
be small. 
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The expressions Eq.(30.2) and (30.3) can be evaluated in various models. The jellium 
model discussed in Appendix 6 provides a rather accurate description of the 
quantum well including electron-electron interactions at the mean-field level. We 
will return to this model below. For now, however, we will apply the exceedingly 
simple infinite-barrier square well (free-electron) model (as in the exercise in Chapter 
2). Hence, the states are 
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nz d n
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, 

 
and the energies are 2 2 2 2/2n eE n m d . An elementary calculation shows that for 

n m  odd 2 2 228 /[ ( ) ]m nz nm m nd      while the matrix element vanishes for 

n m  even. Consequently, 2 22 2 2 364 /[ ( ) ]mng n m m n  . In Fig. 30.1 below, we plot 
the response for a free-electron slab with Fermi level FE = 5 eV and 25 meV . The 
thicknesses 5 and 25 nm correspond to plasma frequencies of 8.21 and 8.35 eV, 
respectively.  

 
Figure 30.1. Real and imaginary parts of the anisotropic conductivity for  

free-electron slabs of various thicknesses. 
 
30.1 Plasmons in Ultrathin Metal Film 
 
We will now proceed by investigating plasmons in the thin films studied above. The 
surrounding dielectrics are assumed isotropic, as usual. Hence, we will look for 
bound electromagnetic modes in the geometry shown in Fig. 30.2. 
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Figure 30.2. Schematic geometry of an anisotropic metal film sandwiched between isotropic 
dielectrics.  

 
This geometry is obviously very similar to the graphene case studied in Chapter 29. 
We will keep a finite thickness d, however. The interesting case is that of p-
polarization, in which the magnetic field is of the form ( , ) ( ) xik x

yx z z e e




  . In an 

anisotropic medium with an inverse dielectric tensor 1 
 , the wave equation is 
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well as ( )/ xxz   are continuous. To look for bound modes, we write 1 1q i  and 
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Matching across the interfaces leads to a dispersion relation 
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 (30.5)  
 
In a symmetric geometry with 1 2    , we find even and odd modes (of the 
magnetic field) with simplified dispersion relations 
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Notice the close resemblance with the corresponding equations for the electronic 
quantum well modes themselves in Appendix 1. For numerical purposes, the general 
expression Eq.(30.5) can conveniently be written using sheet conductivities via 

0 0 01 /( ) 1 /( )ii ii iii d i k d         . In turn, if we take the limit 0d  , we find 
the approximation 
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Thus, in this limit, we recover the graphene result Eq.(29.5) and anisotropy plays no 
role. For 1 2  , this mode is the odd one. In the quasi-static limit, the solution is 

0 1 2 0/ ( ) /( )x xxk k i      . More accurately, the solution for 1 2   is 
2 1/2

0 1 1 0/ { [2 /( )] }x xxk k      . The numerical solution for the plasmon 
dispersion relation for a 5 nm slab embedded in glass 2( 1.5 )  taking 25 meV  
is shown in Figs. 30.3 and 30.4 for odd and even modes, respectively. One may note 
that the real part of xk  is only slightly influenced be the anisotropy. On the other 
hand, the imaginary part related to absorption is increased whenever an allowed 
transition between quantum well levels is encountered. At low photon energies, 
absorption via the isotropic Drude term dominates and the effect of anisotropy is 
negligible. 

Figure 30.3. Plasmon dispersion relation for the odd mode with and without anisotropy.  

Figure 30.4. Plasmon dispersion relation for the even mode with and without anisotropy.  
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30.2 Jellium Model 
 
A significantly more realistic description of the quantum well can be found in the 
jellium model presented in Appendix 6. Here, electron-electron interactions are 
accounted for by a self-consistent solution of the coupled Schrödinger and Poisson 
equations. Moreover, exchange and correlation effects are taken into account. In Fig. 
30.5, the self-consistent potential and associated energy levels of 1 and 5 nm quantum 
wells are shown. The positive jellium charge corresponds to that of gold 
( 3.01 Bohr)sr  . It is clear that, for the wider structure, the potential is close to the 
simple square well. 
 
 
 
 
 
 
 
 
 
 

 
Figure 30.5. Potentials and energies of 1 and 5 nm quantum wells. 

The Fermi level is indicated by the blue line.  
 

In Fig. 30.6, we compare the response of jellium and square-well models with 
densities corresponding to bulk gold in all cases. In the 5 nm case, the two agree 
rather well with the only noticeable difference being that jellium energy levels are 
slightly closer due to spill-out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30.6. Comparison of jellium and square-well models for two quantum well widths. 
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30.3 Nonlocal Response and Spill-Out 
 
In all calculations so far, the response has been assumed local, i.e. so that the local 
current is proportional to the local field. In fact, this is an approximation, and the 
current ( )j z



 may depend on the field at another position ( )z


 , i.e. the response is 
nonlocal. This is a slightly subtle issue and, if the spatial variation of the field is taken 
into account, one cannot apply the dipole approximation for the interaction. 
Generally, a nonlocal response in the thin-film case is of the form 

( ) ( , ) ( )j z z z z dz    
 



  . The in-plane response is given by [1] 

 
2

0 3 2 2 2 2
,

( ) ( )16( , , ) ( , ) ( ) ( ) ( )
( ) ( )

mn F n F n
xx D nm mn

m n mn

E E E E Ez z z z z z z
i i E i


       

  
     

    
 

 

 
with ( ) ( ) ( )nm n mz z z    and the local Drude term ( , )D z   given by  
 

 2
0 2

4( , ) ( ) ( )| ( )|
( )D F n F n n

n

iz E E E E z
i


    

 
  

  


. (30.6) 

 
Hence, the Drude part remains local, but spatially dependent. The average of the in-
plane nonlocal term vanishes due to orthogonality of the wave functions. The out-of-
plane component is significantly modified, however. Hence, one finds [1] 
 

( , , ) ( , ) ( ) ( , , )zz D NLz z z z z z z            
 
with the nonlocal contribution 
 

 0 2 2 2 2
,

( ) ( )8( , , ) ( ) ( )
( ) ( )

mn F n F n
NL nm mn

m ne mn

E E E E Ez z j z j z
i m i E i


  

  
  

    
 

.

 (30.7) 
 
Here, the transition momentum density is defined by 
 
  1

2 ˆ ˆ( ) ( ) ( ) ( ) ( )nm n z m m z nj z z p z z p z      .  
 
It is readily shown that ( , , ) ( )xx xxz z dzdz       and similarly for the zz-

response. 
 
The local Drude term Eq.(30.6) leads to some significant new effects itself. This is 
because the response is now spatially dependent and, hence, we cannot simply match 
the fields across a few boundaries to solve the electromagnetic problem. In fact, in a 
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general anistropic local medium, the wave equation 2
0( ( ) )z k  

 



   leads to 
the differential equation 
 

 2 2
0

( )1( ) ( ) ( )
( )zz x

xx

d zdz k z k z
dz z dz




             


  . (30.8) 

 
If only the spatially dependent Drude term is retained, we have 

0( ) ( ) 1 ( , )/( ) ( )xx zz Dz z i z z          . Thus, in this case 
 

 2 2
0

( )1( ) ( ) ( )
( ) x

d zdz k z k z
dz z dz




             


  .  

 
This equation is a (complex) eigenvalue condition for 2

xk . Numerically, it is 
problematic that all the variations in ( )z  occur in a nanometer range, while ( )z  
itself varies on a hundreds-of-nanometers scale. The eigenvalue problem can be 
formulated in the Schrödinger form by writing ( ) ( ) ( )z n z z   with ( ) ( )n z z  
that leads to 
 

 2 2 2
0

1( ) ( ) ( ) ( ) ( )
( ) xz n z k n z z k z

n z

  
    


         

 
   .  

 
The classical case corresponds to taking 1 1( ) ( ) ( /2 | |)n z n n n d z     with 

1 1n   in the symmetric case.  
 
An alternative to a complicated numerical solution is to rely on perturbation theory. 
Suppose that the dielectric constant profile in Eq.(30.8) is close to the classical one, i.e. 
that spill-out is a minor correction. We will denote the classical quantities with a 
superscript (0) so that we have (0)( )xx z , (0)( )zz z , (0)( )z  and (0)

xk  in this case. The 
corresponding quantum parameters are without the superscript. The essence of 

perturbation theory is that (0)( ) ( )z z   and (0) (0)( )/ ( ) ( )/ ( )xx xxz z z z     because 
these are the continuous quantities. If we now multiply Eq.(30.8) by (0) ( )z  after 
dividing by ( )zz z  and integrate, we find 
 

 

(0) (0)2 2
0

(0)
(0) (0)2

0(0)

( )1 1( ) ( ) ( ) ( )
( ) ( )

( )1( ) ( ) .
( )

x
zz xx

xx

d zdk z z dz z k z dz
z dz z dz

d zdz k z dz
dz z dz

 



 



             
             

 




   


 
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On the other hand, for the classical case we have without approximation 
 

 
(0)

(0) (0) (0) (0) (0)2 2
0(0) (0)

( )1 1( ) ( ) ( ) ( ) ( ) .
( ) ( )x

zz xx

d zdk z z dz z k z dz
z dz z dz 

 
             

 


     

 
Hence, the two right-hand sides are equal and if we use (0)( ) ( )z z   in the left-hand 
side of the quantum case, we find 
 

 

2(0)
2 (0)

(0) 2(0)

1( )
( )

1( )
( )

x zz

x

zz

z dz
k z
k z dz

z





      








. 

  
This means that the correction to the mode index can be found approximately 
without computing the actual field. 
 
In the presence on nonlocality in the z-direction, we find a modified wave equation 
 

 2 1 2 1
0

( )( ) ( , ) ( , ) ( )xx x zz
d zdk z z z dz k z z z dz

dz dz
  

     
 


  . 

 
Here, the inverse response tensor must be understood in the sense 
 
 1( , ) ( , ) ( )z z z z dz I z z         



  . 

 
In the thin-film geometry, a sensible approximation is 
 

 1 1 ( , )1 1( , ) ( ), ( , ) ( ) ,
( ) ( ) ( ) ( )

NL
xx zz

xx zz zz zz

z zz z z z z z z z
z z z z


   

   
  

       


 

 
where ( , )NL z z   denotes the nonlocal contribution to the response, i.e. 

0( , ) /( ) ( , )NL NLz z i z z     . Perturbatively, we then have 
 

 

2(0)
2 (0)
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



 



  
. 

 
 
 
 
 



 281 

 
Exercise: Reflection from thin films 
 
In this exercise, we consider a p-polarized optical beam incident on the film. First, we 
look at an interface between two anisotropic media, with the beam incident from 
medium 1 and going into medium 2. Hence, in the two media, we write the magnetic 
field as 1 1

1 12( ) iq z iq zz e r e   and 1
2 12( ) iq zz t e , respectively, with 12r  and 12t the 

coefficients of reflection and transmission. 
 
a) Show that the boundary conditions imply  
 

 2 , 1 1, 2
12 12 12

2 , 1 1, 2

, 1xx xx

xx xx

q q
r t r

q q
 
 


  


. 

 
Next, we look at the thin film system in Fig. 30.2 with a beam incident from below. 
In this case, the reflection coefficient of the stack becomes 

1 2 1 2( )/( )iqd iqd iqd iqd
F F F Fr r e r e e r r e    . 

 
b) Show that setting 0r   leads to the plasmon dispersion relation Eq.(30.5).  
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31. Electron Energy Loss Spectroscopy 
 
 
In this chapter, we will investigate a particular kind of interaction between electrons 
and light: light emission due to a moving charge. In turn, this will lead to absorption 
losses in any material in the vicinity of the electron. This energy loss must come from 
the electron, which will therefore lose speed. Measurements of this loss are known as 
electron energy loss spectroscopy (EELS) and constitute an important spectroscopic 
tool for both bulk and nanostructures. We will consider an electron travelling with 
speed v along the z-direction. The x and y coordinates will be denoted r



  collectively. 
Below, z will be the direction perpendicular to the material surface. The charge and 
current densities are 
 
 ( , ) ( ) ( ), ( , ) ( ) ( )zr t e z vt r j r t ev z vt r       

 

    .  
 
When Fourier transformed in time as well as the parallel coordinates, we have 
 
 ( ) / , ( )iqz iqz

zz e ve j z ee     
 
with /q v . In three-dimensional space with k





 as the parallel wave vector, the 

full quantities are 2 2( ) (2 ) ( ) ik rr z e d k      









 and similarly for all other quantities. 

This looks a little strange because ( )z  does not depend on k




 but other quantities 

might. We now consider the electric field ( ) ( ) ( )z zz z z e 


 



   . Also, we will allow 
for anisotropic media, however restricting ourselves to a uniaxial dielectric response 
given by diag( , , )z   

 

 . Below, we will introduce material interfaces located at 
certain z-values. However, everything will remain invariant in the parallel 
coordinates and, hence, we can solve for each k





 separately. Now, the Maxwell 

divergence equation  


  with 0  
 



    tells us that (with primes denoting 
/d dz ) 

 
 0( ) ( ) /( ) iqz

z zi k z z e v e    
  




  . 
 
It follows that 0(1 / ) ( ) /( ) iqz

z z z e v e      
 



  . The wave equation is, as usual, 
 
 2 2

0 0( ) ( ) ( ) ( )r r k r i j r      
  

   

   . 
 
We use the divergence equation to isolate the z-component 
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  
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This finally means that 
 

 2 2 0
0

0
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z z z

q kez k k z e
i v c
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  
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

 

  . 

 
This is an important result, which we will now analyze. First, if we simply consider 
a homogeneous medium without boundaries, the full solution inside the medium is 
simply the partial one driven by the right-hand side, i.e. ( ) iqz

z inz e   with 
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in
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
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Clearly, 0 /k qv c q   and 
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If we introduce 2 2 2( / )(1 )z zk q    

 

 it can be seen that 
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Now, since 2 1/2[( / )(1 )] /z zdk d v     

 

 it follows that with 2 2 2
zk k k 



 
 

 2
0

z z
in

z

iek dk
k d  

 . 

 
In space-time, the field must be calculated from 3 2( , ) (2 ) ik r iqz i t

in inr t e e e d k d     









 

. If we introduce zR r Z e 




 

 with 2 1/2[( / )/(1 )] ( )zZ z vt     
 

 we then find 
  

 3 3
3 2 3 2

0 0

1( , )
(2 ) (2 )

ik R ik Rz
in

z z

kie e dr t e d k e d k
k dZ k     

   
 
 



 . 

 
The integral here is nothing but the Coulomb potential (in an anisotropic medium) 
and so the field agrees with standard expressions apart from relativistic and 
anisotropy corrections. In vacuum, we simply have 
 



 284 

 2 2 2 20
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Figure 31.1. Thin-film geometry with incident electron from below. 
 
31.1 Thin Films and Surfaces 
 
Now, we will consider the more realistic case of a thin film, as illustrated in Fig. 31.1. 
This is more realistic, (1) because the electron is incident from some source and (2) 
for a thin film it is permissible to ignore that the electron velocity decreases due to 
losses during propagation. For a film in the region 0 z d  , we have generally 
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Here, 2 2 2

0 ( / )in zk k k   
  

 and 2 2 2
0outk k k 



. The unknowns must be found from 
boundary conditions requiring ( )z z z   and the tangential field continuous. Hence, 
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Isolating from the divergence equation, we see that 0( / ) ( ) /( ) iqz

z z z e v e    
 

  must 
be conserved across all interfaces. Thus, 
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The work W done by the electron is the integral of the force Re{ ( ) }iqz
ze z e  , i.e. 

3 2(2 )W d k d   

 with 

 
 Re{ ( ) }iqz

ze z e dz   . 

 
This becomes 
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where the bulk loss is Rebulk ined   . In the quasi-static (non-retarded) limit 0 0k 
, the bulk loss is 
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Things simplify considerably for an isotropic film, in which 
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and the full result becomes 
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In the non-retarded limit, the reflection coefficient for the film is 
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One can therefore write the loss function as 
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We now wish to study the limit of a thin film, for which 01 /( )i d     . Plugging 
this into the general result and expanding in d, we find that 
 



 286 

 0
0

2 2

2

2 /( 2 )    (thin film)I
( )
2

m ,p prq
e qk

r k k i
v k

   


  
 







. (31.3) 

 
Similarly, expanding Eq.(31.2) in the limit of large d we see that 
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The second, thickness-independent term is the contribution from a single surface. 
This form clearly shows that resonances are expected whenever 0  or 1 0  . 
These conditions correspond to bulk and surface plasmons, respectively, and for a 
Drude metal they are located at /p   and / 1p   . 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.2. 3D Lindhard dielectric function for different wave vectors. 
 
As a preliminary estimate, we will now use the 3D Lindhard model from Chapter 32 
to compute the loss function including its wave vector dependence, adding a 
broadening of 0.05 eV. Hence, we take  
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In Fig. 31.2, we have assumed 5   and 5.5 eVFE   corresponding roughly to 
Silver. The four curves are for k



 of 0, 1, 2 and 4 nm-1. It is observed that a significant 
portion of the absorption shifts to higher momenta compared to the local response. 
We define the integrated loss function such that ( )W d       i.e.  
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In the case of a thin film, for which the sheet conductivity can be considered 
independent of k
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, one finds 
 

2 2 2 2 32

2 2
0

2 2 2
0

2

2( )     , (thin film).( 3 ) 2 ( ) 4 ln( / )Im
( )8

q q w iw q w iw q iwe w
qv w

 





 

           





 

 
In Fig. 31.3 below, we show the total (bulk + surface) loss for 1 and 10 nm films at 

0.1v c . The distinct bulk and surface responses are clearly resolved for the thicker 
film. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.3. Loss function for thin and thick Ag films modelled using 3D Lindhard functions. 
 
31.2 Quantum Size Effects 
 
At this point it is reasonable to ask if a 3D Lindhard function really captures the 
response of a 1 nm film. To include size effects in the thin-film response, we return 
to the full space-dependent response function Eq.(31.2) but assume a confinement 
that depends on z alone. This means free-electron behavior in the parallel coordinates  
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. In turn, the 

single particle susceptibility is 
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In the 2D geometry, we can use the following representation of the Coulomb 
interaction 
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where p  is a two-dimensional vector. Hence, the dielectric function becomes 
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The spatial average will be 
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Unfortunately, the macroscopic response is really the spatial average of the inverse 
dielectric function so that 1 1 1( , ) ( , ; )M k d z z k dzdz        
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. This inverse is given by 
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where   is the many-body susceptibility related to S  via the Lipmann-Schwinger 
equation 
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Hence, we define a generalized 2D Lindhard function 
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We will apply the infinite-barrier model, for which the energies are 2 2 /2n nE k m  
and 1/2) sin( )( ) (2 /n ndz k z   with /nk n d . In this case, 
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A convenient way of finding the many-body susceptibility is via Fourier-
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Hence, 
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The comparison between 2D and 3D models is shown in Fig. 31.4. The 2D response 
is based on a corrected Fermi level in order to match the bulk electron density. Also, 
for the many body response, the calculation is based on 1000 wave vectors in the 
range 1

2[0, ]Fk k


 and the z-coordinate is sampled with at least 20 points per nm. In 
the m-sum over quantum states, we include twice the number of occupied states. 
Note that this k-sampling is insufficient and produced unphysical low-energy 
oscillations in the spectra.  It is seen that quantum size effects are huge for thin films 
and, even for thick ones, an increased broadening is observed. Also, a substantial 
difference between single-particle and many-body responses is seen for the thicker 
films. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.4. Comparison of loss functions for Ag films described using either 2D or 3D Lindhard 
functions. 
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Exercise: Limiting behavior of the Lindhard function 
 
In the limit of small k



, the 2 ( , ,0)DF x y  function becomes 2 2
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a) Show that this leads to a generalized Drude model  
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32. Many-Body Polarizability 
 
 
We have previously discussed the polarizability concept at length, c.f. Chapter 2 and 
25. However, we restricted the actual computations in Chapter 2 to simple one-
electron examples. We now wish to examine the many-body case and try to establish 
useful approximations. First, we will focus on the static case and later expand to 
include finite excitation frequencies. We will start by presenting one particular 
approach based on Dalgardo-Lewis perturbation theory [1], see also Appendix 11. 
This approach is easily applied to hydrogen. 
 
The total problem in the static case can be formulated as , where  

is the usual field-free Hamiltonian and  is the perturbation. We restrict 
the discussion to systems that are symmetric in z. In such a system, the energy must 
be an even function of F. This means that by symmetry there cannot be any energy 
correction at first order of the perturbation. Including second order we therefore 
write 
 
  
 
where the subscript indicates the order of the electric field. The zeroth order term is 
the usual unperturbed equation, whereas first order terms yield 
 
 . (32.1) 
 
This constitutes a normal differential equation for . Similarly, we may proceed by 
setting up an equation for the second order terms. If the inner product with the 
unperturbed state is taken it is then found that . 
 
We start by looking at hydrogen-like atoms for which the nuclear charge is . In 
this case, the ground state is . In polar coordinates, the perturbation 
is . From hereon, we work in atomic units such that distances are in Bohr 

 and energies in Hartrees. If we write the wave function correction as 
 we find after insertion 
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This equation has the solution . The correction to the energy thus 
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 . 

 
By definition, we introduce the static polarizability  by writing  and so 

. This is an exact result for the polarizability. Reinstating units leads to 
the result . For actual hydrogen, the exponent is  and 
so the polarizability is . 
 
We now will try to develop a similar theory for two-electron atoms, i.e. helium and 
helium-like ions. A problem arises, however, because we don’t know the actual 
ground state wave function. However, an excellent approximation is given by the 
Hylleraas form  , where  and c are variational parameters. To 
perform the required integrations it is convenient to introduce so-called Hylleraas 
coordinates [2] given by 
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If the integrand has no angular dependence, the Jacobian of the transformation is  
with  and in terms of these parameters, integrals become 
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Thus, we readily find that 
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Calculating the expectation values of the energy is a little more cumbersome as we 
need the Laplacian in the new coordinates. After some manipulations one finds [2] 
 

 

 
Thus, after the integration the energy becomes 
 

 . 

 

3 2
2 2 3

2 4
9( ) cos
4

r FE F e g r r d r


 
 

 21
2 2E F

49 /(2 ) 
4 4 2 2
09 /(2 )( / )a e m   1 

9 /2H 

1 2( )
0 12(1 )r rNe cr    

1 2 1 2 12, ,s r r t r r u r    

uJ
2 2J s t 

3 3 2
1 2

0 0

s u

u

d r d r uJdtduds




    

 

4

1/22 2

2 2
8 35 48

N
c c


  


 

2 2 2 2

0
2 ( ) 2 ( ) 4 2 4 4 1ˆ .ss uu tt su tu s u t

s u t t s u s t ZsH
uJ uJ J u J J u

          
 

         

2 2

0 2 2

2 (5 8 16 ) 2 (16 25 60 ) (35 64 144 )
16 70 96

Z c Z c ZE
c c

    


 
       


 



 295 

If this expression is minimized with respect to  and c, a minimum of  
is found at  and . This variational result is obviously quite close 
to the exact value of . One can do even better by adding more variational 
parameters. A list of increasingly advanced functions is shown in Table 32.1 along 
with optimized parameters and energies. For the most advanced 6-parameter 
Hylleraas function, the agreement with experiments is practically perfect. 
 

Wave function Parameters Energy Pol. 
    -2.8477 1.110 

 ,  -2.8911 0.999 

 , ,  -2.9024 1.311 

 
, ,  

, ,
 

-2.9033 1.386 

 
Table 32.1. Various variational ansätze and the corresponding optimized parameters,  

energies and static polarizabilities. 
 
We can now return to the problem of the polarizability. Because we don’t know the 
exact ground state wave function, we need to modify the approach slightly. Taking 
inspiration from the hydrogen case, we approximate the full wave function in the 
presence of an electric field by , where  is a first order correction. Now, 
exploiting the fact that the first order correction to the energy vanishes we find that 
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Since  and  is small, we expand and thereby find the second order 
energy 
 
 . 
 
We see that if Eq.(32.1) still holds, we obtain  as before. The above 
expression, however, is still valid as a variational estimate even if Eq.(32.1) is not 
fulfilled and only an approximate ground state is used. We now take additional 
inspiration from the hydrogen case and write the modification as 

, with more generally . To simplify the 

computation we split the terms arising by having  act on a product. In this 
manner, we find 
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0Ĥ



 296 

 
 
At this point, we again make the approximation that we’re dealing with the exact 
ground state. In that case, the middle term above vanishes identically and we have 
 

 . 

 
We now face the task of minimizing the second order energy with respect to a and b. 
Differentiating and solving, we immediately find 
 
 

 

 
Here, the averages are to be made using  as weight. To simplify, we may next 
symmetrize over x, y, and z and replace  and . 
Writing  and  makes it straightforward to evaluate the 
remaining integrals in Hylleraas coordinates. 
 
The results using various variational guesses for the ground state are listed in the 
Table. For the simplest form , the He polarizability is simply doubled 
compared to hydrogen, i.e. . For helium, the optimized exponent is 

 and so the polarizability becomes . This is rather far from the 
exact value of . In contrast, if a highly accurate (and complicated) 
variational form is used, both the ground state energy and polarizability are very 
close to exact results. Results for various variational ansätze are given in Table 32.1. 
 
32.1 Frequency Dependence 
 
Having tackled the static polarizability, we now return to the frequency dependent 
one given in Chapter 2 as (using atomic units) 
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where  is the oscillator strength. In these expressions, n denotes the n’th excited 
state and 0 is the ground state. For the hydrogen atom, the ground state is the 1s state 
and, as discussed in Chapter 2, the only excited states that couple to this ground state 
are p-type with a matrix element given by 
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 . (32.2) 

 
The radial eigenfunctions needed here are  and 
 

 . (32.3) 

 
Here,  is an associated Laguerre polynomial. The integral can be carried out 
analytically with the result [3] 
 

 . 

 
Using transition energies given by , the first few terms are , 

, ,  etc. Recalling the Thomas-Reiche-Kuhn sum 
rule that the g’s should sum to 1 (for a one-electron system) we see that this appears 
to be violated. In fact, summing the first 200 terms yields a total of 0.5650. The reason 
is, of course, that transitions to the continuum of ionized states have been ignored. 
These states form a continuum at energies above the ionization threshold that in 
atomic units lies at 1

2 . To account for these transitions, we must therefore write 
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where  is the “oscillator strength” of the continuum transition and the discrete 
sum only covers bound states. It turns out that, writing  i.e. separating out 
the kinetic energy, we have  with [3] 
 

 . (32.4) 
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In this manner, the high-frequency limit becomes 
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Integration readily shows that the combination inside the curly brackets is, indeed, 
unity. Similarly, in the static limit we find 
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This expression evaluates to 9/2 as it must. Quite remarkably, Gavrila [4] has 
managed to evaluate the full polarizability is closed form 
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In Fig. 32.1, real and imaginary parts of the polarizability are plotted using 0.005  
The static limit is clearly seen to be correct. Note, also, the discrete resonances below 
ionization 1

2  and the continuum above. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32.1. Complex polarizability of hydrogen atoms. 
 

To make a similar calculation for He, we need appropriate excited states. A simple 
variational estimate can be constructed using the singlet ansatz 
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Here, we use hydrogenic eigenstates of the form  and 
 with  and  given by Eq.(32.3) but with 

a screened exponent, i.e. 

 1 1 2 1 2 1
1 ( ) ( ) ( ) ( )
2nP s np s npr r r r     

   

1 00( ) ( , ) ( )s sr Y R r  


10( ) ( , ) ( )np npr Y R r  
 3/2

1 ( ) 2 sr
s sR r e   ( )npR r



 299 

 . 

 
It should be noted that these states are automatically orthogonal to the ground state. 
However, different excited states corresponding to different values of n are only 
orthogonal if the same exponent  is used for all states. We determine the best choice 

of  and  by optimizing the energy of the lowest excited state, i.e. n = 2. Similarly 
to a standard Hartree-Fock calculation (see App. 4) we find 
 
 . 
 
Evaluating all terms we find for n = 2 
 

 . 

 
Minimizing, we find  at  and . For , the 
energies follow the Rydberg series  to very high accuracy. The values 
obtained using these exponents for some low values of n are shown in Table 32.2. 
 

Excited state Energy  Osc. strength  
 -2.1224 0.2633 
 -2.0556 0.0717 
 -2.0313 0.0275 
 -2.0200 0.0145 

 
Table 32.2. Energies and oscillator strengths of some excited p states. 

 
To compute the oscillator strengths of the  transitions we need the dipole 
matrix elements given by 
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These integrals may again be evaluated by symmetrizing over x, y, and z and using 
Hylleraas coordinates. The corresponding oscillator strengths are given by  
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The table above lists a few results for the lowest transitions. Here, it is very clearly 
seen that the sum rule  is badly broken if only bound states are counted. 
Adding continuum contributions is tricky. A simple approximation can be obtained, 
however, by appealing to the hydrogen result with a few modifications. First, for this 
part, we approximate the ground state by the simple top-most product in Table 32.1 

. In this manner, 

 . 

 
We further approximate . Thus, based on the results of the exercise below, we 
will use the modified oscillator strength distribution 
 

 . 

 
It is apparent that we have modified the hydrogen result in three ways: (1) the H  
ionization potential of  is replaced by the He value 
, (2) the stretching of the s-state for the ground state approximation is accounted for 

via , and (3) the appearance of a prefactor  that is 

given by the overlap between the two 1s states. Using  (and  in 
) leads to C = 1.96. With these modifications, we calculate the polarizability from 
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The result is illustrated in Fig. 32.2.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 32.2. Complex polarizability of helium atoms. 
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As a consequence of various approximations, we clearly expect sum rules etc. to be 
violated. However, in fact, it turns out that the sum of oscillator strengths is 2.14, only 
slightly above the exact Thomas-Reiche-Kuhn value of 2. Moreover, it is observed 
that a static value of  is found in reasonable agreement with the exact 
value of 1.38. 
 
32.2 Alternative Green’s Function Approach 
 
A very different approach to the frequency dependent polarizability problem can be 
formulated using Green’s functions. We concentrate here exclusively on the single-
electron case. First, we notice that the polarizability can be written as 
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where the imaginary part of the frequency is absorbed into  . Reorganizing, this 
becomes 
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In spherical coordinates, the delta function becomes , where  
denotes the polar angles. For problems with spherical symmetry, the states are of the 
form  and so the Green’s function becomes 
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where  is the reduced Green’s function for the channel with angular momentum l. 
The general spherically symmetric Hamiltonian is 
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 . (32.5) 

 
The homogeneous version of this second order equation has two solutions: , 
which is finite at the origin, and  that is irregular at the origin but vanishes as 

. The Green’s function is given in terms of these as 
, where C is a (possibly - dependent) constant. If we integrate the above equation 
with respect to r from  to  we find that . 
This quantity, called the Wronskian, turns out to be independent of as can be 
demonstrated by differentiating and using . Finally, the 
polarizability can be calculated as 
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In this manner, polarizabilities can be obtained for arbitrary spherical one-electron 
systems. With a few manipulations 
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For a hydrogen atom, the regular and irregular solutions to the homogeneous version 
of Eq.(32.5) are 
 

  (32.6) 

 
where F and U are the Kummer and confluent hypergeometric functions, 
respectively, and . The normalization constants N and  always cancel 
and we may take . For , the inverse of the Wronskian turns out to be 
 

 . 

 
The Gamma function has singularities when the argument is a negative integer, i.e. 
for  corresponding to the usual hydrogen energy 
eigenvalues. 

2
2

2 2

( 1)1 1 ( ) ( , ; ) ( )/( )
2 2 l

l ld dE V r g r r E r r r
dr r dr r


               

( )Ej r
( )Eh r

r  ( , ; ) ( ) ( ) ( )l E Eg r r E C E j r h r  
r 

r r
1 21

2( ) ( ) [ ( ) ( ) ( ) ( )]E E E EC E r j r h r j r h r        
r 

0 0
ˆ ˆ 0jH h hH j 

1

1

( ) (1 , 2(1 ); 2 )

( ) (1 ,2(1 ); 2 ),

qr l
E q

qr l
E q

j r Ne r F l l qr

h r N e r U l l qr





   

   

2 /2E q N 

1N N   1l 

 
212 1 18( ) 2 ( ) [ ( ) ( ) ( ) ( )] (1 ) ( )

3E E E E q q
qC E r j r h r j r h r


           

21/(2 ), 1, 2, 3,...E n n 



 303 

Exercise: Continuum transitions 
 
In a hydrogen atom, the ionized p-type states given by Eq.(32.6) with  are 
 
 . 

These states cannot be normalized in the conventional sense. However, if we 
“enclose” the atom in a large sphere of radius R with infinite barrier walls, we find 

 and  
 

 . 

 
Now, for a 1s state of the form  the matrix element Eq.(32.2) 
becomes 
 

 . (32.7) 

 
Because R is large we can extend the upper integration limit to infinity. The integral 
is still complicated but (using an integral representation for F) turns out to be 
 

 . 

 
a) Show that 
 

 . 

 
The transition energy is . Thus, the oscillator strength becomes 
 

 . 

 
b) Show that in the limit  
 

 . 
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c) Show that this implies Eq.(32.4) if . 
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33. Density Response Theory 
 
 
In this chapter, we explore the fundamental relations between many-body and 
single-particle response functions. Such relations may be set up using heuristic 
arguments but can, in fact, be made rigorous within the realm of density-functional 
theory, more precisely the time-dependent version TDDFT. We will begin the 
analysis using general response theory based on many-body states and then compare 
to approximations and establish relations between the two approaches. 
 
We limit the discussion to perturbations given as time-dependent scalar potentials. 
In a true many-body approach, an electronic system is perturbed only by the external 
potential . The full quantum mechanical perturbation Hamiltonian is then 

 with a sum over all N electrons. The perturbation induces an electron 

density  at position  given by standard response theory. The associated 

operator is  and so 
 

 . 

 
Here, the states are true many-body eigenstates. The matrix elements of a symmetric 
function of the form  can be simplified as 
 

  

 
Here, anti-symmetry under exchange of electron-arguments has been applied in the 
second line. Eventually, we see that we can write 
 
 , 

 
where  is the density response function given by  
 

 . (33.1) 

 
It is easily demonstrated that this expression agrees with our previous approach to 
the optical response calculation. Hence, if the perturbation is due to a constant electric 
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field  we can compute the induced dipole moment as 

 and so 

 

 .  

 
The proportionality factor between d and  is the polarizability, which clearly agrees 
with the results of Chapter 2. 
 
Now, as indicated above, we will proceed using heuristic arguments and then 
exactify the results later. The argument goes as follows. If single-particle rather than 
many-body states are applied we should try to remedy the error. By ignoring 
electron-electron repulsion in the Schrödinger equation we miss an important part of 
the physics. This can be partly fixed, however, by assuming that electrons are 
perturbed not only by the external potential but also by the induced Coulomb 
potential due to the other electrons. The basic relation is given by 

. The density operator is now simply  and we can 
write the expression for the induced density in the form 
 
 , 

 
where  is the single-particle density response function given by  
 

 . (33.2) 

 
Of course, the energy-eigenvalues in Eqs.(33.1) and (33.2) are many-body and single-
particle ones, respectively. At the moment, we will ignore exchange and correlation 
effects (see App. 3) and only retain the classical part of the induced potential. This is 
known as the random phase approximation. Classically, potential and density are 
related via the Coulomb expression 
 

 . 

 
Hence, the induced potential is identified with the time-dependent part of the 
Hartree potential. In turn, 
 

 . (33.3) 
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This is the central integral equation for the total perturbation. For general geometries 
it is obviously hard to solve.  
 
By definition, the total and external potentials are related via the dielectric matrix 
 
 . 

 
Hence, Eq.(33.3) shows that 
 

 . 

 
On the other hand, in the many-body analysis we can write 
 

 . (33.4) 

 
Thus, here 
 

 . 

 
The two expressions for the dielectric constant establish a link between the two 
approaches. We can put them together and obtain the following link between the 
density responses 
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as can be verified by insertion. 
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 . 

 
The first term is easily seen to vanish as the  factor averages to 
zero. The second term can be written 
 

 . 

 
We now exploit the fundamental properties 
 

  

 
and find 
 

 . 

 
However, the only part of  that contributes here is the kinetic energy and so 
 

 . 

 
If we reinsert this expression into Eq. (33.3) and integrate by parts we find 
 

 

 
The integral over  is easily made due to the delta-function 
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Note that the factor of 2 disappears because we differentiate  before integrating over 
. The first term is simplified by recalling the Poisson equation for a point charge 

and we find 
 

 . (33.5) 

 
The term  is seen to act as an effective, position dependent squared 
plasma frequency. In fact, if we introduce the usual local dielectric constant 

 we can write 
 

 . (33.6) 

 
It can be shown that this form follows quite generally from usual electrostatics if one 
starts from 
 

  

 
and writes the induced charge density as . Note, 
however, that really this approach is only valid in the high-frequency limit. In 
addition, we see that the connection between this local  and the non-local  
must be 
 

 . 
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For an ordinary sphere, with  for  and  for  it then 
follows that 
 

  

 
These equations agree at , both of them yielding . The 
plasmon resonance condition is therefore . Recalling the polarizability 

, the solution can be written 
 

  

 
Hence, the scattered field is proportional to the polarizability, as expected. The 
induced dipole moment d is generally given by . Utilizing the 

relation between induced charge and potential, it can be shown that this becomes 
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Here, the vectors should be understood as two-dimensional ones. We now use the 
identity 
 

 . 

 
The first terms doesn’t contribute due to the angular integral and we are left with 
 

  

 
For an ordinary cylinder, with  for  and  for  it then follows 
that 
 

  

 
These equations agree at , both of them yielding . In this 
case, the plasmon resonance condition becomes . 
 
33.4 Planar Symmetry 
 
In the simple case of planar symmetry so that   and , we find 
the condition for the self-consistent potential  after integrating over y and z 
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33.5 Time-Dependent Density-Functional Theory 
 
If we wish to go beyond the random phase approximation, we need to go back to the 
relation between density and potential 
 
 . 

 
To linear order, this relation still holds but we now add the exchange-correlation  
part to . However, it is important to note that it is only the small time-dependent 
portion of  that should be considered. We know that  is a functional of density 
n and this also holds in the time-dependent case. Hence, to linear order we can write 
 

 . 

 
Here,  is a frequency-dependent xc kernel that depends on the ground 
state density  only. Adding the induced part of  we now find that 
 
 , (33.7) 

 
where 
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This integral equation is the foundation of time-dependent density-functional theory 
(TDDFT). Since we don’t even know  in the static case, we obviously don’t know 

 either. However, useful approximations can be constructed. Among 
these, the adiabatic approximation, in which the frequency dependence of  is 
ignored, is particularly important as it allows us to construct the kernel from 
excellent, well-tested approximations to the static . The equation determining the 
non-local dielectric function now generalizes to 
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At this point, we wish to establish the resonance condition given by the so-called 
Casida equation [1,2]. The resonances occur at certain discrete frequencies . 
To find them, we combine Eq.(33.2) with Eq.(33.7) in the case of no external potential 
so that 
 

 .  

 
Taking matrix elements means that 
 

 

 
If we now define  we see that 
 
 . 

 
Hence, the resonances  are eigenvalues of a matrix with entries 
. The problem can be further reformulated in the low-temperature limit, where the 
Fermi factors are either 0 or 1 so that 
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 . 

 
Hence,  is an eigenvalue of the Casida matrix  with elements 

. We will now specialize to the important case of spin-
balanced systems. In this case, similarly to Chapter 18, the ground state is of the form 
 
  
 
with all single-electron valence states occupied by both spin-up and –down electrons. 
Similarly, we consider two types of singly-excited states  
 

  

 
From these, we form the singlet ( ) and triplet ( ) combinations  
 
 . 
 
The corresponding expansion coefficients are denoted  and the matrix problem 
becomes 
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Here, the kernel is determined from 
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In the adiabatic approximation, the frequency-dependence of  is ignored. Hence, 
the ground state expression for the density-dependence of  is assumed to be valid 
even for time-dependent density perturbations. If, moreover, the local spin-density 
approximation (LSDA) is adopted  it follows that 
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and 
 

  

 
It is noted that if coupling between different singly-excited states is neglected, the 
resonances are found analytically as 
 
 . (33.9) 
 
If, moreover,  we find . 
 
Now, we may go back to the case of a non-vanishing external potential at an arbitrary 
frequency . In this case, it can be shown that 
 
 , 

where the R matrix is defined as the inverse . Above, we discussed 

eigenvalues  and eigenvectors  of the Casida matrix . Using the so-called 
spectral representation it follows that 
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If the external potential is taken as simply  the dipole moment is identical 
to the polarizability . It is then easily seen that . 

Hence, we can finally write 
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where  is the oscillator strength. 
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Exercise: Application of LSDA to atoms 
 
In the LSDA, the spin-dependence is given by (c.f. Eqs.(A4.4) and (A4.5)) 
 
 , 
 
where 

 . 

 
a) Show by differentiation that 
 

  

 
b) Use these results to show that 
 

 . 

For the exchange part,  and  in atomic units. 
 
c) Show that 
 

 . 

 
Explicit formulas for the correlation part in the Perdew-Zunger parameterization 
(slightly modified to ensure continuous second derivatives) are given in Ref. [2].  
 
Implementation of the above framework is relatively straight-forward for closed-
shell atoms with a spherically symmetric ground state density. Here, we investigate 
excitations of an electron from the outermost occupied s-orbital to the lowest empty 
p-orbital. We adopt the restricted model of App. 3 and require spherical symmetry 
for the excited states as well. Moreover, we first use Eq.(33.9), i.e. ignore coupling 
between excited configurations. In the table below, some results for closed-shell 
atoms are shown. 
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Atom    Exp. [eV] 

Be 3.50 5.08 2.58 5.28/2.72 
Mg 3.40 4.57 2.87 4.34/2.72 
Ca 2.40 3.39 2.00 2.94/1.89 

 
It is seen that the corrections improve agreement with experiment. If, next, coupling 
between the 10 lowest excitations is neglected, we find the results of the following 
table. 
 

Atom    Exp. [eV] 

Be 3.50 4.84 2.51 5.28/2.72 
Mg 3.40 4.25 2.82 4.34/2.72 
Ca 2.40 3.16 1.97 2.94/1.89 

 
It is noted that results for Be actually get worse but the other cases improve. 
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34. Screening 
 

 
In this chapter, we look at screening in periodic systems. Screening is essential for a 
correct understanding of many-body effects in crystals. In particular, excitons in 
semiconductors require a careful treatment of the screened Coulomb interaction. 
Moreover, doping leads to the presence of free carriers that efficiently screen 
interactions between localized and mobile charges. We apply the density response 
formalism developed in Chapter 33 for our purpose. We wish to apply the formalism 
to the periodic situation, i.e. to the response of crystals. In that case, we write the 
wave functions on the form  
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where the u’s are lattice periodic and n is a band index. Noting that the product of u’s 
is also lattice periodic, we introduce 
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where (after spin summation) 
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In should be noted that k



 and q  both lie within the Brillouin zone. We would like to 
show that, upon averaging over a macroscopic volume, the expression Eq.(34.1) 
agrees with the usual dielectric constant Eq. (15.3) if the many-body correction xcf  is 
ignored. In fact, it can be shown that one should average the inverse of the dielectric 
function. This complication, however, will be ignored here. We use the Fourier 
expansion of the Coulomb interaction 
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Here, again, p  is inside the Brillouin zone. Integrating, we find that only p q
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survives and the RPA response becomes 
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We now calculate the Fourier transform from the integral 
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Assuming that q  is inside the Brillouin zone, we find 
 

 
2

002
0

( , ) 1 ( , )Seq q
q

   


 
  . 

 
The long-range spatial average in then 2
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for simplicity we will consider an intrinsic semiconductor material with a finite gap 
separating filled and empty bands. Thus, 
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Here, an expansion in q  was applied. It finally follows that 
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This expression agrees with our previous result in Eq. (15.3).  
 
34.1 Lindhard Functions 
 
Having established this agreement, we will now turn to simplified treatments. To this 
end, we note that for small q  we have 

,0
( ) nm Gnmk q
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



. If only a single band 

contributes significantly, this means that 00( , ) ( , )S q L q  
  , where L is the Lindhard 

function, defined by 
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Using the effective mass approximation and assuming zero temperature, we find for 
3D materials after introducing 2 /w m    
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Here, Fk  is the Fermi wave vector defined via 2 2 /2F FE k m . The function 3DF  is 
plotted in Fig. 34.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.1. Lindhard function for the 3D case for different frequencies. 
 
The static limit of the Lindhard function is 
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Also, for small q but finite   it turns out that 
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Hence, the usual Drude formula 2
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   for a material with electron density 

n is recovered in this limit. For small q, the static dielectric constant becomes 
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where 3Dq  is the 3D Thomas-Fermi wave number and ( )FD E  is the density of states 
at the Fermi level. The relation between 3Dq  and ( )FD E  is, in fact, valid even without 
the effective mass approximation. The associated screened Coulomb interaction, also 
called the Yukawa potential, is then 
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In two dimensions, the Lindhard function becomes 
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 (34.4) 

 
This function is illustrated in Fig. 34.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.2. Lindhard function for the 2D case for different frequencies. 
 

In two dimensions, the static limit of the Lindhard function is 
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Again, the prefactor is generally ( )FD E  (calculated per area). In the last section, we 
will turn to a practical application of this result. The 2D Coulomb interaction 
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0/(2 )e q  means that at small q 
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where 2Dq  is the 2D Thomas-Fermi wave number. In the “plasmon-pole 
approximation”, the inverse of the full space and frequency dependent response is 
approximated by 
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The pole q  is located by requiring the correct static behavior, so that 

2 2 2 2
3(1 / )q p Dq q    and 2 2

2(1 / )q p Dq q    in 3D and 2D, respectively. 
 
34.2 Two-dimensional Coulomb Interaction 
 
We will attempt to describe the special circumstance governing excitons in two-
dimensional materials, such as the case illustrated in Fig. 34.3. Here, charges inside 
the layer interact via a Coulomb potential screened by the layer itself but, also, 
charges in the surrounding sub- and superstrates. Intuitively, one may imagine field-
lines connecting the the charges. If the charges are far apart, the field-lines will 
predominantly permeate the surrounding dielectrics and only these will contribute 
to screening. Conversely, for short separations, charges in the 2D materials will 
contribute to screening.  
 
 
 
 
 
 
 
 
 
 

Figure 34.3. Layered geometry used in describing the screened Coulomb interaction between  
charges in encapsulated 2D materials. 
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We consider charged carriers in the general geometry illustrated in Fig. 34.3. Here, 
the 2D material is placed between materials with dielectric constants a  and b  above 
and below, respectively. In addition, the 2D layer is modelled as a homogeneous 
layer with dielectric constant   and thickness d. As a starting point, we solve the 
Poisson equation for the potential at position z given an elementary charge unit 
located at position z  in such three-media geometries. With an in-plane separation r

, the full interaction is Fourier decomposed according to  
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The Fourier components satisfy the Poisson equation 
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Provided point z  belongs to the 2D layer, this equation can be solved using the 
standard ansatz 
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Upon applying the appropriate boundary conditions, four equations are obtained for 
the four unknown coefficients. Eventually, for z and z  in the 2D layer, the full 
potential becomes 
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where min{ , }z z z   and max{ , }z z z  . If a  , the result above reduces to the 
usual two-media expression. We will now take the two-dimensional limit and 
approximate 
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 (34.5)  
 
It follows that screening is described by the effective dielectric constant ( )eff q . If, 
furthermore, the expression is expanded to first order in d we find 



 324 

 
2 2 21( )

2 2 4
a b a b

eff q qd    




           
.  

 
The first term in this expression is the usual image charge contribution for screening 
by semi-infinite sub- and superstrates. The last term in the effective dielectric 
constant is typically quite small, and we can approximate 
 

 0 0
1( ) , ,

2 2
a b

eff q r q r d  
  

 
    , (34.6) 

 
where 0r  is the so-called screening length. In terms of this 2D dielectric function, the 
screened potential (in atomic units with 04 1  ) is given by the Keldysh form 
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Here, 0H  and 0Y  are Struve and Bessel functions, respectively. The Keldysh potential 
is compared to the unscreened 1/r  interaction in Fig. 34.4. It is seen that the long-
range behavior is similar but, for short distances, the divergence is only logarithmic.  
  
 
 
 
 
 
 
 
 
 
 
 

Figure 34.4. Comparison of Keldysh and bare Coulomb potentials. 
 
This linearized form 0( )q r q    can be regarded as a first-order approximation to 
the physically more correct form 
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Here, 0q  is the q-value at maximum and 01/a q  if 1  . Some important material 
parameters for various monolayer transition-metal dichalcogenides are shown in the 
table below using parameters from [1]. 
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Material MoS2 MoSe2 WS2 WSe2 

0/ehm m  0.28 0.27 0.22 0.23 

0/em m  0.55 0.49 0.46 0.48 

0  [Å]r  44.3 51.2 39.9 46.2 

 
For suspended ( 1  ) and hBN-encapsulated ( 4.5  ) MoS2, the dielectric constant 
is shown in Fig. 34.5 using 1

0 0.1 Åq  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.5. Dielectric constant of suspended and hBN-encapsulated MoS2. 
 
The plot below shows the 1S exciton binding energy for various TMDs using the 
Keldysh potential Eq.(34.7) as a function of screening by the surroundings. It is noted 
that very large values are reached in the low-screening regime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.6. Exciton binding energy of four TMDs in various dielectric environments.  
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34.3 Doping in Two Dimensions 
 
We now add screening by additional electrons in (say) the conduction band. 
Applying the 2D Fourier transform 2

0( ) /(2 )v q e q , this means that at 0T   
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Here, g is the product of spin and valley degeneracies, em  is the effective mass, 0a  is 
the atomic Bohr radius, and int  is the intrinsic part. Moreover, the Fermi wave 
number is related to the doping density by 2 /4Fn gk  . Below, the inverse dielectric 
constant of MoS2 is plotted for a range of doping densities using 1  . 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.7. The inverse of the dielectric constant of suspended MoS2 for various doping 
concentrations. 

 
This figure is quite different from the ab initio results in Fig. 2 of Ref. [2]. However, 
agreement improves if finite temperatures are considered. First, we include 
broadening of the Lindhard function due to the smooth Fermi distribution. To this 
end, we define 
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In terms of this integral, the dielectric constant becomes 
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with 2 2 /2F F eE k m . The corresponding screening is shown in the top panel of Fig. 
34.8 (using zero-temperature Fermi wave numbers). An additional temperature 
correction arises from the fact that the Fermi level is temperature dependent. Hence, 
Eq.(8.5) shows that the actual Fermi level FE  is related to the zero-temperature value 

0
FE  via 0ln[exp( / ) 1]F FE kT E kT  . Applying this correction leads to the plot in 

bottom panel in Fig. 34.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34.8. Finite-temperature corrected dielectric constant. In the top panel, only broadening of the 

Lindhard function is included. In the bottom, we include also the correction of the Fermi level.  
 
Exercise: Eigenstates of the Yukawa potential 
 
In natural exciton units, the eigenvalue problem for spherically symmetric solutions 
of the Yukawa potential Eq.(34.3) in three dimensions is given by 
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We will find s-type eigenstates by expanding a Gauss basis 20, exp( )ii b r   with 
exponents ( 1)

1 2 i
ib b    for 1,...,i N  with 3

1 10b  . The overlap and kinetic energy 
matrix elements are listed in App. 3 and for the screened Coulomb interaction  
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where C  is the complementary error function. 
 
a) Show that the three lowest eigenvalues depend on q as shown below. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.9. Lowest eigenvalues of the Yukawa potential. 
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35. Spontaneous Light Emission 
 
 
We will apply some of the results derived in previous chapters to study the 
phenomenon of light emission. The focus will be on spontaneous emission, i.e. 
emission via spontaneous decay of an excited state, rather than stimulated (photon 
triggered) decay. The rate of emission will be analyzed for atomic as well as low-
dimensional systems. In addition, we will briefly look at emission via transitions that 
are dipole forbidden. 
 
We first investigate a small confined (zero-dimensional) system such as an atom or 
molecule. The decay rate is given by Eq.(25.7) 
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 (35.1)

  
using the relation between dipole and momentum matrix elements. This result can 
also be expressed in terms of the oscillator strength 
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Moreover, introducing  as the fine-structure constant we 
find 
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Thus, because 2

0nE mc  we typically have 0 0nE  . Taking as an example the 
2 1p s  transition of hydrogen in vacuum, we have 2 1 0.4162p sg    and so 

0 410 neV   corresponding to a decay rate of 8 1
0 6.3 10  s   . The reciprocal is 

the lifetime 1.6 ns  . This result is in perfect agreement with experiments. 
Similarly, for the 21 2 1s p s  transition in helium we found earlier 21 2 1

0.2633
s p s

g


  

and 21 2 1
0.78

s p s
E


  Ha, which means 9 1

0 1.72 10  s    while the experimental value 

is around 9 11.8 10  s in agreement with the more accurate oscillator strength 
21 2 1

0.276
s p s

g


 . 

 
In a solid, a similar analysis can be made. If many-body effects are neglected, we can 
simply consider band to band transitions. Otherwise, excitonic effects should be 
considered. The starting point for this analysis is to “decompose” the decay rate into 

2
0/(4 ) 1/137e c  
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contributions from different photon modes characterized by their wavevector q . For 
an emitter in vacuum, this can be done as follows 
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. (35.3) 

 
Here, the factors under the integral sign take care of the two requirements for the 
emitted photons: The dispersion relation qc  ensuring energy conservation and 
the directional dependence, which states that emission follows a 2( / )q q  pattern 
with q  the q  component perpendicular to the emitting dipole. Sometimes, this 
factor is explained in a seemingly different fashion: For a given photon emitted in the 
q  direction, one should sum over the two polarization directions e



 with 1,2 . 
These polarization vectors should be orthogonal to q  and to each other. For a given 

electronic transition 0n  with momentum matrix element 0nP


 the projections onto 
e


 should be taken. Hence, one would find 
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Now, the two vectors e



 together with the unit vector along q , i.e. qe , form three 

orthogonal unit vectors, which means that 1 1 2 2 q qe e e e e e I  
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. Thus,  
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For a simple dipole in vacuum, using a spherical coordinate system with the dipole 
axis as the polar axis, the latter factor simply adds a factor 2sin   and doing the 
integral in spherical coordinates readily shows that Eqs.(35.1) and (35.3) agree. We 
now look at the modifications needed if the emitter is a low-dimensional 
semiconductor structure. 
 
35.1 Low-dimensional Systems 
 
We first consider a one-dimensional structure (quantum wire or nanotube) with the 
transition dipole oriented along the long-axis chosen to be the x-axis. In addition, 
because the system is translationally invariant along the x-axis, the emitting state has 
a certain center-of-mass momentum xQ  along this direction. This momentum must 
be conserved during emission and, consequently, x xq Q  is required of the photon 
wavevector. Formally, we consider a piece of one-dimensional material of length L 
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and, eventually, should take the limit L  .  The appropriate modification of 
Eq.(35.3) is then 
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We write 2y zdq dq q dq

 

 and use 2 2 2
xq q Q 



. Hence, a simple calculation shows 
that 
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This result agrees with expressions derived using different but equivalent 
approaches [1,2]. In complete analogy, a 2D system with the z-axis perpendicular to 
the structure and the dipole along the x-axis is described by 
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In the general case of non-vanishing Q



, we find for a dipole along x 
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Hence, this expression diverges if 0 /nQ c , a situation that corresponds to 
emission along the plane of the 2D structure. A similar result was found in Ref. [2]. 
Under the assumption 0x yQ Q  , we find 
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The 3D case, in fact, is trickier. We cannot require, independently, momentum and 
energy conservation. Really, the decay rate vanishes identically unless 0 /nq Q c 
. However, in that particular case, and for a dipole along x we find 
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35.2 Thermal Average 
 
In a real experiment, states of all possible momenta Q



 exist in a thermal distribution. 
If the total mass of the state is M, the Boltzmann weight of that state is 

2 2 2exp{ /(2 )} exp{ }Q MkT Q   . In 1D, averaging over all xQ  leads to 
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with partition function 
2

0
/2xQ

xZ e dQ  


  . We always expect 2 2
0 / 1n c   

at normal temperatures and consequently Taylor expand in this quantity. The final 
result is 
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In the 2D case, a similar analysis leads to 
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In the Wannier model, the momentum matrix of an 2D exciton is given by 
 
 2 2 2 2

0| | 2 | || (0)|n vcP L p  . 
 
As this wave function is to be evaluated at the origin, only s-type excitations 
contribute. Restricting ourselves to the dominant 1s state for a material with effective 
Bohr radius Ba , we find (see Chapter 19): 2 2| (0)| 8 / ( )Ba   . Putting the pieces 
together, it follows that 
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35.3 “Forbidden” Transitions 
 
From the analysis above, it appears clear that only states having a non-vanishing 
momentum matrix element with the ground state should decay radiatively. In reality, 
all states can decay via photon emission but more advanced theory is needed to 
account for this. The most prominent sources of “forbidden” transitions are magnetic 
dipole emission and spin-orbit induced mixing. 
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The magnetic dipole correction follows from including the spatial variation of the 
electric field associated with the emitted photons. The field varies as 1iq re iq r   

 

  . 

Thus, we replace  0
ˆ ˆ0 1 0n x xP n P n iq r P   

 

. The new term can be 
symmetrized as follows 
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q qq n yP n yP xP n yP xP    . 

 
The first of these is called the magnetic dipole interaction whereas the latter is the 
electric quadrupole. Since 0 /r nq n c  and ˆˆ ˆ

y x zxP yP l  , we find for the magnetic 
part 
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The spontaneous decay via spin-orbit (SO) interaction is a separate mechanism (see 
Appendix 7) and the radiation is usually called phosphorescence to distinguish it 
from the dipole-allowed emission called fluorescence. As an example, we will 
consider the states formed from an sp two-electron configuration and their decay to 
the 2s  ground state. This ground state is a singlet and, so, spin-selection makes 
excited triplet states non-radiative. In the presence of SO interaction, however, 
excited singlets and triplets mix in the sense that actual eigenstates are mixtures of 
the two. The basis of singlet and triplet states consists of states denoted 2 1S

JML , 
where S and L are the total spin and angular momentum, respectively, whereas J and 
M are the magnitude and z-projection of the total angular momentum. The SO 
interaction only couples states with identical J and M. For the singlets, J = 1 and so M 
is maximally 1 and we focus on the M = 1 subset of states. By the usual construction 
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Here, the radial parts have been suppressed and only angular and spin parts are 
shown. It is now relatively straightforward to shown that 
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In addition, we find the diagonal corrections 
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As long as the coupling is weak, we find states that are predominantly singlet or 
triplet in character. Denoting these 1

1P   and 3
1P  , respectively, we find 

approximately 
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Taking the Ca atom as an example, it is found experimentally that 
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Hence, solving shows that 1.04 eVS TE E  , 13.1 meVTT   and 11.6 meVST  . In 
turn, the decay rates of the 3

1P   and 1
1P   states are related by 
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Inserting, we find a ratio of 51.67 10  while the experimental value is 51.2 10 . 
 
35.4 Purcell Effect 
 
If an emitter is placed near a surface, the spontaneous emission rate is modified. This 
is known as the Purcell effect and the modification depends on a range of factors. We 
consider a dipole placed in vacuum a distance d outside a surface. For a dipole 
oriented parallel or perpendicular to the surface, one finds [3] 
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Here, the wave vector in vacuum has been decomposed into components parallel ( k


) and perpendicular ( k ) to the surface. These are connected via 2 2 2
0k k k 



. If the 
dipole sits in front of a homogeneous, isotropic medium with dielectric constant  , 
the reflection coefficients are 
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where 2 2 1/2

0( )q k k  
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 is the perpendicular component of the wave vector inside the 
medium. To evaluate the integral, it is convenient to introduce 0/x k k , 0/y k k
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, and 0z k d . We then split the integrals into “propagating” ( 0k k
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) and 
“evanescent” ( 0k k
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). It can be shown that by changing the integration variable from 
k
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 to x and ix  in these integrals, respectively, 
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where the reflection coefficients are ( )/( )sr x x x x     and ( )/( )pr x x x x      

and x  is given by either 2 1/2( 1 )x x     in the “propagating” integrals and  
2 1/2(1 )x x     in the “evanescent” integrals. Numerical results for ideal and real 

Au mirrors are shown in the exercise. 
 
The same idea can be extended to a dipole in arbitrary layered structures. Placing a 
parallel dipole at position 0z  in a particular slab, one finds [4] 
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Similarly, for a perpendicular dipole, 
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Here, ( , )
,
L R

s pr  are the coefficients for reflection from the interface left (L) and right (R) 

of the dipole. Also, d is the slab thickness and 0z  is the distance to the left interface, 
so that 0d z  is the distance to the right interface. These distances are matched by the 
phase factors above. It is clear that these expressions reduce to the single-interface 
case if ( )

,
R

s pr  vanishes. Now, let’s assume for simplicity that ( ) ( )
, , ,
L R

s p s p s pr r r   and 

0 /2z d  so that we place the dipole in the center of a symmetric cavity. In this case, 
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We will assume, furthermore, that 1sr   and 1pr 

 
as appropriate for a perfect 

reflector. It can then be shown that [5] 
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with 0z k d  and N the integer part of /z  . The result based on these simple 
expressions can be compared to those for a realistic metal such as Au at an energy of 
2.5 eV for which 2(1.04 1.83)i  . Such a comparison is shown in Fig. 35.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35.1. Purcell factors for parallel and perpendicular dipoles in real and ideal metal cavities. 
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Exercise: Purcell effect for single mirror 
 
a) Consider first a highly conducting metal surface such that i   and 1sr   and 

1pr  . Show using Eq.(35.7) that for a dipole in front of a single mirror 
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b) Consider next a realistic model of Au taking 2(1.04 1.83)i  . Write a computer 
program to evaluate the integral expressions numerically. The correct result is 
illustrated below and compared to the ideal metal. The strong Purcell enhancement 
close to the surface for real Au is due to Ohmic losses in the material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35.2. Purcell factors for parallel and perpendicular dipoles outside real and ideal metals. 
  
References 
 
[1] C.D. Spataru et al., Phys. Rev. Lett. 95, 247402 (2005). 
[2] Y.N. Chen and D.S. Chuu, Europhys. Lett. 54, 366 (2001). 
[3] O. Kidwai, S.V. Zhukovsky, and J. E. Sipe, Phys. Rev. A85, 053842 (2012). 
[4] R. L. Hartman, S. M. Cohen, and P. T. Leung, J. Chem. Phys. 110, 2189 (1999). 
[5] G. S. Agarwal, Phys. Rev. A12, 1475 (1975). 
 
 

 



 338 

36. Exciton Dissociation 
 
 
As discussed in the previous chapters, bound excitons are very much like hydrogen 
atoms, living either in bulk (3D) or lower dimensions. The binding is due to the 
attractive Coulomb force between oppositely charged electrons and holes. Hence, the 
binding energy is large in structures that have little screening and are low-
dimensional, i.e. with a large electron-hole overlap. In e.g. solar cells and photo-
detectors, these excitons must be broken (dissociated) in order to extract the carriers 
at opposite electrodes. For loosely bound excitons, this can be accomplished simply 
by operating the device at room temperature. Thus, the average thermal energy 

at room temperature is sufficient to break up the bound pairs in 
materials such as bulk Si or GaAs. In other materials and, in particular, in lower 
dimensions, the exciton binding energy may be much larger than kT. In this case, a 
strong electric field may be required to dissociate the exciton. In this chapter, we will 
examine the field-assisted dissociation in detail.  
 
36.1 One-Dimensional Excitons 
 
The description of electron-hole pairs in an electric field  is tricky because the 
electrostatic potential , with x the electron-hole separation,  is unbounded. 
Physically, this means that the ground state is a state with infinitely low energy, in 
which electrons are located to the infinite left and holes to the infinite right, no matter 
the Coulomb attraction. But this, of course, is exactly what is meant by dissociation. 
We will start by studying some simple one-dimensional exciton models. Also, we 
will use natural units, in which  with  the relative dielectric 
constant of the ambient medium. In general, the perturbed problem in 1D is of the 
form 
 

 . (36.1)

  
 
Our first model is a “hydrogen atom” with contact interaction. This means that the 
actual Coulomb interaction is replaced by the ultra-short-range delta-function 
approximation , with “nuclear” charge Z. Obviously, for the exciton problem, 
Z = 1, but we keep this parameter because it adds generality without making the 
problem any harder. Hence, the problem without field is 
 

 .  

 

25 meVkT 

xe




 
x

04 1re       r

2

2
1 ( ) ( ) ( )
2

d V x x x E x
dx

 
          



( )Z x

2

2
1 ( ) ( ) ( )
2

d Z x x E x
dx

  
         



 339 

The delta-function potential is unusual in that it vanishes everywhere except for a 
single point. At this point, however, it is infinitely strong. This means that the wave 
function “bends” sharply at that point. By integrating the Schrödinger equations 
across the singularity and requiring that the wave function itself is continuous, we 
find a condition for the jump in the derivative .  Hence, 
because the general solution for  is in the form of exponentials , 
the normalized solution to the problem is 
 

 .  

 
Note the very close resemblance to the three-dimensional hydrogen problem for both 
wave function and energy. With the field turned on, the problem becomes 
 

 .  

 
The situation is illustrated in Fig. 36.1. Here, the full potential containing the delta-
function attraction and the electrostatic potential are added. Also, in the right-hand 
panel, the case of a Coulomb potential is considered. The binding energy of the 
unperturbed problem  is indicated in both plots. It is clear that if one moves 
sufficiently far to the left, a region of very low potential is reached and, eventually, 
the state will tunnel out of the central potential well. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.1. Illustration of the combined effect of the central potential well  
and the electrostatic potential. 

 
Before attacking the full problem, let us apply Dalgarno-Lewis perturbation theory 
[1] to compute the second order correction to the energy due to the electric field. 
Using the fact that there is no first order energy correction, the first order wave 
function satisfies the inhomogeneous Dalgarno-Lewis equation (see Appendix 11) 
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 , 

 
having the solution 

 . 

 
From this result, we compute the second order energy correction 
 

  (36.2) 

 
leading to a polarizability of . Thus, as expected, the state has a lowered 
energy in the field. The full wave function assuming Z = 1 and = 0.2 is illustrated 
in Fig. 36.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.2. Unperturbed and perturbed wave functions in a field of magnitude = 0.2. 
 
It is seen that in the presence of the field, the wave function shifts its centre of gravity 
to the left. This is precisely what is meant by polarization. Eventually, if all high order 
corrections to the wave function are added, the state is shifted infinitely to the left no 
matter how small the electric field. This is the process of dissociation. If one imagines 
that the system is initially in the unperturbed ground state and the field is then 
suddenly turned on, the state gradually tunnels out of the central potential well. The 
tunnelling or decay rate  is such that the probability of finding the state in the initial 
state varies as . We know, however, that in an eigenstate with energy E the 
wave function varies in time according to . Thus, because the probability 
follows from the absolute square of the wave function, we expect that after the field 
is turned on, the state evolves as . We see that for such an unstable 
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state the real-valued energy is replaced by a complex resonance . The 
important decay rate  provides the rate of exciton dissociation. 
 
36.2 Exciton Decay Rate 
 
There are several ways of computing the decay rate . The simplest is the WKB 
approach introduced in Chapter 5. For instance, for the delta-function case in the left-
hand panel of Fig. 36.1, the energy is  and the tunnelling barrier height 
is . Thus, Eq.(5.5) in natural units means that 
 

 . (36.3) 

 
Hence, in the WKB approach, we expect the decay rate to vary with field strength as 

 with some unknown prefactor  that cannot easily be 
determined. There is, however, two exact ways of computing the full result. The first 
one relies on the fact that for the simple delta-function model an exact wave function 
can be found even in the presence of the field. First, though, we examine the 
asymptotic behaviour of the general problem Eq.(36.1). For x  , the potential 
can be ignored assuming that the asymptotic value vanishes and we then find 
approximately that 1

2 ( ) ( ) ( )x E x x    . If we write the wave function as 
( ) exp{ ( )}x if x   we then see that 21

2 2( ) [ ( )]i f x f x E x    . Suppose we ignore 
the f   term. It is not obvious that we can do this but if we do we can integrate to find 

3/2( ) [2( )] /(3 )f x E x   . Thus, f   and 2[ ]f   vary asymptotically as 1/2| |x   and | |x
, respectively, which means that we are correct in ignoring the f   term 
asymptotically. It follows that to the far left, the state varies as 

3/2( ) exp{ [2( )] /(3 )}x i E x    . A state of the form  with f real is 
an outgoing wave. In particular, the local momentum ˆ( )/ ( )p p f x     is negative 
and, so, the state is a left-outgoing wave Hence, this solution represents precisely 
what we’re looking for: a wave propagating from the central well to the far left. 
 
The asymptotic wave function found above applies to any potential. For the delta-
functional, the exact solution is easily found, however. Similarly to Chapter 5, the 
Schrödinger equation for  is recognized as the Airy equation. Thus, the general 
solution is 
 

 , 

 
where Ai and Bi are the two linearly independent Airy functions. They have the 
following asymptotic forms 
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The divergent behaviour of Bi means that only the Ai solution can be used for . 
For , both solutions oscillate and any linear combination is, in principle, 
acceptable. That is, 
 

  (36.4) 

  
Now, wave function continuity and the boundary condition  
leads to (with ) 
 

  

 
Solving these simultaneous equations using the Wronskian  it is 
found that 
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Now, if the wave function is going to match the condition for the outgoing wave 
discussed above, the asymptotic forms for  mean that . Hence, 
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The numerical solution to this problem for Z = 1 is shown as the solid lines in Fig. 
36.3. The dots are the results of the complex scaling approach discussed below and 
the dashed blue line is the WKB result . We see that the first 
two approaches agree really well whereas the WKB formula is only accurate at very 
low fields. The numerical solution can be expanded for small fields and one then 
finds an improved approximation  2 3 3(1 5 /3 )exp 2 /(3 )Z Z Z    . The real 
part, the Stark energy, starts out at  and then decreases following roughly the 
result of the polarizability , which is shown as the dashed red 
line. However, for moderate field strengths, the exact result stops decreasing as fast 
as the approximation would indicate. In fact, for sufficiently high fields, the energy 
goes through a minimum and then increases. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 36.3. Real and imaginary parts of the resonance versus field strength. The full curves are 
the exact solutions and the dots are for complex scaling. The red and blue dashed lined are, 
respectively, the second order energy approximation and the WKB result for the decay rate. 

 
The complex scaling method [2], relies on analytically continuing the Schrödinger 
problem into the complex plane. In short, one first scales every coordinate . 
This yields 
 

 . 

 
Second, the scaled equation is then “rotated” into the complex plane by taking  
complex. In fact, most often the parameter is taken to be purely imaginary so that 
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Now, this is obviously a non-Hermitian problem and so the eigenvalues  will be 
complex. The magic of the complex scaling method is that: these complex eigenvalues 
are identical to the resonances  discussed above! Moreover, the 
eigenfunctions are localized and normalizable. The exact solution is independent of 

 as long as . In practice, however, this is only approximately true if, for 
instance, expansion in a finite basis is applied. To demonstrate the powerfulness of 
the method, we expand the eigenstate in a Laguerre basis of even and odd functions 
 

 .

   
They are normalized according to  and . The 
matrix elements of the potential follow from (0) 1nL   and for the kinetic energy with 

 they are  
 

 .  

 
For the non-vanishing elements of the dipole integral we have 
 

  

 
Using this basis with  and 30 functions of each type, we find the dots in Fig. 
36.3. It is clear that agreement with the exact results is practically perfect. 
 
36.3 Higher-Dimensional Excitons 
 
In two and three dimensions, the description of exciton dissociation is more 
complicated. Again, however, the complex scaling method can be applied quite 
successfully. We wish to solve the problem 
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Here,  is the dimension of space. We will keep  as a variable parameter in 
the analysis because it is possible to formulate quite general results is this way. For 
an -dimensional space, we will expand radial states with angular momentum l in a 
so-called Sturmian basis with defined as  
 

( )E 

1
2E i 

 0

3/2
| |/2 1 | |/2( | |) , ( | |)

2 2( 1)
k x k x

n n
k kns L k x e np xL k x e

n
  



nmns ms  1
, 12nm n mnp mp    

min( , )n n m 

2 2 2 2

, 12 2
1 1 1 1 1,
2 2 2 4 2 8 2nm nm n m

d k d kns ms n np mp
dx dx

   

                           

3 2
( 1) 11 ,

(3 1) 12
2.

n m n
n m n

ns x mp
n m nk
n m n

            

2k Z

2
2 ( )

2

i i
ie e e z E

r

 


   
            



2,3 


1, 2,...n l l  



 345 

 
1/2

2 2 1/2
1

( 1)!2( ) (2 ), , (2 )
1 ( 3)!

l kr l l
nl nl n l nl

n lS r N r e L kr k N k
n l



 
   

 

            
.

   
They are eigenstates of the operator  
 

 
21

1 2
1 2

( )( 2)1
2 2 2

k nl l kH r
r r r r r







  
   

 
,  

 
with eigenvalue 0. Also, they are normalized according to 
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For the overlap we find 
 

  

 
Similarly, for the radial dipole integral 
 

  

 
Writing , the angular part of the wave function  is a Gegenbauer 
polynomial and it can be shown that 
 

 . 

 
Writing , the unperturbed  hydrogen eigenvalue problem for 
angular momentum l reads 
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The perturbed problem including complex scaling is obviously more involved. The 
field couples angular momenta l and  and so the Hamiltonian and overlap 
matrix have the structure 
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The elements of the non-vanishing blocks are 
 

  

 
The result of a numerical diagonalization using angular momenta in the range 

 and 20 basis states for each l is shown in Fig. 36.4. Note the close 
resemblance to the 1D result in Fig. 36.3. 

Figure 36.4. Complex scaling approach to the resonances in 3D and 2D excitons. 
 

Exercise: One-dimensional Coulomb problem 
 
In this exercise, we return to the problem of tunnelling out of a 1D Coulomb potential 
corresponding to the situation in the right-hand panel in Fig. 36.1. Actually, the full 
potential will be taken to be . This is a regularized potential with 
a finite binding energy, in contrast to the pure Coulomb potential found to . 
Physically, d represents the diameter of the quantum wire or nanotube. For , 
the unperturbed eigenstates are so-called Whittaker functions given by [3] 
 
 . 
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The even states, which include the ground state, have vanishing derivative at the 
origin so that the eigenvalue condition is .  
 
a) Write a program that finds the ground state energy. The result should resemble 
the curve in Fig. 36.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.5. Ground state energy of the truncated Coulomb potential. 
 
b) Use the 1D Laguerre basis to implement complex scaling for this potential. The 
result for ,  using 70 s-type and 70 p-type functions with 2k   is 
illustrated in Fig. 36.6. Note that the unperturbed energy is around -2.72 in agreement 
with the result found above. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 36.6. Stark shift and decay rate for the truncated Coulomb potential assuming d = 0.1. 

 
We will now investigate the WKB approximation for this problem. After switching 
on the electric field, the classical turning points are defined by 
 

 

 1/ ,1/2 2 0W d  

0.1d  0.4

2
00

0 1,2

| | )| |/(| | ) | | |
( 4

, .
2

| | | ,
2

EEZ x d x E x a d b
d Zd ba


  


    

 


 



 348 

The two turning points merge if the field exceeds a critical magnitude 
. Hence, the approximate transmittance will 

be unity beyond this field strength.   
 
c) Assuming a field below the critical value, show that the WKB transmittance 
becomes 
 

 .  

 
This integral results in a complicated combination of elliptic integrals 
 

 . (36.7) 

 
This expression can be approximated for small fields as 
 

 . (36.8) 

 
d) Plot and compare the full and approximate WKB expressions as in Fig. 36.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.7. WKB decay rate for the truncated Coulomb potential assuming d = 0.1. 
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37. Excitons in Molecular Chains 
 
 
This chapter is intended as an example of excitons in simple geometries. The general 
theory derived in Chapter 18 will be used but many results are derived from scratch 
in order to provide a self-contained exposition. We will compare independent-
particle spectra, Bethe-Salpeter spectra, and Wannier exciton results. The chain 
(polymethineimine, PMI) considered throughout is shown in Fig. 37.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.1. The PMI polymer and its tight-binding model. 
 
It consists of alternating C and N atoms along the backbone and, in addition, is 
dimerized with alternating single and double bonds. We only consider the - orbitals 
directed perpendicularly to the molecule. Only nearest neighbour interactions are 
included and the orbitals are taken to be orthogonal. We take the values , 

, and , i.e. we ignore dimerization.  
 
37.1 Independent Particle Approximation 
 
If an infinite chain is considered in k-space the two orbitals per unit cell lead to the 
Hamiltonian for a single electron 
 

 . 

 
The momentum operator becomes  and we find the eigenvalues 
and matrix elements  
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The band gap is at  and if we expand around this value we find 
 

  

 
We wish to compute the linear optical response. To this end we use the expression 
Eq.(15.3) adapted to a 1D geometry with cross section A 
 

 . (37.1) 

 
We will compute this function normalized by . The result for the 
imaginary (absorptive) part obtained using the energies and momenta above is 
shown as the black curve in Fig. 37.2 using a broadening of 30 meV. It is seen to peak 
around the band gap of 2 eV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.2. Absorption spectra within three computational schemes. 
 
37.2 Bethe-Salpeter Equation 
 
We now aim to include electron-hole interactions in the theory. The ground state  
of the semiconductor is a Slater determinant constructed from all valence band 
single-electron states. Considering N k-vectors in each band and suppressing spin 
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Similarly, the excited states are constructed from Slater determinants with one or 
more valence band states replaced by conduction band states. If only a single state is 
replaced, we find single-excitations of the form . If 
these excitations were taken to be the exact excited states, we would get back to the 
independent-particle approximation. Hence, to go beyond, we form the actual 
excited states  as linear combinations, i.e. 
 
 . 

 
These states are the so-called excitons. They are determined from the Bethe-Salpeter 
eigenvalue problem. Ignoring exchange effects, one finds 
 
 . (37.2) 

 
Here, V is the screened Coulomb attraction between electron and holes. We now 
specialize to tight-binding band states. In general dimensions, the band states for 

 are of the form  
 

 . 

 
Here,  is the number of unit cells and  is the n’th Bloch sum, i.e. the Bloch 

sum for the n’th atomic orbital  in the unit cell. The summation in  is over 
all unit cells. Next, we exploit the fact that the atomic orbitals are localized and 
orthogonal. Hence, a product of band states becomes 
 

  . 

 
If the real-space Coulomb interaction is , with  the (assumed 
isotropic) dielectric constant, we then find for the electron-hole interaction matrix 
element 
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We need integrals of the form 
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Clearly, for large separations we find an interaction . On the 
other hand, for  and  we find a finite result (the Hubbard U parameter). 
As an appropriate interpolation, we will assume the effective interaction 
 

 . 

 
This is sometimes called the Ohno form. Introducing then  we find 

 

 . 

 
The last form is obtained by converting the summation over a slowly varying 
function to an integral. In our 1D model, we find 
 
 

 

 
We convert the q-sum into an integral 
 

 . (37.3) 

 
The eigenvalue problem can be discretized on a k-grid with the diagonal element 
 

 . 

 
The matrix elements of the many-body momentum operator  with a sum 

over all electrons become . Normalization is such that 
 with . The many-body version of the susceptibility is 

given by the 1D version of Eq.(18.1) 
 

 . (37.4) 
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Taking  and  and assuming , we find the red curve in Fig. 37.2. 
Note the large exciton binding energy of around 0.25 eV. 
 
37.3 Wannier Approximation 
 
The Wannier approximation to the Bethe-Salpeter equation is obtained by a series of 
approximations. Primarily, we use  but we also use the effective mass 
approximation for the band-to-band energy. Shifting the k-vector origin to the band 
gap location we then find 
 

 .  

 
This problem can be recast as a problem in real space rather than momentum space 
by introducing the Fourier transform, c.f. section 18.1 
 

 . (37.5) 

 
The prefactor is for normalization . Fourier transforming the 

approximate Bethe-Salpeter equation then yields 
 

 . (37.6) 

 
This is the famous Wannier equation, in which x can be interpreted as the electron-
hole separation (relative coordinate). It is mathematically identical to the (one-
dimensional) hydrogen atom. If we introduce natural exciton units such as 

 and  for distance and energy, 
respectively, and measure energies relative to the band gap, we can write 
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Once the eigenstates are computed we need the momentum matrix elements. For this 
purpose, we ignore the k-dependence . Hence, 
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 . 

 
The fact that  enters is natural because it is a measure of the chance that 
electrons and holes overlap. For the present parameters, the exciton Bohr radius and 
Hartree are 100 Å and 29 meV, respectively. We solve for the eigenstates using the 
Laguerre basis in Chapter 36 taking k = 10. The corresponding absorption is plotted 
as the green curve in Fig. 37.2. If, finally, an electrostatic field is added we get the 
modified form 
 

 . 

 
The exciton Stark energy and ionization rate derived from this equation are 
illustrated in Fig. 37.3 using the techniques discussed in Chapter 36.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.3. Stark energy and ionization rate for the Ohno potential. 
 

Exercise: Variational estimate of the ground state 
 
In this exercise, we will try to estimate the energy of the ground state of the 
unperturbed Wannier problem Eq.(37.7) using the ansatz 
 
 . 
 
a) Show that the normalization condition leads to . 
The kinetic energy is a little tricky because of the absolute values.  
 
b) Use the result  to show that 
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 . 

 
The Coulomb energy is even trickier. We want the integral 
 

 .  

 
with . The cutoff length l is small but we cannot just put it to 0 because 
the integral diverges.  
 
c) Show using partial integration twice that 
 

 .  

 
By setting l = 0 in the last term it can be shown that approximately (with  
Euler’s constant.) 
 

 ,  

 
d) Finally, write a program that minimizes with respect to q and a. The result should 
be the curve below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.4. Variational ground state energy for the Ohno potential. 
 
For l = 0.03, one finds an energy of -7.98 in good agreement with the numerically 
exact value of -8.07. 
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38. Hall Effect 
 
 
In this chapter, we will try to describe the combined effects of electric and magnetic 
fields. When these are simultaneously present, new phenomena emerge. The most 
prominent situation is illustrated in Fig. 38.1, in which the fields are perpendicular 
with  and . We assume an electric current  is initially injected along 
the x-direction due to the electric field. In this way, an electron that moves along the 
(negative) x-axis, will experience a deflecting Lorentz force from the magnetic field 

. Since , the magnetic force is along the negative y-axis.  Hence, a 
transverse current  is induced. In terms of conductivities,  and, as usual, 

. Note that if the electric field were along y, we would still find a current 
deflection to the left and, in this case,  and , where, for an isotropic 
material,  and . This transverse current induced by the magnetic 
field is the Hall effect. In a sample with a finite extent along y, the deflected charge 
leads to a build-up of a transverse voltage, the Hall voltage.  
 
 
 
 
 
 
 
 
 

Fig. 38.1. Geometry of the Hall effect with perpendicular electric and magnetic fields. 
 
38.1 Classical Picture 
 
In order to describe the Hall effect, we will first adopt a completely classical picture. 
Newton’s equation of motion for an electron including a relaxation term with 
relaxation time  reads 
 

 . 

 
We assume steady state, i.e. . For the field directions in Fig. 38.1, it follows 
that 
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The lower of these immediately implies , where  is the 
cyclotron frequency. This is precisely the deflection that we discussed above. Solving, 
we readily find  
 

 . 

 
The current density is then found from , with n the electron density, and 
writing  we find 
 

  (38.1) 

 
In ordinary materials of normal quality, the cyclotron frequency is small compared 
to  and we recover the longitudinal conductivity  and find the 
simple result for the Hall conductivity  . Note that, if electrons are 

replaced by holes of the same density so that the charge changes sign,  remains 
the same. In contrast,  changes sign.  This means that, apparently, the sign of the 
Hall effect can be used to distinguish electrons from holes. This important feature 
will be confirmed in a more rigorous computation using the semiclassical picture 
below. Also, the mass m is expected to be replaced by some sort of effective mass in 
a more elaborate theory. 
 
38.2 Semiclassical Picture 
 
In the semiclassical picture, the Boltzmann equation for the electron distribution in 
both position and momentum space is solved. In the situation, in which no explicit 
time-dependence of the distribution is found and everything is homogeneous in 
space, Eqs. (12.2) and (12.3)  show that the distribution function g obeys 
 

 .  

 
Here, f is the unperturbed distribution, i.e. the Fermi function. Since  is the 
momentum and  is the Lorentz force, we find 
 

  . (38.2) 
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We now aim to solve this equation order by order in the external perturbations. The 
0’th order is the unperturbed case  and the expression valid to first 

order in the force is then . Using the chain 

rule and remembering that  we have  with 

 because . This is in agreement with Eq.(12.5). Inserting this 
result back into Eq.(38.2) we find the distribution valid to first order in the magnetic 
field 
 

 . (38.3) 

 
Again,  and we find for the current 
 

 . 

 
For the geometry used here, we then get 
 

 . (38.4)

  
In the low-temperature limit, we have  and the integral vanishes 
unless the Fermi level is inside a band. Hence, completely filled bands have zero 
contribution. In the isotropic effective mass approximation,  and it follows 
that  
 

   

 
So this agrees with the classical picture. In deriving this result, we utilized the fact 
that the k-space integral can be averaged over all three directions for isotropic 
materials. The last reformulation uses the effective-mass density of states 

 and the low-temperature limit. Note, also, that the result changes 
sign if a downward curving band is considered, i.e. if we replace . This 
demonstrates that the sign of the Hall conductivity depends on the sign of the 
dominating carriers. 
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For graphene with 0FE   in the Dirac approximation,  so that 
 and . A simple calculation of the Hall 

conductivity (normalized by area, not volume) then leads to  

after multiplication by the valley degeneracy. For 0FE  , the sign changes. In Fig. 
38.2, we compare this approximate result to a calculation using the full tight-binding 
dispersion (see Chapter 17) in Eq.(38.4) assuming a temperature of 50 K. We note that 
the response changes sign as the Fermi level crosses the Dirac point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 38.2. Hall conductivity of monolayer graphene in a full tight-binding  
description divided by the Dirac approximation. 

 
38.3 Quantum Picture for Massive Electrons 
 
We now turn to a fully quantum mechanical analysis of the Hall effect. We begin by 
noting that such a treatment would be required in very high quality samples, in 
which transport is ballistic rather than diffusive. This corresponds to the limit  
of infinite time between scattering events. In this case, Eq. (38.1) yields 
 

  (38.5) 
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Hence, the longitudinal resistance  actually vanishes in this limit. The question is, 
of course, to what extent a purely classical calculation can be trusted in this situation. 
 
To answer this question, we begin by considering an effective-mass electron in a 
homogeneous material subject to a magnetic field. It is convenient to choose the 
Landau gauge  so that the Schrödinger equation with momentum 

 becomes 
 

 . (38.6) 

  
 The magnetic field then only breaks translational symmetry along x and we can write 
(suppressing the z-dependence)  with the prefractor for 
normalization. We then find 
 

  . 

 
This is readily transformed into a standard harmonic oscillator problem via the 
coordinate shift  that leads to 
 

 . 

 
Thus, the eigenvalues are  with  a non-negative integer (the Landau 
index). These states are called Landau levels. The wave functions are harmonic 
oscillator functions in the shifted variable . A large number of k-points in the states 

 share the same energy  and it can be shown that the 
degeneracy including spin is  [1].  
 
Next, to compute the Hall conductivity we will use the expression 
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Here,  is the current operator defined generally by the relation . 
Hence, for the ordinary Schrödinger Hamiltonian, we find , where, again, 

. From the relation  it follows, in general, that 
 

xx

yxe




  

p e 








22 1
2 2 y

e e

e xe E
m m i

  
      




 

1/2( , ) ( ) ikyx y L x e 

 
2

22
2

1 ( ) ( )
2 e

k e x x E x
m x

 
          
  

/( )x x k e 

 

2 2
2 2

2
1 ( ) ( )

2 2 e c
e

m x x E x
m x

  
         



  





1
2( )cE    

x
1/2( , ) ( ) iky

k x y L x e   E

/( )g e A  

2

, ( / )

yx
nm mn

xy nm
n m mn mn

J Jie f
A E E i








xJ /x xJ H 

/ eJ m
 

p e 






 yx xy 



 361 

 . 

 
The action of position and momentum operators are given by 
 

  

  
Thus, the matrix elements of  are 
 

  

 
The calculation simplifies enormously because coupling is only between states that 
are neighbors in Landau index. Hence, if the index of the highest occupied state is 
, one finds 
 

 , (38.7) 

 
where the degeneracy is taken into account. Using the matrix elements as well as 

 then yields 
 

 . 

 
In the limit of large , we have .  Hence, the Hall conductivity 

is clearly quantized in units of . A connection to the classical result can be 
made if it is recalled that for a two-dimensional electron gas the density is 

. If we now set  we find for large  
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This agrees perfectly with the classical result. 
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38.4 Quantum Picture for Massless Dirac Electrons 
 
For Dirac electrons in e.g. graphene, the wave equation for the two-component spinor 

in the K - valley reads c.f. Chapter 17 
 

 . 

 
Isolating, we find 
 
 . 
 
The commutator is  and by comparison with Eq.(38.6) it is apparent 

that  and  with 0,1,2,...  etc. The plus and minus 
solutions correspond to “electron” and “hole” states, respectively. The lower 
component is determined by the original equation  as long 

as . Using results above it follows that  and so the full, normalized 
state is . For , the solution is .   
 
The current operator associated with the Dirac equation is . We now 
find the matrix elements 
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Here, . Assuming  and low temperature, a computation 
analogous to the massive case then yields 
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The two terms in the braces correspond to electron-electron and hole-electron 
transitions, respectively. In the special case , only one term should really be 
kept. This term should be multiplied by two, however, because . Hence, 
the above expression gives the correct result in all cases. In the limit , we find 
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 . 

 
This agrees perfectly with the semiclassical result. In graphene, . 
Hence, if we put  one finds for the ballistic result , similarly to 
the massive-electron case.  
 
As an example, we will compare mono- and bilayer graphene. Monolayer graphene 
is described by massless Dirac electrons, whereas the carriers in the bilayer follow a 
normal (massive) dispersion at low energies. Solving for the “filling”  one finds for 
the mono- and bilayer  and , respectively, 
where the square brackets designate taking the integer part (because  is integer). 
Moreover, for the mono- and bilayer, the Hall conductivities are 

 and , where an extra factor of two is 
included in the bilayer case to account for the two sheets, each providing an energy 
band. Plugging the fillings into these expressions yields the plots in Fig. 38.3. It is 
clear that a significant difference is observed, with the monolayer displaying half-
integer plateaux in units of . In contrast, ordinary parabolic 
materials such as bilayer graphene display integer-valued plateaux. These 
predictions correspond very well with the experimental data obtained by Novoselov, 
Geim and coworkers in Ref. [2] and reproduced in Fig. 38.4. The experiments are at a 
field of , for which the density unit is . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 38.3. Quantized Hall effect for mono- and bilayer graphene using the  

units  and . 
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Fig. 38.4. Experimental quantum Hall effects for mono- and bilayer (inset) graphene.  
Taken from K.S. Novoselov et al., Nature 438, 197 (2005). 

 
 
Exercise: Shubnikov – de Haas oscillations 
 
In this exercise, we will start by extending the results for massive electrons to finite 
temperature.  
 
a) Show that the result in Eq.(38.7) becomes 
 

  

 
Here,  and the lower result follows from . The resistivity 

tensor is . 
 
b) Show that . 
 
The quantities here only depend on , the scaled temperature  and the 
scaled Fermi energy . 
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c) Plot the longitudinal resistivity as a function of  by summing the first 100 
Landau level contributions. The result is shown in Fig. 38.5. The oscillations are called 
Shubnikov – de Haas oscillations and a maximum occurs whenever a Landau level 
becomes occupied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 38.5. Longitudinal resistivity versus scaled magnetic field for massive electrons. 
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39. Magneto-Optics 
 
 
In the previous chapter, we studied the effects of magnetic fields in DC electronic 
transport. We now attempt to do the same for time-dependent electric field, keeping 
the magnetic field constant, though. Hence, all the results of Chapter 38 should 
emerge as the DC limit of a more comprehensive frequency-dependent result. We 
will start by analyzing the classical and semiclassical models and then turn to 
quantum models. Finally, the magneto-optical properties of semiconductors will be 
studied.  
 
39.1 Classical and Semiclassical Pictures 
 
In the time-dependent case, the electric field reads 1

2( ) . .i tt e c c 
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designates the amplitude of the field. It follows that Newton’s equation of motion for 
an electron with effective mass em  now reads 
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It is immediately clear that the frequency-dependent conductivity is obtained from 
the DC case by the substitution /(1 )i    . This means that  
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(39.1) 

 
It is obvious that these results have the correct DC limit. In the semiclassical picture, 
modification is only slightly more complicated. We need to retain the time-derivative 
in Eq.(12.2) such that the Boltzmann equation becomes 
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The distribution function now has DC as well as frequency-dependent components. 
The 0’th order term is still 0( ) ( )

k
g k f E 



. We write the amplitude of the first harmonic 

term as ( , )g k 


. For harmonic time variation, the time-derivative simply means 
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multiplication by a factor i . Hence, the first order term is now 

1( , ) /(1 ) ( )
k

g k e i f E v     






. Eventually, at second order, we find  
 

  
2 2

2 2( , ) ( ) ( ) ( )
1 (1 )k k k

e eg k f E v f E v v
i i
 


 

       
 

  


  

  



   . (39.2) 

 
Finally, the optical Hall conductivity therefore becomes 
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where the second, approximate equality is valid for effective-mass dispersion.  
 
39.2 Quantum Picture 
 
With a frequency-dependent perturbation the quantum expression for the optical 
Hall conductivity is 
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Hence, the required modification is precisely the substitution /(1 )i    , 
exactly as we found in the classical and semiclassical expressions above. For massive 
and massless electrons in gapless systems we therefore find 
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In a time-dependent field, it becomes relevant to study the magneto-optical response 
of gapped systems such as intrinsic semiconductors. As an example, we will study 
gapped graphene. Here, in fact, the gap appears in two locations (denoted valleys) 
that should be summed over. Denoting the “valley index” by 1 , the system is 
described by the massive Dirac Hamiltonian 
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In this model, the band gap is 2 . Solving for the eigenstates, it can be shown that 
the new energies are 2 2 2

0 0(1 ) | |DE              and that the massless 
matrix elements are modified into  
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In turn, after summing over valleys [1] 
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with 2

0 /4e    the graphene DC conductivity and the understanding that 0E   . 
This expression actually vanishes identically if 0FE  . This is a consequence of 
electron-hole symmetry, which means that electron and hole contributions cancel 
exactly in the symmetric case 0FE  . For finite FE , however, a finite response is 
obtained. At 0T  , the requirement is | |FE  . Below, we plot the response for 
2 1.8 eV  and FE  at the band edge taking / 20 meV  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 39.1. Hall conductivity in the electron-hole symmetric gapped graphene model.  
 
 

39.3 Magneto-Excitons 
 
We now aim to describe the magneto-optical response of semiconductors in the 
presence of excitonic effects. We will work within the Wannier picture and consider 
a simple band structure composed of a valence band with effective mass hm  and a 
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conduction band with effective mass em . These bands are separated by a band gap 

gE  and the Fermi level lies in the gap. This means that the Wannier Hamiltonian 
relative to the gap is 
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Here, v is the electron-hole Coulomb attraction. We will use the symmetric gauge 
such that 1

2i ir 
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



   with ,i e h . We also introduce the usual relative and centre of 
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be shown that under the unitary transformation 2exp{ ( )}ieU R r   
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  , the 
Hamiltonian becomes 1ˆ ˆ ˆ ˆ

r RH U HU H H    with 2ˆ ˆ /2RH P M  and relative 
motion part 
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Here, ( )/( )e h e hm m m m     is a measure of mass imbalance and we assume 1 
. The two field-induced modifications are the para- and diamagnetic contributions, 
respectively. We take the magnetic field along the z-directions and, from now on, 
specialize to two dimensions so that x yr xe ye 

   . Hence, 
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This Hamiltonian unfortunately doesn’t have analytical eigenfunctions. We will 
therefore attempt to expand in a basis of Landau levels, i.e. solution to the problem 
taking 0v  . These Landau states are of the form ( )/ 2il

nle r   with l integer and 
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Here, /L e    is the magnetic length and n is a non-negative integer. The 
associated energy is  
 
  1

2 (1 | |)nl cE n l l     
 
with / / /c eh e he m e m e m       the sum of electron and hole cyclotron 
frequencies. In this basis, we need matrix elements of the Coulomb interaction. 
Previously, we have only considered optically active s-type excitons with 0l  . In 
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the general case, however, we need /l
nm nl mlV L r   that turns out to involve a 

hypergeometric function [2] 
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After a few manipulations, the matrix elements in this basis can then be shown to be 
of the form 1

2{ (1 | |)} 2 l
nm c nm c nmH n l l Ry V        . Finally, writing the radial 

eigenstates in the form ( ) ( )exc nl nln
r c r  , the exciton oscillator strength is 

determined by 1
0(0)exc nn

L c   . In Fig. 39.2 below, we have plotted the three 

lowest energy eigenvalues as a function of magnetic field for 0.1 eVRy  . It is seen 
that at zero field they follow the expected  4

9{4, ,...}Ry  2D Rydberg series, c.f. 
Chapter 19. In a small field, first order perturbation theory shows that the energy 
correction is 2

l
l cE    . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 39.2. Magneto-exciton energies versus magnetic field in energy units. Dashed lines indicate  
perturbation results. 

 
As usual, the diagonal excitonic optical response is evaluated using 
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In the Wannier approximation, this becomes 
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Here, 2 ( )X   is a conveniently normalized susceptibility function and the factor 2
cL  

simplifies to 2 2 /c ehL m   . In the plots below, we consider the interplay between 
magnetic and Coulomb effects in the optical response using a basis of 600 Landau 
states. Similarly to Fig. 19.2, we take a gap of 1.6 eV and add broadening of 

20 meV . 
 
In Fig. 39.3, it is seen that a small field, meaning c  , leads to spectra that are 
very similar to the field-free results in Fig. 19.2. On the other hand, with 

 the Landau level clearly show, and a significant modulation is 
observed in the spectra. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 39.3. Magneto-excitonic optical response illustrating the competing effects. 
 
We would now like to consider a specific model in order to extend the response to 
the off-diagonal conductivity. To this end, we examine again the gapped graphene 
model, for which the momenta in the  valleys are (c.f. Chapter 17) 
 

  (39.4) 

 
with energy  and  the polar angle of the wave vector. Clearly, 
at the position of the gap , one has  in agreement with a non-
vanishing isotropic response. Consider now, however, the off-diagonal response, for 
which we would need factors like . When summed over valleys, this 
will vanish. Hence, , which must clearly be so in the case of no magnetic 
field. A non-vanishing off-diagonal response should reflect the presence of the field. 
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To be more accurate, we should go back to the original Bethe-Salpeter formulation, 
so that the correct exciton momentum becomes . It is readily 

shown that with cylindrical symmetry  and approximating  in 
Eq.(39.4) leads to 
 

 . 

 
Hence, the valleys “pick out” different l quantum numbers. It follows that whenever 
the energies and/or momenta of the  states differ, the two contributions will 
not cancel. This is the origin of the optical Hall effect in the excitonic theory. In the 
relevant cases, 
 

  

 
In the Landau basis, we find  
 

  

 

It follows that . The fact that  is 

purely imaginary guarantees that . Again, we introduce a normalized 
susceptibility function 
 

  (39.5) 

 
In Fig. 39.4, this off-diagonal susceptibility function is illustrated, demonstrating how 
the response grows with magnetic field (note that the prefactor  does not depend 
on ). 
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Fig. 39.4. Off-diagonal magneto-excitonic response. 
 
 
Exercise: Faraday rotation 
 
In this exercise, we examine the consequences of an off-diagonal component in the 
conductivity. In the (x,y) plane, the optical response is given by the dielectric tensor 
 

  

 
with  and .  
 
a) Show that the wave equation  has circularly polarized solutions 
 

  

 
Now, suppose a linearly x-polarized field of amplitude  enters the material at 
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b) Using the fact that  show that the transmitted field after 
propagating a distance d is 
 

  

 
If we write , it follows that . Such a field is 

elliptically polarized with a polarization rotated by the (complex) angle . 
 
c) Show that to first order in , the rotation is , where n is the 
unperturbed refractive index. 
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40. Topological Hall Effect 
 
 
We have seen that a static magnetic field leads to off-diagonal elements in the DC 
and optical conductivity. Recently, it was discovered that, actually, such effects can 
arise without any magnetic field, leading to the so-called anomalous Hall effect. This 
discovery is intimately related to the mathematical subject of topology and very 
elegantly explains the quantization of the Hall conductivity that we found in e.g. 
graphene, c.f. Chapter 38. Some of the central concepts in these developments are the 
Berry connection and Berry curvature and we start with an introduction to this 
subject. 
 
40.1 Berry Connection and Curvature 
 
First, a word on naming: the Berry connection  is sometimes called the Berry 

(vector) potential and the Berry curvature  is also known as the Berry field. In 
addition, different symbols are used for these quantities in the literature. We consider 
a periodic system with Bloch states of the form  with  normalized 
within a unit cell. In the most general case, the relevant definitions are 

 and . The interband Berry connection is just the 

transition dipole moment, as can be demonstrated by differentiating  

for :  
 

 . 

 

Hence, taking the limit  we obtain 
 
 . (40.1) 

 
For the present purposes, we will restrict ourselves to two-dimensional materials, for 
which  is in the (x,y) plane and  with  
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Apart from the definition, another important relation exists between Berry 
connection and curvature. Using completeness 
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  (40.2) 

 
Finally, the integral of the diagonal components is essentially the Chern number 

. As we will see,  is a topological integer. The quantity  is 

called the Berry phase.  
 
To illustrate all these concepts, we will study a concrete case: The Haldane model [1]. 
This celebrated model is actually gapped graphene with a twist: next-nearest 

neighbor interactions of the form  are added. Here,  are fixed 
parameters and  is a vector joining the sites. Finally,  depending on the 
rotation sense (clockwise or counter-clockwise) within the graphene hexagon. With 
little loss of generality, we will take , which leads to the Hamiltonian 
 

   

 
with 
 

   

 
Hence, the energies are  where  with . For 
convenience, we will assume . The band gaps are at the K and K’ points, at 
which , respectively. This means that the gap closes if  with the 
critical interaction strength . Writing , the “standard” 
eigenvectors are 
 

 . 

 
In this way, the valence band Berry connection turns out to be 
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 . 

 
Importantly, however, this result is certainly not unique. Any other phase choice 
would be allowed for the eigenvectors and if this phase is k-dependent, the Berry 
connection will change. As an example, we could have chosen . Such a 

choice obviously implies . In much of the literature, terms are 
borrowed from electromagnetism and the phase choice is called a “gauge”. Hence, 

 is gauge-dependent whereas  is always gauge-invariant because 
. In Fig. 40.1, we plot the magnitudes of these Berry connections for a 

quasi-random set of parameters, but for which . The crucial observation is 
that  diverges at the K-points, whereas  diverges at the K’-points.  

 
Figure 40.1. Berry connection using “standard” (left) and phase-shifted (right) eigenstates. 

 
The diverging factor in  is  since, at the K-point, . By phase-

shifting into , this divergence is cancelled by the numerator, leading 
to a finite value. This, however, happens at the cost of a divergence at K’ in the  
term, as can readily be demonstrated. In fact, there is no single choice of phase that 
will keep the Berry connection finite as long as  since this means that points 
exist, for which . On the other hand, if ,  can be made regular 
everywhere with a global phase convention. This quantitative difference has 
extremely important consequences, as we shall see. Irrespective of the phase choice, 
the valence band Berry curvature is 
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In Fig. 40.2, we plot  for the characteristic cases  and  and see 
something characteristic: If ,  has equal positive and negative regions but 
for  it is everywhere positive. 

 

Figure 40.2. Berry curvature with  (left) and (right). 

 
This leads us directly to the valence band Chern number . We 

might immediately anticipate that  and  for the two cases in Fig. 40.2, 
respectively. The less obvious fact is, however, that  is always an integer and, in 
fact,  in the right-hand case . 
 
In mathematical geometry, a famous theorem by Gauss and Bonnet says that the 
integral of the curvature  over a closed surface is , where g is the 

number of “handles” or punctures in the surface. For instance, a sphere has 
, whereas a torus has . In our case, the usual hexagonal 

Brillouin zone applied in Figs. 40.1 and 40.2 can be deformed into a rectangle 
. If any globally smooth quantity is considered on the 

Brillouin zone, the rectangle has precisely the topology of a torus because of the 
periodic boundary conditions in k-space that identify opposite edges of Brillouin 
zone with each other. Hence, in our case, the smooth region  is topologically 
equivalent to a torus and . The singularities found whenever  mean that 
there is no globally smooth Berry connection in this case. 
 
The integer values of the Chern number can be understood as follows: Suppose we 
divide the torus into two parts, one in which  is regular and one in which 

 is regular. The integral of  vanishes but on the curve 

separating the two regions we get via Stokes’ theorem . The phase 
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 must repeat after one trip around the closed curve and, therefore,  can only be 
integer. The same argument applies, if more than two separate regions are required. 
 
40.2 Hall Effect 
 
We are now ready to study the impact of Berry connections and curvatures on the 
Hall conductivity. If we consider the case of no external magnetic field we have 

 and, hence, if we return to Eq.(36.7) in the spin-less case 
 

 . 

 
The intraband contribution  vanishes due to the  factor. For the interband 
part, Eq.(40.1) and the commutator Eq.(2.2) shows that  
and we can write  
 

 . 

 
Now assuming , splitting  and using Eq.(40.2) then demonstrates 
that 
 

 . 

 
Hence, we obtain the celebrated TKNN (after Thouless, Kohmoto, Nightingale, and 
Nijs [2]) formula 
 

 . (40.3) 

 
The formula says that, for materials with completely filled or empty bands, the Hall 
conductivity is quantized as an integer multiple of . At a finite frequency, the 
optical conductivity is 
 

 . 

 
Below, we plot the spectra for some representative values of  for . We 
see that the TKNN result is exactly obeyed in the static limit. 
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At this point, one can raise the question whether the Haldane model is a realistic 
description of an actual physical solid-state system. In fact, it is not (but it can be 
realized with particles trapped in optical lattices). The reason is that electronic 
systems in the absence of magnetic fields respect time-reversal symmetry. Among 
other things, this implies that energies are degenerate under a simultaneous flip of k-
vector and spin , i.e.  for the n’th band. This is not respected 
by the Haldane model since . It may be remedied, however, by turning 
it into the Kane-Mele model [3] 
 

 .  

 
This extended model is time-reversal symmetric and implies that our previous results 
should be summed over . Hence,  vanishes identically in this model. 
One may consider a spin Hall effect, however. Since the two spin directions 
experience opposite , they will be deflected to opposite sides in a Hall 
geometry such as Fig. 36.1. Hence, opposite spins collect at the two edges of the 
sample, similarly to the opposite charges in the normal Hall effect. Consequently, the 
spin Hall conductivity is just two times the Haldane Hall conductivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40.3. Optical Hall conductivity in the Haldane model with various - values . 
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40.3 Semiclassical Picture 
 
The topological effects can be understood at a semiclassical level, to a certain extent. 
In the absence of a real magnetic field, we know that the distribution function g obeys 
 

  .  

 
We consider a single band with energy  and Berry curvature . The new effects 
appear due to an “anomalous” velocity contribution such that  
 

 . 

 
The new, second term involving  is the anomalous one and it leads to an 
“anomalous Hall effect” described by the current (not summed over spin) 
 

 .  

 
In a time-harmonic field , the distribution function can be 
expanded in harmonics as well as field strength.  The 0’th order is the unperturbed 
case  the first order term is . However, 
because the anomalous velocity is itself time-dependent, we find first and second 
harmonic currents given by 
 

  

  
As above, we now specialize to two-dimensional materials, for which , and 

we take . Hence, we find linear and second-harmonic conductivities 
 

  

 
The first of these clearly agrees with the TKNN formula. The second is proportional 
to the Berry curvature dipole 
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using integration by parts. There are strict requirements for obtaining a non-
vanishing  since it must vanish if symmetry is high. Time-reversal invariance 
means that  (if separate valleys related by inversion in k-space are 
considered, interchange of these is implied). The largest symmetry allowing for  is 
a single symmetry line [4], for instance the mirror symmetry . As a 
consequence,  vanishes for the Kane-Mele model. With the y mirror symmetry 

,  will be along y, i.e. . Hence, as a better example, we will 
investigate gapped graphene with a slight twist. In the Dirac approximation, we will 
take 
 

. 

 
Here,  is the valley index and the second term is added to produce interesting 
results. It corresponds physically to a tilt of the Dirac cones along the x-direction. The 
extra term only corresponds to a local - dependent shift of both bands. Hence, 
there is no change to neither transition energies nor momentum matrix elements and 
the Berry curvature for the conduction band becomes 
 

 ,  

 
clearly unaffected by the tilt term. In fact, the only effect of having  is via the 
Fermi level . Assuming  and low temperature, we have on the Fermi surface 
 
 . 
 
The associated “warping” of the Fermi surface is the reason for a non-vanishing Berry 
curvature dipole. The general integral is rather difficult but to first order in  the 
result turns out to be 
 

 .  
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Exercise: Tight-binding with magnetic field 
 
In tight-binding, the simplest way of including a magnetic field is via the Peierls 
substitution, which says that any hopping matrix element  between sites  and 

 should be replaced by , where  is called the Peierls phase. It is 
given by 
 

 , 

 
where the line integral is along the line joining the sites. 
 
a) Show that using the symmetric gauge , the Peierls phase 

becomes  with  such that  is the hatched area 
shown to the left in Fig. 40.4. The sign of  is given by the right-hand rule. The 
quantity  is the (oriented) magnetic flux through the hatched triangle and 

 is frequently called the flux quantum. 
 
 
 
 
 
 
 

 
Figure 40.4. Geometry of two tight-binding sites (left) and  

two magnetic configurations of benzene (right). 
 
We now consider a benzene ring as shown to the right in the figure using the 
graphene lattice constant a, i.e. the distance between e.g. sites 1 and 3. In case A, the 
oriented area  is clearly negative according to the right-hand rule. We also 

have  and . 
 
b) In a nearest-neighbor model with zero-field hopping element  and taking 

, show that the new eigenvalues are 
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Figure 40.5. Eigenvalues  versus Peierls phase . 
 
These eigenvalues are illustrated in Fig. 40.5. Note that values repreat with a period 
of . 
 
The hoppings in the Haldane and Kane-Mele models can be realized with the curious 
flux pattern in case B of Fig. 40.4. Here, the magnetic field in areas a and b are assumed 
equal but opposite in sign and so the fluxes cancel. Hence, the nearest-neighbor 
matrix elements are unchanged by the field. The next-nearest-neighbor phase, 
however, becomes . It is then clear that the hoppings are of the form 
, where  is the zero-field next-nearest-neighbor coupling, , and the sign is 
determined by the orientation of the bond according to the right-hand rule. 
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41. Dielectric and Transport Properties of Phonons 
 
 
In this chapter, we will study the optical and transport response of the ionic lattice of 
crystals. In ionic (or polar) crystals such as NaCl, the individual atoms are charged 
because electrons have been transferred between them. These ions respond to optical 
fields in the terahertz (THz) range. In particular, resonances are found when the 
optical frequency coincides with a transverse-optical vibration of the lattice. Hence, 
we begin by analyzing the band structure of lattice vibration, i.e. phonons. We 
consider atoms placed at positions , where  is the lattice vector,  

is the position of the atom relative to the unit cell center and  is its 

displacement from equilibrium. By definition, the positions  are the 
equilibrium positions, for which all forces vanish. We wish to find the total elastic 
energy per unit cell as the atoms are displaced. To this end, we fix the attention on a 

particular reference cell at  and determine its interaction with all other cells. 
Thus, if we expand to second order in the small displacements we find 
 

 

 
where i and j indicate spatial directions x, y or z and 

 

. 

 
A phonon mode is characterized by the Bloch condition  with 

 a constant displacement amplitude. We collect all the displacements in a 
single super-vector . If the time dependence of all displacements is of 
the form , Newton’s equations mean that the phonon dispersion relations are 
given as eigenvalues of the equation  
 

 . (41.1) 

 
Here, the dynamical and mass matrices are given by  
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 .

   
41.1 Zinc-Blende Crystals 
 
In order to provide a specific example, we now focus on zinc-blende crystals, which 
include diamond structures as a sub-class. In these crystals, each unit cell contains 
two atoms A and B. We will choose the intra-cell position vectors as  and 

, with a the lattice constant. For two atoms having a relative 
vector  symmetry dictates that 
 

 .  

 
If some of the components are inverted such that  with  we 
have 
 

 .  

 
For a zinc-blende crystal with atoms in the corners of a tetrahedron we find 
 

 .

   

A rigid translation of the entire crystal must be an eigenmode corresponding to  
with zero eigenvalue and constant eigenvector . This leads to the 
acoustic sum rule 
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 .

   
 
In addition to the short-range interactions, ionic crystals have a long-range Coulomb 
interaction. For a lattice with two ions per unit cell having charges , the 
electrostatic energy is 
 

 .

   
The Ewald technique consists in writing 1 as the sum . Here,  is the 
Ewald convergence parameter, and  and  are the regular and complementary 
error functions, respectively. The term involving  converges rapidly and by 
Fourier-transforming the  term, the same rapid convergence is found there. Hence, 
the electrostatic energy becomes 
 

 

 
Here, we have used  and introduced 
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The divergent  can be omitted because it cancels with the identical term in 
. For a zinc-blende lattice with lattice constant a we find 
 

 .

   
However, taking only  and limiting the G-vector sum to 

 and taking  we find as an excellent approximation . 
Hence, the force constants can be approximated by taking the reciprocal space sum 
only. The second order change in electrostatic energy is then 
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with  
 

 .  

 
The associated dynamical matrices become 
 

   

 
and 
 

 .

   

Here, we used . These results can be expressed via the 

scalars 
 

   

 
Collecting all contributions, it then follows that the full 6 by 6 dynamical matrix is 
given by 
 

 

. (41.2) 

 
The required constants for a few important materials are listed in the table below. 
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Material  [N/m]  [N/m] [N/m] a [Å]  [u]  [u] 
Si [1] 65.87 45.73 0 5.43 28 28 
Ge [2] 49.54 30.82 0 5.66 72.6 72.6 
GaAs 40.6 30.1 2.41 5.65 69.7 74.9 

 
Band structures of apolar (Si) and polar (GaAs) materials are compared below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 41.1. Phonon band structures of Si and GaAs. 

 
The most notable difference between the two is the splitting of optical modes near 
the zone center. Hence, the two transverse-optical modes are lower in frequency than 
the longitudinal one for GaAs but degenerate for Si. This tendency holds generally 
and has important consequences for the optical response discussed below. 
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41.2 Properties of Phonons 
 
We now turn to the thermodynamical and dielectric properties of phonons. The most 
straightforward quantity is the heat capacity that is derived from the internal energy 
 

 . 

 
Here, n is the Bose-Einstein distribution and D is the phonon density of states. 
Differentiating we find 
 

 . (41.3) 

 
The density of states and phonon heat capacity of GaAs are plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41.2. Phonon density of states and heat capacity (inset) of GaAs. 
 
In addition, the heat conductance of phonons can be computed. This proceeds very 
much by analogy with the electrical conductance of electrons. Recall Eq.(10.2) for 
electrical conduction 
 

   

 
To convert this into an expression for the heat current, we notice that (i) the factor 2 
is from electron spin and must be omitted, (ii) an electron carries a charge -e whereas 
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a phonon carries an energy , and (iii) the electron Fermi factor should be replaced 
by phonon Bose-Einstein factors. Then, 
 

 . 

 
For electrons, we assumed a bias difference  between left and right so that 
 

 . 

 
Similarly, for phonons we assume a temperature difference  between left and 
right 
 

 . 

 
But inspection of Eq.(41.3) shows that the temperature derivative can be replaced by 
a frequency one instead. We then find a heat conductance  
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For electrons we had the normalized “window” function 
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Similarly, for phonons we can define [4] 
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And so eventually 
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Finally, the dielectric constant is given by 
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 . 

 
Here,  is the phonon oscillator strength. It is basically determined by 
 

 , 

 
where  is a state with one photon (momentum ) and zero phonons and 

 is a state with one phonon (momentum ) and zero photons. Also, 

is the dipole operator and  is a polarization vector perpendicular to 

. Since  is very small, only zone center phonons are excited and because of  only 
transverse ones. Finally, at the zone center, only optical phonons have a dipole 
moment. Hence, the transverse-optical (TO) response reads 
 

 . 

 
For GaAs, ,  and  and the result obtained using 
these values is shown in Fig. 41.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41.3. Terahertz dielectric constant of GaAs. 
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Exercise: Graphene phonons 
 
In the planar geometry of graphene, the coupling of the reference atom at the origin 
to the atom labeled 1 is given by 

 

 . 

 
 
These force constants correspond to in-plane stretch, in-plane bend, and out-of-plane 
bend, respectively. Similarly, the coupling to the atoms labeled 2 and 3 are given by 
rotations around the 3-axis by , i.e. 
 

 . 

 
a) Show that the dynamical matrix becomes 
 

 . 

 
b) Using 1 2 3{ , , } {418,152,102} N/m     [3] show that the band structure is as 
shown below (left). 

Figure 41.4. Phonon band structure of graphene in nearest- and  
next-nearest neighbor model left and right. 
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Next-nearest neighbor forces can be included as a simple extension of the model by 
adding an un-rotated force matrix of the form 1 2 3diag( , , )     .  
 
c) Show that this adds the following block in the upper left and lower right blocks of 
the dynamical matrix 
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The next-nearest neighbor force constants fitted to a full DFT band structure in Ref. 
[3] are 1 2 3{ , , } {76, 43.5, 10.8} N/m        . However, experimentally it is found that 
the lowest (so-called ZA) band behaves as 2k  rather than linearly near the   point. 
This is clearly not found in the nearest neighbor model and, neither, in the next-
nearest neighbor using these values. In fact, it can be shown that the requirement for 
a parabolic band is 3 3 /6  . This value is also required to fulfill the “rotational 
sum rule” that says that a rigid rotation must be a zero-frequency eigenmode [3]. 
Hence, we use this value in the right-hand plot of Fig. 41.4. 
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42. Polarizability of Molecules 
 
 
In this chapter, we will look at models of molecules and their polarizabilities. In a 
simple picture, molecular states are linear combinations of atomic orbitals (LCAOs) 
also known as tight-binding states (see Appendix 2). This means that molecular states 
are of the form ( )( ) ( )n

n i ii
r c r  

 with i  the i’th atomic orbital and ( ){ }n
ic  the 

coefficient eigenvector of molecular state n. Within the independent electron model, 
the lowest N molecular states are occupied in an N electron molecule. We will study 
transitions associated with excited states, where one of the initially occupied 
molecular states ( )n r



 is replaced by an empty one ( )m r


 with m N . A particularly 
simple situation is found, if all atomic orbitals i  are identical except for their 
position. This is the case, to a good approximation, in molecular hydrogen 2H  and 
well as planar (conjugated) carbon molecules such as benzene. In the former, the 
atomic states are hydrogen orbitals, while in the latter they are  - orbitals. We will 
use the notation 
 
 ˆ ,ij i j ij i jH H S     ,  
 
for Hamilton and overlap matrix elements, respectively. Each atomic orbital is 
assumed to have definite parity and, if all i  are identical except for center position, 
it is readily shown that ij i j ij ijx x x S    with 1

2 ( )ij i jx x x   the average of the 

atomic centers. Hence, ( ) ( )
,

n m
n m i j ij iji j

x c c x S   . A particularly simple model is 

the nearest-neighbor approximation, in which iiH   and 1iiS  , while ijH   
and ijS s  if atoms i and j are nearest neighbors and otherwise vanish. This leads to 

eigenvalue problems of the form n n nH c E S c  


 

 with Hamilton and overlap matrices 
 

 

0 1 0
1

,
0 0 1

s
s s

H S
s

 
  

 

                                 

 



   

. 

 
An even simpler version is found in the orthogonal approximation 0s  .  
 
42.1. Hydrogen Molecular Ion 
 
We will start by investigating the hydrogen molecular ion 2H  with just a single 
electron and then turn to conjugated molecules. Hence, we consider the 2H  

Hamiltonian with two protons A, B at ,A BR

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 21 1 1ˆ( )
2 A B

h r
r r

   
 , 

 
where , ,| |A B A Br r R 





 is the distance to the nuclei. The atomic orbitals are 

, ,( ) ( )A B A Br r 
   and we have ˆ

A Ah    and ˆ
A Bh    . If overlap is 

retained and only one orbital at each site is included, the eigenstates and eigenvalues 
are  
 

 
11, .
11 2(1 )

E c
s s

 
 

        


  (42.1) 

 
If 0 , the /   solutions are ground and excited states, respectively. We now 
assume the atomic orbitals ,A B  to be hydrogen-type with principle quantum number 
n, i.e. eigenstates of 21

2 /r    with eigenvalue 2 2/(2 )n . These include 1s, 2p

and 2p  types (taking the molecular axis along x).  
 

 
1/2 1/2 1/23 5 5

/2 /2
5 5( ) , ( ) , ( )

2 2
S P Pr r rS P Ps r e p r xe p r ye     

  
  

                           

  

. 

 
In such cases, the virial theorem leads to  1 2/A A Ar n     and  
 

 
2

2
1 1ˆ

2A j A j A j
A B

h
n r r
 

     


   . 

 
This means that 
 

 
2 2

2 2
2 1 1, (2 )

2 2A A A B
B A

s
n r n r

  
      


     . 

 
If the nuclei are separated by a distance R, we find the characteristic integrals for s 
states 
 

 2 21 1 1(1 ) , 1 (1 ) , (1 ) ,
3

x x xS
ss A B A A A B S

B A

S s s x x e s s x e s s x e
r x r


            

where Sx R . Similarly, for p  states 
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and p  states 
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where /2Px R . For s states, this means that 
 

   
2 2

2 2 21
2

1 1 , 2 .3(4 1) 3
6

S
S S S

R
R R RS

S S S SS S S
e e e R R R e

R


  


    


  

         

  
The exponent (actually screened nuclear charge) S  should be found by minimizing 
the ground state energy. Ground and excited states formed from 1s states are denoted 
1 g  and 1 u , respectively, with g and u for gerade and ungerade (even and odd). To 
find the total molecular energy, the nuclear repulsion 1/R  must be added to the 
electronic energy E  from Eq.(42.1). In addition, we shift the zero-point upwards by 
1/2  such that lim ( ) 0

R
E R

 . The energies (1 )gE   and (1 )uE  , as well as the optimal 

exponent, are shown in Fig. 42.1. It is seen that S  varies between 2 and 1 as R is 
increased, as expected. For p  states, the lower ( E ) and higher ( E ) states are (2 )gE   

and (2 )uE  , respectively, and the optimal exponent is denoted P
 . These states are 

not really proper eigenstates as they, in reality, will hybridize with 1 g  and 1 u  to 

form linear combinations. We also show p  states (2 )gE   and (2 )uE   including their 

optimal exponent P
 . The equilibrium distance for the ground state is at 2R   Bohr 

with a binding energy of 2.35 eV. 
 
The nuclei perform vibrations around the equilibrium separation. By fitting the 
ground state curve to a parabola near the minimum 21

0 02( ) ( ) ( )E R E R k R R    , 
one finds 22.58 eV/Bohrk  . For 2H  (see exercise), the value is 29.72 eV/Bohrk  . 

In both cases, the vibration frequency is /vib rk M   with the reduced mass given 
by half the proton mass /2r pM M . For 2H  and 2H , we then get 

110.2 mHa 2232 cmvib    and 119.7 mHa 4331 cmvib   , respectively. 
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Figure 42.1. Ground and excited state energies for the 2H  molecular ion. 
The small plot shows the optimal exponents. 

 
The transition dipole moment between 1 g  and 2 u  is easily seen to be 

2 1/21
21 1 /(1 )g u ssx R S     . Moreover, for the sp onsite matrix element 

 

 
3/2 5/2

15/2
52

(2 )
S P

sp A A A A
S P

X s x p s y p   
 

  


. 

 
Transitions to 2 u  and 2 u  are a little more involved and yield 
 

 
1 1
2 21 2 , 1 2
(1 )(1 ) (1 )(1 )

sp A B B A sp A B
g u g u

ss pp ss pp

X s x p s x p X s y p
x y

S S S S

  

   

   
  

 
   

. 

 
The remaining integrals are related by B A A B sps x p s x p RS 

   with 

sp A BS s p
  . The general integrals are complicated but in the simpler case P S   

(in the R-dependence) we find with Sx R  
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The polarizability is obviously anisotropic with different components parallel and 
perpendicular to the bond. As a simple approximation, we will only include the 
lowest transition in each case, so that 
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The static values are shown in Fig. 42.2 as functions of the inter-atomic distance. The 
values at the equilibrium distance are found to be 6.06 and 1.79, respectively, in rather 
good agreement with highly accurate model values 5.08 and 1.76 [1]. The parallel 
component grows without limit as R increases, while the perpendicular one goes 
through a maximum and, in fact, settles at the hydrogen atom value at large 
separations.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42.2. Cartesian components of the static polarizability of the 2H  molecular ion.  
The equilibrium separation is indicated by the dashed line. 

 
42.2. Conjugated Carbon Molecules 
 
Conjugated carbon molecules are planar structures with alternating single and 
double bonds between carbon atoms (see App. 2). All atoms lie within the same 
plane, taken as (x,y), and, hence, parity with respect to reflection in this plane is a 
symmetry. This means that eigenstates are either even or odd functions of z. As a 
consequence, zp  states decouple from the rest and form delocalized molecular  - 
orbitals. Models of such states are rather simple and, as an example, the six carbon 
benzene ring is described by Eq.(6.1): 
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0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

H

 
 

 
 

 
 

                   



. 

 
Note that, compared to Chapter 6, we use a different ordering of atoms here, 
according to their sequence around the ring. The eigenvectors are of the form 

( ) ( 1) /3 / 6n ik n
kc e   with , [0, 5]k n . Here, n is the state index and the associated 

eigenvalues are { 1, 2, 1,1,2,1}nE     . Six electrons occupy  - states, and, hence, 
with this labelling, the states 0, 1, and 2 are doubly occupied, while 3, 4, and 5 are 
empty. We can now compute the dipole matrix elements using 3cos k

kx a   and 

3sin k
ky a   with C-C bond length a. The absolute values of the dipole matrix 

elements nm n mX x   and nm n mY y   are identical and, when collected as a 
matrix, given by 
 

 

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

| | | |
0 0 1 0 1 02
0 0 0 1 0 1
1 0 0 0 1 0

aX Y

                    



. 

 
The structure is seen to be identical to the original Hamiltonian (but with a different 
meaning of row and column indices). Now, we look for allowed transitions between 
occupied and empty states. From the matrix above, these are seen to be 0 5   
and 3 4  , both with a transition energy of 2 . It follows that the polarizability 
is isotropic and has a single resonance 

 
2

2 2
4( ) ( )

4xx yy
a

   
 

 


. 

If N benzene rings are joined along the x-axis at their para positions, we form N-
paraphenylenes, such as those shown in Fig. 42.3. These are anisotropic and, in the 
limit of large N, form the conjugated polymer poly-paraphenylene. The evolution of 
the polarizabilities (normalized by N) is shown in Fig. 42.3, in which broadening of 
0.02i   is added to the frequency. For the isolated ring, a single isotropic resonance 

at 2   is observed, as expected. For chains, the long-axis absorption onset shifts 
to low frequencies, while short-axis absorption sets in around 1.5 . For essentially 
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infinite chains, the absorption edge is at the band gap that can be shown to be 
1/23 0 82 ( 8) . 28gE    . 

 
Figure 42.3. Normalized absorption spectra for different N-paraphenylenes. 

Examples with N = 1, 3, 6, and 10 are shown to the right. 
 
The vibrational modes of large molecules are much more complicated that small 
ones. Even if only planar vibrations are considered, we have 12 degrees of freedom 
and, thus, 12 eigenmodes in benzene. To model these, we adopt a next-nearest 
neighbor force-field model. Since all masses are identical, we need to solve the 
problem 
 

  2 0D M u  




, (42.2)

   
where the dynamical matrix is D



. We only include bond stretching with spring 
constants K and k for nearest and next-nearest neighbors, respectively. For a bond 
along the x-axis, the interaction is given by diag(1,0)d 



 times a spring constant. At 

other angles, we apply a rotation ( ) ( )vd R v d R v   
 

 

 with angle v. In this manner, it 
can be shown that 
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. (42.3) 
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In each row, the acoustic sum rule implies that the diagonal element equals the 
negative of the sum of the other terms so, for instance, 

0 120 120 30 30( ) ( )D K d d k d d    
   



. The model is clearly quite approximate, since 
Hydrogen atoms are omitted. We fit the spring constants K and k to match the 
breathing and dimerization modes (7 and 12 in Fig. 42.4 with resonances 

2 (3 )/vib k K M    and 3 /K M ) using accurate data from [2]. This leads to 
3 2/ 631 10  cmK M    and 3 2/ 132.5 10  cmk M   . The 12 modes and their 

eigenfrequencies are shown in Fig. 42.4. It is noted that pure translational and 
rotational modes have zero frequency. Also, degeneracies between (4, 5), (8, 9), and 
(10, 11) appear. The high number of degeneracies reflect the high symmetry of the 
benzene molecule. 
 
 
 
 
 
 
 
 
 
 

Figure 42.4. Vibrational modes of the benzene ring with frequencies in cm-1 added above. 
 
In a general polygon with radius R, the breathing mode frequency is 

2 2 1/2
breathing ( / / ) /NNNKa M ka M R   , where NNNa  is the distance between next-

nearest neighbors. This clearly agrees with the benzene case above, for which a R  
and 3NNNa R . Similarly to graphene in the previous chapter, one could add 
nearest- and next-nearest-neighbor tangential force constants K  and k  to improve 
the fit to more accurate models or experiments. In this case, the condition that the 
rigid rotation (mode 2 above) has a vanishing eigenfrequency is /3k K  , which 
can be shown from the rotational sum rule. 
 
42.3. Raman Scattering 
 
In the approach above, we simply treated the nuclear positions as variable, but fixed 
parameters. In reality, excitation by light could cause the molecule to vibrate. In turn, 
the scattered light would have lost energy compared to the incident beam and 
emission would be at the Stokes frequency s vib    . If the molecule is already 
vibrating before photon absorption, the scattered light may gain this extra energy 
and produce emission at the anti-Stokes frequency as vib    . This can only occur, 
if a phonon is already present, due to e.g. temperature. Such Raman scattering, 
therefore, provides a useful optical probe of vibrational frequencies. Bose-statistical 
occupation factors 1 f  and f with 1/[exp( / ) 1]vibf kT   appear in the Stokes 
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and anti-Stokes terms, such that at low temperature, only the former occurs. A 
simple, semiclassical way of describing the Raman effect is by including a harmonic 
vibration around the equilibrium value 0R , for instance 0( ) cos( )vibR t R R t    in 
the Hydrogen molecule. If the oscillation amplitude R  is small, we may Taylor 
expand to first order. Hence, the induced dipole moment becomes 
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This demonstrates that the new terms oscillating at the shifted frequency are 
proportional to the distance-derivative of the polarizability 0( , )R 

  at the 
equilibrium position. Terms oscillating as ( )vibi te     and ( )vibi te     represent scattered 
photons with decreased and increased energy, respectively, corresponding to 
creation and absorption of a vibration quantum (“phonon”). The amplitude R  is 
found by equating the classical energy  21

2 ( )k R  to the quantum value vib  so that 
1/2(2 / )r vibR M   . When plotting the Raman response, we introduce the Raman 

shift s     and use 0s vib     with 0  the equilibrium resonance to write 

0 vib      . We then plot the imaginary part of Raman  versus   such that 
resonances occur if vib  . Thus, we finally find the Raman polarizability 
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If several vibrational modes { }kQ  with eigenfrequencies k  exist, the nuclear 

positions are displaced by k kk
R Q u 




, where ku  is the normalized eigenvector of 
the k’th mode found from Eq.(42.2), and the Raman polarizability becomes 
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The notation { } 0kQ   means that the derivatives are to be evaluated in the 
equilibrium configuration. Not all modes lead to peaks, however, since only some 
are Raman active. In Fig. 42.5, we see that this is the case in benzene, for which only 
modes 4/5, 7, and 10/11 are Raman active. These are the modes, for which a 
deformation leads to a linear change in polarizability. It is obvious that this is not the 
case for modes 1-3. Also, modes like 6 are Raman-inactive because the polarizability 
is clearly an even function of the amplitude, in this case 6Q . A similar argument holds 
for modes 8/9 and 12.  
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Figure 42.5. Raman spectrum of benzene with modes referring to Fig. 42.4. The intense breathing 
mode 7 has been down-scaled by 510  and broadening is 5 cm-1. 

 
Exercise: Hydrogen molecule 
 
In this exercise, we use variational calculus to estimate the ground state energy of the 
two-electron molecule 2H  described by the Hamiltonian   
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The last relation shows that the 2H  Hamiltonian consists of separate 2H  terms for 
each electron plus an interaction term. In order to set up matrix elements, we need 
the integrals 
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In particular, we need the Coulomb and exchange integrals 
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Using the same 1s states as above, we get 
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where 0.57721566....E   is Euler’s constant, Sx R  and Ei  denotes the exponential 
integral. It turns out that an excellent approximation to K is 
 

 3/2 25 exp(0.285 0.763 0.0805 )
8SK x x x   . 

 
An accurate approximation for the ground state is the Heitler-London variational 
ansatz designed to avoid double occupancy on either atom 
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(a) Show that plugging in leads to the energy estimate  
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(b) Use the 1s hydrogen orbitals and vary the exponent to minimize the energy. The 
result should look like Fig. 42.6. The equilibrium distance is seen to be 1.39R   Bohr 
with a binding energy of 4.05 eV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42.6. Variational ground state energy of 2H  with optimal exponent in the inset. 
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43. Optical Properties of Two-Level Systems 
 
 
In this chapter, we study a very simple atomic system comprised of only two 
quantum levels. The simplicity of the system makes it possible to study highly non-
perturbative effects of an optical field. The system is described by the Hamiltonian 
 
 .  
 
We assume that the two levels  and  have definite and opposite parity. 
Moreover, taking these states to be real-valued,  is the only non-
vanishing dipole matrix element. It follows that Eq.(1.4) yields 
 
 , (43.1) 
  
where  is the Rabi frequency. Below we will compute the population of 
the excited state  and the induced dipole moment as a function of applied field 
strength. Both approximate analytical and purely numerical methods will be applied. 
 
43.1 Rotating Wave Approximation 
 
Despite the innocent appearance, the set of coupled equations Eq.(43.1) cannot be 
solved in closed form. To provide an approximate solutions, we split the cosine 
according to . We then notice that these have to be combined 
with . Near resonance  we will find very rapidly varying terms  
and slowly varying terms , where  is the detuning. It may be assumed 
that the effect of the rapidly varying terms averages to nearly zero. Hence, we only 
keep the slow terms, which leads to the rotating wave approximation (RWA): 
 
 . (43.2) 
 
These coupled equations are easily solved if combined so that 
 
 . 
 
Introducing the effective Rabi frequency  we find the general 
solution 
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We will assume as the initial condition that the system at time  is in the ground 
state. Thus,  and we may write . To determine A, we 

need  and from Eq.(43.2) we have . We 

then readily find  so that we may take . Eventually, 
the full solution reads 
 

  (43.3) 

 
This is the famous RWA solution to the Rabi problem. It is seen that the probability 
of finding the system in the excited state is . Hence, this 
probability oscillates with the effective Rabi frequency and can get close to one if the 
field is sufficiently strong that . In Fig. 43.1, we compare the approximate 
solution to the numerical result obtained by directly solving Eq.(43.1) numerically. It 
is seen that the RWA misses the finer oscillations but captures the slower features. In 
the example, the effective Rabi frequency is  and the 
slow period is  in agreement with the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 43.1. Comparison of the full numerical solution to the rotating wave and Floquet  

approximations. 
 
43.2 Floquet Solution 
 
If the RWA is abandoned, a numerical solution can be used instead. Obviously, the 
coupled equations Eq.(43.1) can simply be solved numerically as shown in Fig. 43.1. 
Often, however, it is advantageous to find a semi-analytical solution. To this end, the 
method adopted here is based on so-called Floquet states. The name derives from the 
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Floquet theorem, which is very similar to the Bloch theorem from solid state physics 
except that time replaces space. For crystals that are periodic in the x direction, the 
Bloch theorem says that states are of the form  with  lattice-periodic. 
Similarly, if a Hamiltonian is periodic in time such as in the presence of 
monochromatic light of frequency , the time dependence of the states is of the form 

 with  periodic with period . Hence, we write completely 
general solutions in the form 
 
 .  

 
When inserted into Eq.(43.1), we find 
 
   
 
This, of course, is an infinite set of coupled equations. To be of practical use, it must 
be truncated to a reasonable size. In the limit of vanishing field, we have  so 
we better keep  in the set. From the coupled equations, we see that  couples 
to . Keeping only  reproduces the rotating wave solution as we will now 
demonstrate. In matrix form, we have in this case 
 

    

 
Hence,  is an eigenvalue and the unknown coefficients are the corresponding 
eigenvectors. Solving, it is seen that  are the eigenvalues (see red 
lines in Fig. 43.2). The corresponding eigenvectors are 
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The final, general solution is a linear combination of the eigenvectors, i.e. 
 

   

 
After a little rewriting it follows that 
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Again, the initial conditions mean that  and so 
 
   
 
Requiring normalization easily proves that  and, consequently, the 
obtained solution is identical to Eq.(43.3), i.e. the rotating wave result. We may now 
include more Floquet states. As an example, 7 states lead to a Floquet equation 
 

  

 
It would appear that 7 eigenstates are found. However, only two should fall within 
the “Brillouin zone”, i.e. the range . This is illustrated in Fig. 43.2, where a 
large basis of 40 states has been used. The repeating pattern in the figure follows from 
the fact that if  is an eigenvalue of the full (un-truncated) set of equations, then so 
is  and higher multiples. If, however, the equations are truncated this is only 
approximately true as illustrated for the 2 state approximation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 43.2. Numerically computed eigenvalues for a small and a large Floquet basis. 

 
In Fig. 43.1, the result for the population of the excited state calculated using a 7 state 
Floquet approximation is shown. It is clear that it is practically identical to the direct 
solution of the coupled differential equations. Thus, the accuracy of the Floquet 
approach is demonstrated. 
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43.3 Density Matrix Formalism 
 
So far, we have assumed perfectly lossless conditions. This is always a requirement 
when a direct solution of the Schrödinger equation is attempted because losses would 
lead to a non-Hermitian operator. In reality, losses are always present. For an atomic 
system these will originate from coupling to the environment including the 
possibility that an excited atom decays spontaneously by emitting a photon. To 
include such mechanisms, we will introduce the density matrix formalism, which 
allows for losses in a straightforward manner. Writing  the elements of the 
density matrix are defined by . The time-dependent Schrödinger equation 
states that 
 

 . 

 
Combining these, it follows that 
 

 . 

 
In general then, the density matrix obeys the so-called Liouville equation 

. Solving this equation provides precisely the same information as 
solving the Schrödinger equation. However, we can now add terms that model 
losses. We want to do this in a manner, which preserves normalization, i.e. for a two-
level system . For this simple system, it can be shown [1] that the form 
 

  

 
does precisely this. For the Hamiltonian in Eq.(43.1), the dynamical equation becomes 
 

. (43.4) 

 
If the field is suddenly switched off, the density matrix will decay to its equilibrium 
form with  and . This set of four coupled equations is even 
more difficult to handle than the original Schrödinger equation, but is more realistic 
because losses are included. In Fig. 43.3, we show a few traces for the population of 
the excited state  with different amounts of loss. We note that the initial large 
oscillations die out and eventually the population reaches a quasi-stationary level 
with smaller scale oscillation superimposed. The dashed curves, which roughly 
capture the slow dynamics and the steady state level, are derived from the RWA 
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version of the Liouville equation. This simplified equation is obtained by writing the 
density matrix elements as , where  is expected to be slowly 
varying. By introducing this form in Eq.(43.4) and omitting rapidly varying terms 
similarly to the RWA for the wave function, we find 
 

 . (43.5) 

 
It is readily demonstrated that the steady-state solution is of the form  as well 
as  and  with the superscript “ “ indicating a constant 
amplitude. Plugging in and solving yields 
 

  (43.6) 

 
in addition to  and . We see that  if  
in agreement with Fig. 43.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 43.3. Population of the upper level as predicted by the Liouville equation including losses.  
The dashed curves are the RWA results. 

 
43.4 Induced Dipole Moment 
 
Having determined the density matrix from the solution we can now compute 
measurable quantities. The obvious one is the induced dipole moment . 
Using Eq.(43.6) it is readily established that 
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If we use the definition of the Rabi frequency  and rewrite in the form 

 we find a generalized (field dependent) polarizability  of  
 

 . 

 
In the weak field limit , this result agrees with the resonant part of the 
perturbation result of Chapters 2 and 30 
  

 . 

 
In Fig. 43.4, we plot the imaginary part of the generalized polarizability normalized 
by the amplitude of the perturbative result . Clearly a large Rabi 
frequency saturates the absorption. Physically, this is consequence of the fact that 
atoms, which are already excited, cannot absorb further. Hence, absorption saturates 
at high field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 43.4. The absorptive part of the generalized polarizability for different values of the Rabi 

frequency. Here, the RWA is applied. 
 
The saturable absorption in Fig. 43.4 is an example of a nonlinearity, i.e. an effect of 
the finite field strength. However, as the field increases, the RWA becomes 
increasingly inaccurate. Hence, the full Liouville equation Eq.(43.4) rather than the 
RWA version must be considered. To obtain the full polarizability, one must (1) solve 
Eq.(43.4) numerically from  to some final , (2) average the steady-state 
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time trace of  to find the component oscillating at the applied frequency, and 

(3) compute , where the angular brackets indicate time 
average. The result of this procedure is illustrated in Fig. 43.5. We observe that in 
addition to the saturation, a shift of the resonance appears. This so-called Bloch-
Siegert shift [2] is an additional nonlinearity. It is shown below that to lowest order 
the shift is .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 43.5. Imaginary part of the full polarizability obtained without adopting the RWA. 

 Note that some curves have been magnified. 
 
It is possible to perform a Floquet-type analysis of the density matrix as well. At a 
first glance, this looks difficult because we deal with four unknowns. To facilitate the 
analysis, however, one should remember that  and, moreover, introduce 
the new variables , , and . In terms of these, the 
dynamical equations can be written 
 

 (43.7) 
 
To solve, we expand in Fourier series  and similarly for f and g. The 

last of the equations above means that  and with the 
abbreviation  we therefore find 
 
 . 
 
In general,  and . The coupled equations lead to a matrix problem 
very similar to the one for the wave function found above. If we truncate to the set 

 we find a matrix equation  
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The normalized polarizability is  and after some manipulations  
 

 . 

 
Differentiating the imaginary part to find the maximum, one then finds 

 in agreement with Fig. 43.5. Similarly, the excited state 
population is given by 
 

 . 

 
The resonance frequency of  is the same as for the polarizability. 
 
Exercise: Two-level system with permanent dipole moments. 
 
If the system does not have inversion symmetry, both ground and excited state will 
generally possess non-vanishing dipole moments  and . If 

we denote the corresponding Rabi frequencies by  and , we find  
 

 .  

 
a) Show using the Liouville equation that the new dynamical equation for  is 
 
 , (43.8) 
 
where . The diagonal elements are unchanged and . The 
revised equations for f and g become 
 
  
 
Hence, the Fourier decomposition yields  
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b) Show that the averaged dipole moment  is determined by  
 
 . 
 
The above set of coupled equations is very demanding. As a shortcut, we will apply 
perturbation theory to extract the solution to a given order in the applied field. We 
wish to compute the dipole moment up to second order in the field. We will denote 
quantities that are proportional to the p’th power of the field by a superscript (p). 
Thus, the only zero order quantity is . Accordingly, the permanent dipole 
moment at lowest order is  as expected.  
 
c) Show that, in the next order, we find the non-vanishing coefficients 
 

 . 

 
The second order is trickier. After some algebra, it turns out that 
 

  

 
Eventually, the second order hyperpolarizability becomes 
 

 . 
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44. Nonlinear Response Theory 
 
 
All chapters of this book, so far, have relied on linear perturbation theory. Thus, we 
have obtained the perturbed quantum states by expanding in a basis of unperturbed 
states and retaining only first-order corrections. This approach, however, can be 
extended to arbitrarily high order. In this manner, we can compute the nonlinear 
response, i.e. corrections that are or second or higher order in the perturbation. As a 
starting point we write the unknown wave function as  
 
 ,

   
where  and  are unperturbed eigenstates and energies, respectively. 
Importantly,  is a time-dependent coefficient that is a polynomial in the 
perturbation  so that  is proportional to the p’th power of the 

perturbation. We have previously shown that 
 

   

 

where  and the perturbation is assumed Hermitian. We further 

restrict ourselves to low-temperatures such that . By repeated usage of this 
relation we find 

 .  (44.1) 

 

 . (44.2) 

 

. (44.3) 

 
The pattern is readily continued to higher order if needed. We how proceed to 
calculating the actual response.  
 

  

 
In particular, we are interested in terms proportional to a specified power p of the 
perturbation. Hence, 
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Resolving this response in frequency components, we furthermore find a term that 
oscillates at the maximal frequency . For this term we have 
 

 .  

 
The first few expressions are 
 

 ,  

 

 .  

 
We now specialize to a particular case: optical response. In this case, if the field is 
along x, , where the sum is over all electrons. Moreover, the response is 

the induced dipole moment . Hence, in this case . We then 
introduce the generalized polarizability via . This 
demonstrates that 
 

 ,  

 

 

 
A general prescription is given by [1] 
 

  (44.4) 

 
with  and . Defined in this way, the static 
value of the induced dipole moment of an inversion-symmetric systems is 

. Hence, upon integration it follows that the field-induced 
change in the ground-state energy is  
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A note on the choice of origin of the x-axis: This choice should, of course, be 
immaterial to any measurable quantity. For matrix elements like  with , the 
choice is of no consequence because of orthogonality. However, for  the choice 
matters and the correct choice is the one, in which the permanent molecular dipole 
moment vanishes. 
 
As an example, we will again use hydrogen for which [2]  and 

 in atomic units (see also exercise). We already computed the first 
polarizability in Chapter 30 and here we will study the third order response. As the 
ground state is s-type there are two contributions to the response 
 

  (44.5) 

 
The dipole moments are then given by 
 

 . 

 
We find the required states using the sine basis of App. 4. The final result is plotted 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 44.1. Third-order hyperpolarizability of a hydrogen atom. 
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The DC value is found to be approximately  is reasonable agreement with 
the precise value. Also, the main resonances are located at  and 

, as expected. 
 
44.1 Generalizations 
 
We now attempt to abandon some of the restrictions, under which the nonlinear 
response functions were derived. Primarily, these are (i) the low-temperature 
assumption and (ii) the many-body picture. In turn, we will also be able to handle 
extended, periodic structures. As a first step, abandoning the low-temperature 
assumption is easily carried out. It can in a straightforward manner be shown that 
 

 , (44.6) 

 
where  is the probability that the state  is occupied in the absence of 
perturbations. To ease the notation, we introduce 
 

 ,  

 
so that 
 

 . 

 
Next, we can perform a series of cyclic permutations 

 and so on. The product of matrix elements is 
invariant under such permutations. Hence, we can “average” over permutations 
 

 . 

 
It can be shown that under the action of all such permutations 
 
 . 

 
Thus, if the initial occupation is the same for all states the response vanishes. This 
result can be used to rewrite the general expression as 
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For instance, the first and second order results now read 
 

 , (44.7) 

 
and  
 

  (44.8) 

 
After some further manipulations 
 

 . (44.9) 

 
In the limit , we can expand using  and 
find 
 

 , 

 
as well as 
 

 . 

 
So far, all results have been expressed in terms of many-body states. If, now, electron-
electron interaction is ignored, each many-body state is simply a Slater determinant. 
The ground state Slater determinant is built by all occupied states (v for “valence 
band”) and in the excited ones one or several of these are replaced by empty states 
(labeled c for “conduction band”). We find for the first and second order responses 
(including spin summation) 
 

. (44.10) 
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44.2. Gauge Invariance 
 
At this point, we would like to discuss a rather technical issue: gauge invariance. So 
far, we have relied on the dipole approximation for the computation of optical 
response. This is perfectly fine as long as the field can be considered spatially 
constant. If, on the other hand, the field varies in space, we need to go back to the full 
Hamiltonian. The generalized result, however, should agree with the dipole 
approximation when specialized to a constant field. This requirement is known as 
gauge invariance (in response-theory context).  
 
The dipole approximation framework goes by the name “Length Gauge” in contrast 
to the non-approximate alternative known as the “Velocity Gauge”. In the former, 
the perturbation is simply , as should be well known by now. If 
the field varies in space, we return to the full Hamiltonian, in which the optical 
perturbation is contained in a time- and space-dependent vector potential  
while keeping the scalar potential  static. The optical perturbation is then 
included by replacing the usual momentum  by the canonical momentum 

. The Hamiltonian is therefore 
 

 . 

 
It follows that the perturbation is  
 

 . 

 
This clearly looks rather different from the dipole perturbation. The time-dependent 
fields are related via . We will now specialize to the space-
independent case  in order to discuss gauge invariance. In this case, 
 

 . 

 
The presence of the last, purely time-dependent term makes no complications since 
it simply adds a phase to the wave function, which becomes  

 such that  is governed by the first term 

. Now, if the electric field is of the form  it 

follows that the vector potential is  with . Hence, 
in the language of Chapter 1, the interaction Hamiltonian is . 
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Comparing to the dipole case, we see that this amounts to the substitution 
. 

 
In fact, the full implications of the velocity gauge are slightly more subtle. This has to 
do with the fact that we also need to apply the substitution  when we 
introduce observables. Hence, the current operator now becomes 

 and the current is . With a space-independent field 

we see that . In the independent-electron picture, 
 equals the number of electrons. Thus, the diamagnetic  

terms simply adds a  term to the linear conductivity without affecting any 
higher non-linearities. It follows that the current density operator can be taken as the 
usual  if we just remember to add  to the linear response. Finally, 

whenever we want the polarization  at frequency , we find it from the current 
 via . 

 
We can now put the pieces together. For simplicity, we will restrict ourselves to a 
single dimension so that both field and responses are in the x-direction. At first order, 
we get a term of the form . Hence, combining with the diamagnetic 
contribution above, we obtain the total conductivity  and, in turn, the 
polarizability  is given by 
 

 . (44.11) 

 
The first term looks like a Drude term for a partly filled parabolic band, c.f. Chapters 
3 and 8. However, it involves the total number of electrons (not just valence ones) and 
the effective mass is the free-electron one. Continuing, the velocity gauge response at 
second order becomes 
 

 . (44.12) 

 
The task now consists in proving that these expressions are, in fact, identical to 
Eqs.(44.7) and (44.9). This would establish gauge invariance. 
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Here, the first term is clearly the dipole result. The last term is transformed using 

 and splitting . Hence, performing 
the m summation for the  term and vice versa, we find using completeness and 

 
 

 .  

 
This establishes that the two extra terms above cancel. Note, however, that we needed 
to assume a complete set of states. If only a truncated set is used, gauge invariance is 
lost [3]. 
 
Gauge invariance at second order is trickier. Essentially, we need to “convert” 

 in the velocity gauge to  to prove equivalence with the 
length gauge. We will use the x’s and p’s to designate the different expressions. 
Hence, Eq.(44.9) and (44.12) are , respectively, 
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First, we use  in the ppp form. The extra bit 
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The last line follows because  and . Hence, for starters 
 with 

 

 .  

 
Similarly, applying  to the xxx form, we 
find  with 
 

 .  

 
Using , the terms in braces found in all forms can be expanded 
according to 
 

 . 

 
Now, a key identity is that 
 

 . 

 
To prove this, one needs “time-reversal symmetry”, which simply says that it is 
possible to choose phases such that  (for finite systems one simply uses real-
valued wave functions). Then, in a couple of steps, 
 

   

 
Here, the  contribution in the first form vanishes and time-reversal symmetry was 
applied in the second reformulation. Exploiting this identity and the expansion above 
to the xxx form leads directly to . Combining all these 
versions eventually demonstrates that . 
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44.3. Gauge Invariance with Spin-Orbit Interaction 
 
In the presence of spin-orbit interaction, the unperturbed Hamiltonian of a single 
electron is of the form  with 
 

 . 

 
Here, the field is the static one related to the potential via  . The 

associated current density operator is  and we should apply the minimal 

substitution . It is readily found that  
 

 . 

  
However, if the minimal substitution is applied directly to the Hamiltonian and we 
assume a space-independent field, we get the perturbation 
 

  . 

 
As usual, the  simply adds a time-dependent phase to the wave function and 
can be ignored. It follows that the interaction Hamiltonian becomes 
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The extra bit here is exactly the same as found for the current operator. It follows that 
all results derived so far hold if we make the substitution  
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This also includes gauge invariance because . 
 
Exercise: Stark effect in hydrogen 
 
In this exercise, based on Ref. [4], we consider again hydrogen in a static field. We 
will, however, go to higher order in the perturbation, thereby computing static hyper-
polarizabilities. The perturbation, as usual, is . The trick to a systematic 
treatment of this problem is to work in parabolic coordinates  and . 
In these coordinates, the Laplacian is 
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 . 

 
Moreover, the potential energy terms are  for the Coulomb 
potential and  for the electrostatic potential.  
 
a) Show that this leads to the eigenvalue problem 
 

 . 

 
To solve, we write  and introduce , , , 

, and . We now separate the problem into x- and y-dependent parts. To 
this end, we introduce two separation constants satisfying  so that 
 

  

 
b) It is convenient to introduce . Show that the x-equation becomes 
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We focus exclusively on the ground state and write the unknowns as Taylor series in 

F, i.e.  At zeroth order,  and by symmetry 

. It is readily shown by inspection that  and thereby 
. Generally, for  the k’th order term in  is  
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The first order equation for z therefore reads as . Via the 
auxiliary function h 
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we find  as can be checked by inspection . The 

solution is  and so . In order for 

the solution to be regular at zero, . In turn, 

. For the general k’th order term with  we find 
 

 , 

 
so that 

 . 

 
c) Show by iterating the above procedure that  and . 
Write a program to help show that  and . For the y-dependent 
function g a similar series solution can be constructed. Since the two equations only 

differ by the sign of F, the series for  will be . Eventually, 

adding the two provides the energy. At second order, . 

Remembering that  we find that .  
 
d) Repeat this at fourth order and show that . 
 
Thus, the static (hyper-) polarizabilities are  and . 
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45. Nonlinear Response of Periodic Structures 
 
 
In this chapter, we depart from the highly general discussion of the previous chapter 
and focus on a particular example of special importance: Periodic structures. To 
simplify the analysis, we will ignore excitonic effects so that all states are taken to be 
single-electron band states. Accordingly, each state index above is replaced by a 
collection of band, k-point and spin index, i.e. . Summation of spin is 
always straightforward if spin-orbit coupling is ignored and simply leads to 
multiplicative factors of two.  
 
Before attempting actual computations we need to address a subtle point related to 

intraband transitions in infinite structures, that is, transitions from  to  within a 
particular band. To facilitate the discussion, we formally separate the dipole operator 

 into intraband  and interband  parts, i.e. . Then,  only has diagonal 
matrix elements in the band indices and  only has off-diagonal ones. As long as we 
restrict ourselves to interband transitions between non-degenerate bands, everything 
is simple because we rely on the usual reformulation in terms of momentum matrix 
elements ˆ| | | | /[ ( )]e
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 . Such a procedure is tricky 

whenever  because we end up taking the limit k k 
 

 so that the energy 
difference vanishes. Therefore, a more systematic approach is required. 
 
We write the band states as , where  is the lattice-

periodic part with the normalization .  We now define the 

important Berry connection as . To proceed, we follow 

Blount [1] and write  
 

 . 

 
Thus, because   the inner product with  yields 

 
 . 

 
Similarly, interchanging quantum numbers, we find 
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. Note, that  with  for  as 

{ , , }n n k 


k


k


r ir er e ir r r 
   ir

er

n m

1/2 exp( )
nk

nk u ik r 

 



nk
u 

1 3
nm UC nk mk

u u d r     

1 3
UCnmk nk k mk

i u u d r       



1/2
ik r

k k nk

ii nk e u r nk
    







  

 



nm k k
mk nk  


   

 

mk


nmmnk k k k k k
mk r nk i  

 
        

 




nmnmk k k k k k
nk r mk i  

  
        

 




k k k k k k
 
  

       /( )
mnk mnk mnk

p imE   







mnk mk nk
E E E    n m



 429 

one can demonstrate using perturbation theory to compute . For the intraband 
dipole operator we then find  
 

. 

 
The problem is how to make sense of the last term. To solve this, we now consider 
the commutator with an arbitrary operator  and apply the completeness relation 
 

 

 
We now use “integration by parts” to transfer the derivatives of the Kronecker deltas 
to the matrix elements (a more rigorous would involve converting the sum to an 
integral and the Kronecker deltas to delta functions before integration). After 
subsequently summing over  we find 
 

. 

 
This important result can be expressed in a brief form by introducing the 
“generalized derivative” defined by  
 

 . (45.1) 

 
Here, “ ” is the symbol for generalized derivative [3].  
 
45.1 Response Functions 
 
For simplicity, we now restrict ourselves to one-dimensional systems. Applying the 
generalized derivative formalism to the linear intraband polarizability Eq.(44.7) we 
find 
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Ô

 

 
,

ˆ ˆ ˆ[ , ]

ˆ ˆ

i i i

l k

nnk k k k k k mmk k k k k k
k

k k nnk mmk nmk

nk r O mk nk r lk lk O mk nk O lk lk r mk

i nk O mk nk O mk i

O i

   





        


 

       

                 

       







           



    

         

  

   
 

 

    
    

ˆ ˆ

ˆ ˆ .

k k k k k k
k

k k nnk mmk nmk k k k k k k
k

nk O mk nk O mk

O i nk O mk nk O mk

 

  

    


     


   

            





     



          



   

   
 

k

 ˆ[ , ]i
k k nnk mmk nmk k nmk

nk r O mk O i O

        

      

 
 



; ;
ˆ[ , ] ( ) , ( )i

nm nmk k k k k nmk nnk mmk nmk
nk r O mk i O O O i O


        

        

 
 



; k




 430 

   

 
Accordingly, we find 
 

  (45.2) 

 
Converting to an integral and using , this expression is seen to be 
equivalent to the Drude formulas discussed in Chapter 3 and 8. We now consider 

 in the special case of a two-band semiconductor. When only two-band 
contributions are retained, the general expression Eq.(44.9) can be reduced to 
 

   

 
Because the intraband dipole operator has only diagonal elements we can rewrite as 
the commutator . Thus, with 

 and  
 

  (45.3) 

 
in agreement with Refs. [2,4]. Finally, a purely interband contribution is found 
 

  (45.4) 

 
In a periodic material,  and, hence, averaging over  shows that only 
the imaginary part of the triple matrix product contributes. The energy denominators 
yield delta-function contributions to the imaginary part of the response precisely at 
resonance and after collecting and relabeling terms 
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  (45.5) 

 
A similar analysis applies to the third order response. Here, even for a two-band 
material, both mixed (iie and iee) and purely interband (eee) terms appear. One finds 
 

 ,  

 ,  

 

 
45.2 Gapped Graphene 

 
We now specialize to gapped graphene, for which analytical results can be found 
provided appropriate simplifications are made. In particular, we expand k-
dependent functions in the vicinity of a Dirac point. If only first order terms are 
retained, this would constitute the normal Dirac approximation. However, non-
vanishing even-order nonlinearities require broken symmetry, which is missing in 
the Dirac model. Consequently, we need to expand to higher order, retaining so-
called trigonal warping terms. 
 
The transition energy and momentum matrix elements of gapped graphene have 
already been discussed in Chapter 17 within the Dirac model. In this case, the band 
energies are ,v cE   with 2 2( )Fv k    , where on-site energies   yield a 
band gap of 2gE  . Going one order higher means that 
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In addition, we need Berry connections 
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The motivation for introducing TW  even though this is a fixed numerical factor is 
that it enables systematic expansions in orders of trigonal warping.  
 
Next, we turn to linear and nonlinear optical response functions. Our aim is to apply 
the above expansions in order to enable analytical integrations over k-space. In turn, 
analytical optical conductivities can be found. Note that we compute conductivities 
rather than polarizabilties because we’re dealing with an infinite two-dimensional 
material. First, we look at the diagonal linear response 
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Without approximations, the integral is over the entire Brillouin zone. However, with 
the expansion introduced above, it means (1) integration over the infinite Dirac cone 
and (2) sum over valley index. To zeroth order in TW , we find 2cvE   and  
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Using 2 2 1

4F cv cvv kdk d E dE    it follows that 
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Here, we introduced the pristine graphene conductivity 2
0 /4e   . We now turn 

to the second order nonlinear response. In the general case of two fields with 
frequencies p  and q , whose sum is pq p q    , the second order response in the 
length gauge consists of inter- and intraband contributions 
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In the symmetrization ( )p q , both positive and negative frequencies should be 
given a positive imaginary broadening. In a clean two-band semiconductor, only the 
intraband response survives and for the diagonal we find 
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We’re interested in the response to first order in TW . Thus, there are contributions 
from both momentum ;( )
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We are consequently allowed to set 2cvE   throughout. This means that valley 
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We again use 2 2 1

4F cv cvv kdk d E dE    and with 3
2 /(4 )ge a E    we find 
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The factor 3

2 0/(4 ) /g ge a E ea E    has a simple interpretation: Since first and 

second order currents vary as   and 2 , respectively, the two contributions are of 
the same order, i.e. 2

2 0   , at a field strength given by gea E . Hence, a field 
of this (huge) magnitude is required to make linear and nonlinear terms of the same 
order. Physically, ea  is the dipole energy of an electron-hole pair separated by the 
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lattice constant. Hence, if gea E , we’re clearly outside the regime of small 
perturbations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure. 45.1. Comparison between full gapped graphene response (dashed curves) and 
trigonal warping approximation (solid curves). 

 
We now specialize to SHG and shift current (SC) responses. After integrations, 
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It is seen that, remarkably, both linear and nonlinear conductivities depend 
essentially only on band gap (the nonlinear ones also depend on a but only as a 
prefactor). We can assess the quality of Eqs.(45.6), (45.7) and (45.8) by comparing to 
full spectra found by integrating numerical over full Brillouin zones without 
approximating energies and matrix elements. This is done in Fig. 45.1, where we 
consider gapped graphene with 2 eVgE   and applying a broadening of 

0.05 eV . Also, for the full model, we use nearest neighbor hopping 3 eV  . 
 
The comparison in the figure demonstrates that the trigonal warping model is an 
excellent approximation in the vicinity of the band gap. It fails near the van Hove 
singularity, i.e. around 2 2n    , with 2n  for linear and shift current 
response and 1n  for SHG. This is not surprising as the van Hove singularity is 
completely absent in the simplified model. 
 
Exercise: Oligo- and polymethineimine 
 
The molecule oligo-methineimine (OMI) and the infinite polymer poly-methineimine 
(PMI) are illustrated in Fig. 45.2. 
 
 
 
 
 
 
 
 
 
 

Figure 45.2. poly-methineimine and its tight-binding representation. 
 
It consists of alternating C and N atoms along the backbone and, in addition, is 
dimerized with alternating single and double bonds. Hence, the tight-binding 
Hamiltonian is of the form 

 . 

 
We take the values ,  and  and the lattice 
constant a = 2Å. All bond lengths are assumed identical and the number of unit cells 
in the chain is N. 
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a) Write a program that computes the nonlinear polarizability per unit cell according 
to Eq.(44.9). If successful, the result becomes as shown in Fig. 45.3. 
 
For the infinite polymer we can use the two-band expression Eq.(45.3). The required 
quantities are 

  

 
b) Compute the nonlinear response for the infinite chain. The result, shown in black 
in Fig. 45.3, agrees nicely with the dipole expression for the longest chain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 45.3. Second-order hyperpolarizability for methineimine finite chains and polymer. 
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 46. Linear and Nonlinear Response of Bulk Crystals 
 
The previous chapters have presented expressions for optical response functions of 
periodic systems. In this chapter, we will reformulate the expressions for optical 
response functions into forms that are suitable for a highly efficient integration 
scheme called the tetrahedron method. We will focus on the velocity gauge second 
order response Eq.(44.12) applied to a periodic system. Below, we also show that this 
result is identical to the length gauge expression, thus demonstrating gauge 
invariance. 
 
When summed over spin and symmetrized over polarization indices (suppressing 
- dependence of all quantities) the velocity gauge nonlinear susceptibility is 
 

 . (46.1) 

 
This can be rewritten 
 

, (46.2) 

 
where v’s and c’s denote valence and conduction bands, respectively, and 
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Here, the l summation is now over all states. In practice, small imaginary parts must 
be added to the remaining denominators to avoid divergences. For numerical 
purposes, it is advantageous to introduce 
 

  (46.3) 

 
such that  
 

  (46.4) 

 
This expression is well suited for numerical evaluation, as we will discuss below. The 
linear response Eq.(15.3) is 
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Hence, the nonlinear expression Eq.(46.4) is obviously quite similar to the linear 
equivalent in the limit of vanishing broadening 
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. By linearizing both  and  inside each tetrahedron, the integral 
Eq.(46.7) is then approximated by the sum over tetrahedra T with volumes  
 

 . (46.8) 

 
We now introduce  and  for  and . The 

weights in Eq.(46.8) depend on  and  for  and . Otherwise, 
 

   

 
It is convenient to use normalized quantities  and  with 
lattice constant a. Evaluating frequencies in energy units, one has 
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Here,  is a universal constant. 
 
To illustrate the power of the tetrahedron method, we investigate the linear and 
nonlinear optical response of zinc-blende GaAs modelled using the empirical 
pseudopotential method, as in App. 3, using 65 G-vectors and including 15 bands. 
The linear response is isotropic  and the non-vanishing nonlinear 
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We use Matlab’s generateMesh to partition the irreducible Brillouin zone into 
tetrahedra. Setting the maximal edge length to 0.075, 0.05, or 0.03 (in units of ) 
leads to 1501, 5328 or 24742 tetrahedra, respectively. The broadening is taken as 20 
meV throughout. We will compare 
 

A: Tetrahedron integration evaluating Eq.(46.8) and (46.9). 
B: Point sampling evaluation of Eq.(46.2) and (46.5) using averages of the four 
corners of the tetrahedra for energy differences and momentum products.  

 

Figure 46.1. Linear response of GaAs computed using tetrahedron integration (left)  
and point sampling (right). 

 
Figure 46.2. Same as Fig. 46.1 but for the second order nonlinear response. 

 
It is readily seen that the tetrahedron method converges much faster than point 
sampling in both the linear and nonlinear cases. Also, it should be noted that, for a 
given number of tetrahedra, point sampling is much slower than tetrahedron 
integration. The tetrahedron method provides the imaginary part of the response in 
the limit of vanishing broadening. In fact, the full (real and imaginary) response 

2 /a
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including broadening  can be obtained from the complex Kramers-Kronig 
transformation [2] 
 

 . (46.10) 

 
Note that  must be known to high frequencies in order to do this integral 
accurately. Here, an upper limit of 20 eV is used. The Kramers-Kronig convolution 
applies to both linear and nonlinear response. In Figs. 46.3 and 46.4, the results for 
zinc-blende GaAs using 5328 tetrahedra and  are illustrated. 
 

Figure 46.3. GaAs susceptibility obtained from the broadened Kramers-Kronig transform. 

Figure 46.4. Same as Fig. 46.3 but for the nonlinear response. 
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Next, we will discuss gauge invariance. An alternative to the above results is 
provided by the length gauge expression  with interband 
contribution 
  

   

 
and mixed intra/interband term 
 

 .  

 
The interband part resembles the velocity gauge case and, similarly, 
 

 ,  

 
where, now, 
 

  . 

 
Using sum rules [3], the generalized derivative is 
 

 

 
The contribution from the first term vanishes in cubic crystals and eventually 
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Applying the simplifications resulting from the respective delta functions, it is 
readily shown that the two gauges produce identical results. For instance, 

 and similarly for the  term. Note that the restriction 

 can be applied to the velocity gauge as well, as 
. 

 
Exercise: Wurtzite crystals 
 
Wurtzite crystals can be handled using tetrahedron integration as well. Results are 
slightly more complicated because the crystal is anistropic. Hence,  

and the distinct nonlinear tensor elements are ,  and . We will start by 
finding the appropriate symmetrized momentum products for integration over the 
irreducible Brillouin zone (IBZ) shown in Fig. A3.1. Suppose we pick a random k-
vector in the IBZ . There are 24 equivalent k-vectors given by 
 
  
 
where ,  and . The original vector is . 

In the following, we arbitrarily pick  and bands  
using GaN parameters from Ref. [4] and 147 G-vectors. A code for Wurtzite band 
structure and eigenvectors is a prerequisite for this exercise. 
 
a) Write a computer program demonstrating that energies at all 24 k-points are 
degenerate. 
 
b) Form the products  and  as well as 

the averages over IBZ’s  and  and show that  
 

  

 
Here, the right-hand sides can be evaluated in any IBZ, i.e. they are invariant under 
the symmetry operations of the crystal. 
 
c) Apply tetrahedron integration to compute all distinct tensor elements of both linear 
and nonlinear response in GaN. The result is shown below. 
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Figure 46.5. Anisotropic dielectric constant of Wurtzite GaN. 

Figure 46.6. Same as Fig. 46.5 but for the nonlinear tensor elements. 
 
The above results have been obtained with a maximal tetrahedron edge of 

 and a small portion near the zone center has been refined using 
 producing a total of 15745 tetrahedra. 
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47. Spatial Dispersion and Nonlocal Response 
 
 
We are perfectly used to temporal dispersion: this simply means that properties of 
matter depend on frequency. In linear optics, for instance,  with a 
frequency-dependent susceptibility . In general, this relation is between Fourier 
components of field and polarization and holds even for a non-monochromatic field. 
Since the right-hand side is a product in frequency-domain, the time-domain 
expression becomes a convolution  
 

 .  

 
This results clearly shows that the present polarization depends on the field at 
previous times . Hence, the response in nonlocal in time. A more unusual 
concept is that of spatial dispersion or, equivalently, spatial nonlocality. In space-
domain, this means that the response at  depends on perturbations at other 
locations . In translationally invariant cases, we may Fourier-transform in space as 
well as time to find a response that depends on wave vector . Thus, in the optical 
case, we find a susceptibility . Without spatial invariance, we get the space-
domain expression . In fact, examples of this kind were considered in 
Chapter 30. 
 
Spatial dispersion effects are most important for the optical response, and we will 
focus on this case. A crucial point is that we cannot apply the dipole approximation, 
as we have done in previous chapters. The reason is that we want to treat response 
and perturbation at separate locations. Hence, the spatial variation of the 
perturbation becomes important and this is precisely what is neglected in the dipole 
approximation. We may choose a gauge, in which the optical perturbation is 
contained in a time- and space-dependent vector potential  while keeping the 
scalar potential  static. The single-electron Hamiltonian is therefore 
 

  

 
and it follows that the perturbation is  
 

 . 

 
The rule for deriving the current density operator is by taking the functional 
derivative   so that  
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 . 

 
The associated charge density operator is simply . In a 

monochromatic electric field , the vector potential is 

 with . Hence, if we write the current as 

, we can then use standard perturbation theory to write the 
nonlocal response in the form   
 
  

 
with the nonlocal conductivity (ignoring broadening) 
 

 . (47.1) 

 
Here,  and we introduced the transition momentum density 
defined by 
 
 . 

 
It follows that  and by averaging  we 

recover the usual conductivity.  
 
47.1 Periodic Systems 
 
We will now specialize to the crystalline case, in which states are of the Bloch form 

 and . Furthermore, the field is taken to 

be a plane wave , where we assume that q is small compared to all non-
vanishing reciprocal lattice vectors. Then, to evaluate the current, we need the 
integral 
 
 . 

 
It is readily seen that the response will vary as the phase factor  times a lattice-
periodic term. If the latter is averaged over a unit cell, we obtain the macroscopic 
response. In terms of the polarization, we then have  with  
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 . (47.2) 

 
Here, the density is . We now apply sum-rule techniques similar 

to Chapter 43. Hence, by expanding the second term and using the Thomas-Reiche-
Kuhn sum rule as derived in Chapter 2 
 

 ,  

 
it can be shown that 
 

 . (47.3) 

 
This expression clearly reduces to the standard one Eq.(15.3) in the limit  and, 
hence, agrees with Chapter 15. The limit is 
 

 .  

 
Next, we consider the second order response. For simplicity, only the fully diagonal 
term  will be studied. We find  with 
 

 (47.4) 

, 

 
where . A significant simplification results if we (1) assume a small 

q and (2) only include the q-dependence in  and , which turn out to be 

dominant in metallic systems. In this case,  vanishes because 
 and we have 
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At low temperatures, using ,  this is further reduced to 
 

 

 
Switching from  to  amounts to replacing  by . Also,  is 

an odd function of . It follows that (1) averaging over  and  and (2) 
interchanging m and n in the last term leads to 
 

  (47.5) 

 
47.2 Spatial Dispersion in Gapped Graphene 
 
We would like to compute the purely x response of gapped graphene, i.e. taking all 
matrix elements as well as  along x. Within the Dirac approximation, the K-valley 
of gapped graphene is characterized by 
 

  

 
Here,  is the polar angle of the wave vector and  the band gap. In the Dirac 
approximation,  so we are left with the nonlocal contribution. We 
assume  and so , whereas  are free in Eq.(47.5). Upon 
integration and multiplying by valley degeneracy, we then find the susceptibility per 
area 
 

 . 

 
In Fig. 47.1 below, we compare this result to a full pseudopotential calculation for 
pristine graphene with . It is seen that the Dirac model captures the low-
frequency contribution whereas the high-energy range disagrees with the full 
calculation. This missing high-energy response is resonant at the interband transition 
and, in fact, practically independent of Fermi level. 
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Figure 47.1. Nonlocal second-harmonic susceptibility of graphene in a full pseudopotential  
model and the Dirac approximation. 

 
Exercise: Semiclassical nonlocal response of graphene 
 
In this exercise, we will adopt the semiclassical Boltzmann description of the optical 
response. The time-dependent case has already been treated in Chapter 39, which 
also included magnetic effects. Here, no magnetic field is present but complications 
arise because we include the spatial variation of the electric field. Thus, the 
Boltzmann equation reads 
 

 .  

 
Here, the last term is present because the distribution depends on position, c.f. 
Chapter 12, and the band velocity is . The field is a plane wave 

 and we write the first-order perturbation as 

 
 
a) Show that 
 

 . 

 
In turn, the conductivity of a two-dimensional system becomes 
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In n-doped graphene, ,  and we will take . Hence, at low 
temperature, remembering valley degeneracy and using polar coordinates 

 

 , 

 
while the off-diagonal components vanish. The angular integrals can be evaluated 
using 
 

  

 
b) Show that  and  with 
 

  

 
By another iteration, the second order conductivity becomes 
 

 . 

We expand to first order in q and find 
 

 . 

c) Show that  for graphene, such that 

 . 

Since , this agrees with the quantum result if we take the limits 
. 
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Appendix 1. Nanostructures 
 
 
Much of these lecture notes presupposes some degree of familiarity with the basic 
properties of nanostructures. It is assumed that electronic states of quantum wells, 
wires and dots in the infinite step barrier and effective mass approximations are 
known. For completeness, however, and to refresh the reader’s memory, we present 
in this appendix a brief overview of some common nanostructures, shown in Fig. 
A1.1. The effective mass approximation is assumed throughout and only simple 
geometries are considered. We consider the quantum states in various dimensions 
and confinement potentials as well as their accompanying density of states. We focus 
on electrons rather than holes since states for the latter follows easily from the former. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A1.1. A selection of nanostructures. Top from left to right: quantum well, 

wire and dot with rectangular confinement. Bottom from left to right: 
quantum wire and dot with circular confinement. 

 
A1.1 Quantum Wells  
 
Quantum wells are 2D structures, for which the bound states are characterized by 
standing waves in the confined directions and running in the other two. Taking the 
confinement to be along z we can write the Hamiltonian in the effective mass 
approximation as 
 

  

with eigenstates 

2 2
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2 e

H V z
m
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  (A1.1) 

 
Here, A the area of the sample viewed head-on. The 2D wave vector is  and the 
standing wave is labeled by the discrete index n. The total energy is then 

 with  determined by the eigenvalue problem 
 

  

 
In the case of an infinite step potential, 
 

  

 
the solution is simply 
 

  

 
A more realistic model is that of a finite step 
 

  

 
where  is the barrier height. Note that we shifted the origin to the center of the 
well. In this case, the bound states are sine/cosine inside the well and exponentially 
decaying outside. Due to the inversion symmetry of the potential, the states are either 
even or odd functions of z. Hence, we can write 
 

  

 
In both cases, the energy is given by . This relation 
provides a link between  and . Note that even or odd does not refer to the value 
of n but simply to the dependence on z. The purpose of writing the exponentials with 
the above constant prefactors is to automatically ensure continuity. Requiring, in 
addition, continuity of the derivative leads to the trancendental equations 
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Moreover, the normalization constant can be written as simple analytical expressions 
 

  

 
As an example, we consider a 300 Å wide GaAs quantum well embedded in AlxGa1-

xAs (x = 0.3) barriers. For electron states in this system, we may take  eV 
and . The squared quantum states are shown in Fig. A1.2, where the 
vertical displacement corresponds to the energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.2. Squared eigenstates of a 300 Å GaAs quantum well. The states are shown 
displaced above zero by their energy. 

 
We want to compute the density of states for various low-dimensional structures. 
These can then be compared to the usual 3D result 

, where the sum is over all bands with 

band edges . For our 2D system, we now calculate the density of states per volume 
with the volume given by . Hence, we write 
 

 , 

 
where the factor of 2 is for spin. Converting to an integral, we find 
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 , 

 

To evaluate the integral, we use  so . In 

turn, 
 

 , (A1.2) 

 
where  is the Heaviside step function. Thus, in 2D the density of states is a series 
of steps of height . This result is illustrated in Fig. A1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.3. Density of states for the 300 Å GaAs quantum well shown in Fig. A1.2. 
 
A1.2 Quantum Wires 
 
One-dimensional systems with the extended direction along z are governed by a 
Hamiltonian  
 

  

 
and have eigenstates (for a wire of length L) 
 

 . (A1.3) 

 
Again, the simplest case is an infinite step potential of the sort 
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The eigenstates in this case are double copies of the corresponding quantum well 
state 
 

  

 
Hence, n should be regarded as a composite index . There exists a related 
model that is a more realistic description of many vapor-grown quantum wires. Such 
wires (Fig. A1.1, bottom) typically have a roughly circular cross section and using 
polar coordinates  a better model for the confinement is 
 

  

 
Hence, the potential has cylindrical symmetry and the eigenstates are separable as 

. For  the radial functions are determined by 
 

  

 
Introducing the radial wave number , the problem turns into 
Bessel’s equation 
 
  
 
with the solution 
 
  
 
in which  is the m’th Bessel function. The boundary condition  means 
that , where  is the n’th zero-point (root) of the m’th Bessel function, 

i.e. . For the 0’th Bessel function these are . 
The full, normalized solution becomes 
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In complete analogy with the 2D case, we find a 1D density of states given by 
 

  

 
Here, A is the cross sectional area of the wire and the sum is over all standing wave 
modes. By introducing again  we find 
 

 , (A1.4) 

 
This result shows that the density of states is a series of inverse square roots and, in 
fact, diverges precisely at the quantization energies. This is illustrated for a 
cylindrical GaAs quantum wire (in vacuum) with R = 100 Å in Fig. A1.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.4. Eigenvalue location and density of states for an R = 100 Å GaAs quantum wire. 
 
 

A1.3 Quantum Dots 
 
If the confinement is present in all spatial direction, the nanostructure is known as a 
quantum dot. The simplest case is again infinite step confinement 
 

  

 
with fully confined bound states 
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But so-called colloidal quantum dots are typically nearly spherical (Fig. A1.1, bottom) 
so that a realistic confinement in spherical coordinates  is  
 

  

 
just like for the cylindrical wire. In this case, the angular part of the eigenstates is a 
spherical harmonic  and the radial part  for  is determined by  
 

  

 
Now, the eigenfunctions are spherical Bessel functions denoted  with roots , i.e. 

. In full, we find 
 

    

 
The 1D density of states is simply a series of delta-function peaks located at the 
discrete energy eigenvalues . 
 
A1.4 Carbon Nanostructures 
 
The previous examples in this Appendix were semiconductor structures confined by 
square barriers and described within the effective mass approximation. Such 
“traditional” nanostructures have recently been supplemented by a host of carbon-
based ones. These are either planar molecules or hollow geometries formed by rolling 
up sheets. The class of hollow carbon nanostructures famously includes Fullerenes 
and nanotubes. If curvature effects can be ignored, the dominant states are formed 
by  - orbitals localized on the different atoms. In a simple picture, only nearest-
neighbor atomic  - orbitals couple, which allows for analytic solutions in many 
cases. Here, we will describe the geometries and properties of C60 Fullerenes and 
carbon nanotubes. 
 
The C60 molecule shown in Fig. A1.5 looks complicated but has many symmetries 
simplifying the geometry. The basic pattern is that of pentagons surrounded by five 
hexagons. The six atoms highlighted in red contain one from the topmost pentagon 
plus an entire additional pentagon. The locations of the remaining 24 atoms in the 
top half ( 0z ) are found by rotations by 2 /5  around the z-axis. Finally, the 30 
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atoms in the lower half follow from reflection through the center, i.e. 61 i ir r 
 

 with 

1...30i  . In units of the sphere radius R divided by 1090 , the coordinates of the 
red atoms can be taken as 
 

Atom: 1 2 3 4 5 6 
x 2 1a  4 1a  4a  4a  6a  6a  
y 0 0 - 5a  5a  - 7a  7a  
z 2a  3a  3 1a  3 1a  1a  1a  

 

  
2 2 2 2
1 2 3 4

2 2 2
5 6 7

50 8 5, 890 32 5, 290 128 5, 535 67 5,

105 5 5, 895 53 5, 145 45 5.

a a a a

a a a

       

     
 

 
All coordinates should be scaled to the ratio between nearest-neighbor distance and 
radius 2 2 2/ (58 18 5)/109 0.4035a R    . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. A1.5. Geometry of the C60 molecule with the 6-atom basic motif shown in red. 
 
The tight-binding model of electronic structure in carbon-based material is described 
in detail in appendix 2. Here, we will apply this model keeping only a single  - 
orbital per atom. Also, only nearest-neighbors are assumed to interact as described 
by the hopping matrix element  . Hence, the full Hamiltonian in the  - orbital 

model is a 60×60 matrix H


. In can, however, be block-diagonalized into ten 6×6 
blocks using the symmetries above. Thus, suppose the full eigenvector is u  with 60 
elements out of which the first six form a separate vector v . We will apply a super-
vector notation 2 3 4 5 1 2 3 4 5( , , , , , , , , , )qp qpu v v v v v w w w w w

           . Here, 0...4q   describes 
rotational phase around the z-axis and p   the parity upon reflection through the 

center. With R̂  designating such reflection, the symmetries then mean that 
  
 2 2

5 5
ˆexp( ) , exp( ) ( )k kv iqk v w p iqk R v  

    . 
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In matrix notation, qp qpu M v 



 

 with 

  2 2
5 5

1 0 0 1
,exp( ) ,..., , exp( ) ,... , 0 0 , 0 0

0 1 1 0

T

qpM I iq I pR p iq R I R 

                       

      

 
. 

 
The ten blocks are then found as 1

qp qp qpH M H M  
   

. The eigenvalues found in this 
way are shown in Fig. A1.6. It is clearly seen that the lowest ones follow the 2 1l  
sequence expected for angular momenta on a sphere: 1, 3, 5, …For 3l , levels split 
because the symmetry in only approximately spherical. Thus, the seven 3l   states 
split into blocks of 3 and 4. Also, the 5l   block splits into blocks of 5, 3, and 3, while 
the 4l   levels remain intact. The splitting can be partially understood from the 
coupling of spherical harmonic by the potential. Thus, the lowest harmonic 
compatible with the symmetry (apart from 00Y ) can be shown to be 
 

 50 55 5, 5
11( , ) ( , ) ( , ) ( , )
7

V Y iY iY          . 

 
This form is shown as the inset in Fig. A1.6. Adding a potential of this form, leads to 
precisely the correct splitting of the 3l   and 5l   blocks, although not the energetic 
ordering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. A1.6. Tight-binding energies of C60 in units of the hopping integral. The approximate angular 

momenta are indicated in red and the perturbing potential is shown in the inset. 
 
An extremely important class of carbon nanostructures is nanotubes. These come in 
a wide range of diameters and chiralities (“twists”) that are essential for their 
properties. Also, individual nanotubes (single-walled carbon nanotubes) as well as 
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multi-walled nanotubes (tubes within tubes) exist. Here, we only describe the former. 
Although this is not how they are actually formed experimentally, it is extremely 
useful to picture them as rolled up strips of graphene, as shown in Fig. A1.7. In the 
figure, the highlighted rectangle forms the nanotube unit cell after being rolled into 
a cylinder. The long-axis of the cylinder is along T



, which is the lattice vector of the 
infinite tube formed by joining unit cells along the cylinder. The perpendicular vector 
C


 is the “roll-up” vector that becomes the circumference after rolling up. Note that 
the atoms located in all four corners of the rectangle are equivalent (belong to the 
same sublattice). Thus, upon rolling, the atoms at the origin and the one displaced by 
C


 will coincide. Hence, atoms located on the sides opposite C


 and T


 are not 
included in the unit cell. All vectors pointing to equivalent atoms can be expressed 
as integer multiples of the graphene lattice vectors 1a  and 2a . Thus, importantly, we 

write 1 2C na ma 


 

 defining the chiral indices n and m. In this way, any particular 
nanotube can be specified by ( , )n m  and, for instance, the one shown in Fig. A1.7 is 
(6,2). A simple geometric exercise demonstrates that 
 

 1 2
2 2 , greatest common divisor(2 ,2 )m n n mT a a g m n n m

g g
 

    


  . 

 
This is the shortest lattice vector perpendicular to C



. It may also the shown that 
C La  and 3 /T La g  with 2 2L n m nm   . Thus, the number of hexagons 

(half the number of atoms) in the unit cell is 22 /N L g  and the angle   between C


 
and the x-axis can be expressed as 

 3( )cos , sin .
2 2
n m n m

L L
 

 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. A1.7. Nanotube unit cell defined as a rectangular piece of graphene  
that is subsequently rolled into a cylinder. 
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The number of atoms in the unit cell easily runs into the hundreds. This means that 
accurate models of the electronic structure are generally rather demanding. 
However, if the curvature of the nanotube is ignored, the model is exceedingly 
simple. Thus, the band structure of a nanotube is exactly the same as for a graphene 
sheet except that additional conditions must be imposed on the allowable k-vectors. 
Rolling up a strip of graphene amounts to identifying the atoms on the right side with 
those on the left side. This corresponds to imposing periodic boundary conditions in 
the C



 direction. As a consequence, the band structure of a nanotube can be described 
by the two-dimensional k vector k



 but with the condition 2k C p 
 

 with p an 

integer. This is technically known as zone folding. We now write T Ck ke qe 


 

 in terms 

of unit vectors along C


 and T


. The T


 component k is continuous and restricted by 
/ /T k T    , while 2 /q p C  is discrete with 1,...,q N . Eventually, this 

means that the nanotube band structure consists of N bands derived from each 
graphene band ( )E k



 as 
 
 ( ) ( ) ( ) ( )( ) ( , ), cos (2 / )sin , sin (2 / )cosp p p p

p x y x yE k E k k k k p L k k p L          . 
 
In all  - orbital carbon models, the lower half of the bands are occupied. Below, we 
illustrate the results for (5,0) and (5,5) nanotubes. It is seen that the former is a 
semiconductor, while the latter is metallic. In fact, all geometries, for which n m  is 
divisible by 3, are metals and the rest are semiconductors. The reason is that 
structures with 0,3,6,...n m   have a k-point hitting the K



-point of the graphene 
band structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. A1.8. Band structures of (5,0) and (5,5) carbon nanotubes calculated  
from zone-folding of the graphene bands. 
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Appendix 2. Tight-Binding Formalism 
 
 
This appendix describes the tight-binding or LCAO (linear combination of atomic 
orbitals) formalism applied to simple molecules and periodic systems. We initially 
study a finite molecule and set up the corresponding finite matrix equation. Then, 
the analysis is extended to infinitely periodic structures in 1, 2, and 3 dimensions. 
Thus, we begin by considering a DFT-type Hamiltonian that can be written as a sum 
of single-electron terms: 
 

 ,  

 
where  is the position of the n’th electron. The idea, now, is to expand the 

eigenstates in a basis of localized “atomic” orbitals . Here, i denotes the 
symmetry of the orbital i.e.  as illustrated in Fig. A2.1 and 

 labels the atoms so that  is the position of the ’th atom (nucleus). 
Correspondingly, we expand the single-electron wave function as follows 
 
 . (A2.1) 

 
We then need the following matrix elements: 
 

  (A2.2) 

 
to set up the matrix equation 
 

 ,  

 
where  is a vector containing the expansion coefficients . As an example, we will 
look at a two-atomic molecule described with an  basis. This very important case 
will be discussed in detail. For each atom we take an s-orbital and the three p-orbitals 

. We may take the vector  joining the two atoms to point along the x-

axis. With this convention, the s and  orbitals belong to the so-called states that 
do not change under a rotation around the molecular bond. In contrast,  
change from plus to minus and back to plus under a full rotation. These states are 
therefore called  orbitals. Collectively, we will refer to  as  and to  as 

. 

1
( )

N

total n
n

H H r


 

nr


( )i r R 




{ , , , , , , ...}x y z xy xzi s p p p d d

 R





,
( ) ( )i i

i
r c r R 



  


 

, ,( ) ( ) ( ) , ( ) ( )i j i j i j i jH r R H r r R S r R r R               
   

    

  0H ES c  




c ic 
3sp

{ , , }x y zp p p R


xp 
 and y zp p

 xp p  and y zp p
p
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Figure A2.1. The lowest atomic orbitals and their symmetry. 
 
First, we need the Hamilton matrix elements for orbitals on the same site, the so-
called on-site matrix elements. We will assume that the atoms are identical. Also, as 
an approximation, the orthogonality between  will allow us to neglect 
on-site term involving orbitals of different symmetry. Finally, differences between 
the radial parts of  and  will be ignored. It follows that the only non-zero on-
site terms are 
 

  (A2.3) 

 
In addition to the on-site elements, we need the Hamilton matrix elements for orbitals 
centred on different atoms. From symmetry considerations we find 
 

  (A2.4) 

 
and similarly for the overlap matrix elements. As an approximation, the potential 
energy is often written as a sum of spherical terms centered at each atom. This leads 
to very simple angular dependencies for the matrix elements. The general results can 
be found in Ref. [1]. We can now set up the Hamilton matrix using the following 
basis: 
 

   

 
which leads to 

, ,  and x y zs p p p

p p

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

s

p i i i i

E s r H r s r s r R H r s r R

E p r H r p r p r R H r p r R

   

   

 

     

 

     

( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) ( ) ( ) , ( ) ( ) ( )

( ) ( ) ( ) 0, ( ) ( ) ( ) 0

ss sp ps sp

pp pp

H s r H r s r R H s r H r p r R H H

H p r H r p r R H p r H r p r R

s r H r p r R p r H r p r R

    

     

  

    

   

   

 

     

 

     

 
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( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )x y z x y zs r p r p r p r s r R p r R p r R p r R   
   

       
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The  matrix looks perfectly similar, apart from the changes that it has 1 everywhere 
in the diagonal and that  should be replaced by  and so on. If we ignore 

overlap, i.e. set  equal to the unit matrix, we find a standard eigenvalue problem. 
Four of the eight eigenvalues are then  each of which is two-fold 
degenerate. These states are clearly  states. The remaining eigenvalues belong to 
the state sub-matrix 
 

  

 
with eigenvalues 
 

 

 
As a numerical example, we can consider the C-C molecule with parameters [2]: 
 

Energy integrals [eV] Overlap integrals 
  

  

  

  

  

 
 and the corresponding eigenvalues 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

s ss sp

p sp pp

p pp

p pp
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E H H
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E H
E H
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H E
H E
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
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 





                             
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
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p ppE E H  
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. 

 
To accommodate a total of eight valence electrons, the four lowest states are all 
doubly occupied. Hence, in usual molecular notation [3] we can write the electronic 
configuration as , where subscripts g and u mean even 
(“gerade”) and odd (“ungerade”) under inversion through the center of the molecule, 
respectively.  
 
If the vector  does not coincide with the x-axis, the formulas are a little more 
complicated. In general, we can write , such that l, m, and n are the 
Cartesian components of the unit vector. We then find that 
 

 (A2.5) 

 
 The remaining elements can be found by symmetry. 
 
A2.1 Tight-Binding in Periodic Structures 
 
We now extend the analysis to infinitely periodic structures characterized by unit 
cells that are repeated periodically in 1, 2, or 3 dimensions. Consider a linear 
combination of identical orbitals: 
 
 , (A2.6)

  
 
where  denotes the location of the unit cell to which the orbital belongs. Note that 

 is also used as a summation index. The Bloch theorem requires that 

. This leads to the condition 

 

   

 
where we have introduced  so that . If, finally, we “relabel”  
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the summation index from  to  in the last line we find  or, 

equivalently, . The constant  can be chosen as , where N is 
the number of unit cells. A sum like Eq.(A2.6) is called a “Bloch sum” because it fulfils 
the Bloch condition. If we have a number of different atomic orbitals in the unit cell 
we can write the eigenstates as linear combinations of Bloch sums, i.e. 
 
  (A2.7) 

 

and we still get a matrix equation , where now  

 
 .  
 
Using the Bloch sum expressions we find 
 

   

 
Hence, due to the periodicity, one of the summations simply cancels the factor N and 
we can write 
 

  (A2.8) 

 
A2.2 One-Dimensional Periodic Structures 
 
As an example of a 1D structure, we consider polyacetylene: 
 

 
 
 
 
 
 

 
Figure A2.2. Atomic structure of the polyacetylene zigzag chain  

composed of carbon atoms (dots) and hydrogen. 
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The rules in Eq.(A2.5) show that a p orbital that is perpendicular to all lattice vectors 
in the structure will be completely decoupled from the other p orbitals as well as s 
orbitals. Thus, for planar structures such as this one,  and  orbitals decouple and 
we will consider only - states. As far as the   orbitals are concerned, polyacetylene 
is just a very long chain of atomic sites and neither the zig-zag geometry nor the H 
atoms play any role. With a single  orbital on each carbon atom and only nearest-
neighbor interactions we then find the energy matrix element 
 
 , 
 
where the Hückel notation  and  has been used. Here, k is the 

wavenumber and d is the length of the unit cell (effective unit cell for  orbitals). If 
nearest-neighbor overlap is neglected, we then immediately find 

 as shown below for  and  within the 
Brillouin zone . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.3. Band structure of – states in polyacetylene. 
 
Now, suppose we had used a unit cell twice as large. We would then have a basis 
containing Bloch sums for the two  orbitals belonging to the two atoms. If we call 
them  and  we would get the matrix elements 
 
   
 
Hence, the energy eigenvalues are 
 
  (A2.9) 
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But now we should remember that the Brillouin zone is twice as small as before: 

. Thus, the band structure is as shown by the dashed lines in Fig. 
A2.4 below. We see that the bands are “folded” into the new Brillouin zone. In actual 
polyacetylene, the structure is “dimerized” so that the bond alternates between short 
and long bonds. If the two energy integrals are denoted  for the long and 
short bond, respectively, we find the matrix elements 
 
   
 
and the eigenvalues 
 
  (A2.10) 
 
For  the result is shown as the solid lines in Fig. A2.4. 
Notice the appearance of a band gap in the dimerized structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.4. Band structure of – states in polyacetylene folded once  
by doubling the unit cell (dashed) and when dimerized (solid). 

 
A2.3 Two-Dimensional Periodic Structures 
 
As our 2D example, we consider graphene consisting of a honeycomb lattice of 
carbon atoms. The lattice and Brillouin zone are illustrated in Fig. A2.5. 
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Figure A2.5. Graphene lattice incl. lattice vectors (left) and  
Brillouin zone incl. reciprocal lattice vectors (right). 

 
The lattice constant of graphene is Å and the elementary lattice vectors are 
 

 . 

 
The two reciprocal lattice vectors are then determined via  to be 
 

 . 

 
As in the case of polyacetylene, graphene is planar and so - states completely 
decouple from the rest. Again, we assume that each - orbital is coupled to its 
nearest neighbors only with energy integral . Also, we form a basis from 

the two Bloch sums given by summing - orbitals belonging to the two atoms A 
(leftmost) and B (rightmost) in the unit cell (so-called sublattices), separately. 
Focusing on an A atom, the vectors reaching to the three nearest B atoms are  
 

 . 

 
The matrix element is then  
 

 ,  

and . Taking the on-site  energy as the zero-point again, . 

It follows the eigenvalues are . The full band structure is shown in Fig. 
A2.6. 
 

2.46a 

1 2
3 3,

2 21 1
a aa a
                

 

2i j ijg a  
 

1 2

1 12 2,
3 33 3

g g
a a
                 

 

zp

zp

ppH  

zp

1 2 3
1/ 3 1/ 3 1/ 3, ,

2 20 1 1
a aR a R R

                              

  

 
3

/ 3 /2 3
12

1
( ), ( ) 2 cos /2i x xik R ik a ik a

y
i

H h k h k e e e k a  



   



 

21 12H H zp 11 22 0H H 

| ( )|E h k 




 470 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A2.6. Band structure of – states in graphene. 

 
A2.4 Three-Dimensional Periodic Structures 
 
Finally, as a 3D example, we will look at the simple cubic crystal: 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure A2.7. Simple cubic lattice. 
 
For an atom in (0,0,0) the six nearest neighbors are (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), 
(0,0,1) and (0,0,-1). We will only include nearest-neighbor interactions. Hence, if we 
call the nearest neighbor distance d, it is clear that 
 
  

Now, if we take again  as our basis set orbitals, we immediately find 
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For  we find 

 , 

and similarly for  and . For  with itself we have 

  

and similarly for  and . Finally, we find that  and similar terms vanish. 
The total matrix then reads as 
 

   

 
If we use the carbon parameters given above we find the band structure shown 
below. Here, the eigenvalues are plotted for the  and  directions with 

 and . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.8. Band structure of the simple cubic lattice. 
References 
 
[1] J.C. Slater and C.F. Koster, Phys. Rev. 94, 1498 (1954). 
[2] R. Saito, G. Dresselhaus, and M.S. Dresselhaus Physical Properties of Carbon 
Nanotubes (Imperial College, London, 1998). 
[3] J.P. Dahl Introduction to the Quantum World of Atoms and Molecules (World 
Scientific, Singapore, 2001). 

 and xs p

 exp( ) exp( ) 2 sin( )sx sp x x sp xH H ik d ik d iH k d    

syH szH xp

 2 cos( ) 2 cos( ) cos( )xx p pp x pp y zH E H k d H k d k d    

yyH zzH xyH

0 0
.

0 0
0 0

ss sx sy sz

sx xx

sy yy

sz zz

H H H H
H H

H
H H
H H







            



M X
: ( / , / ,0)M d d  : ( / ,0,0)X d



 472 

Appendix 3. Pseudopotential Method 
 
 
In this appendix, we present the basic ideas of the pseudopotential method, 
sometimes also known as the “empirical pseudopotential” (EMP) method. One 
advantage of the EMP method is that the actual wave function is available, while in 
tight-binding everything is expressed in an atomic basis, which is not explicitly 
known. The starting point is an expansion of the potential as a Fourier series 

. This is, of course, always possible. The name “pseudopotential” 
refers to the fact that this potential is typically not the actual potential but, rather, a 
smoothed version with the rapid variations near the atomic cores omitted. In Fourier 
space, this amounts to removing Fourier components  with large G. As a 
consequence, the core states formed by the tightly bound core atomic orbitals are 
absent in the band structure, which only contains valence electron bands.  
 
The wave function is expanded similarly to the potential and therefore reads 

, where  is the crystal volume. Normalization is 

such that . In this basis, the matrix elements of the Hamiltonian are 
 

  

 
If spin-orbit interation is included, one should add matrix elements 
 

   

 
Computing inter-band momentum matrix elements is easy in the Fourier basis and 
they are simply given by . 
 
We will now provide some useful details for specific lattices. The idea is the 
following: An atom i is characterized by a certain potential , which can be 
assumed spherically symmetric. Importantly, its Fourier components  are then 

functions of G, the magnitude of , only. Summing over all atoms in the unit cell, 
the total potential is , where  is the position of the i'th atom. 

In turn, this means , as can easily be shown. The lattices considered 
are zinc-blende and wurtzite with Brillouin zones as shown in Fig. A3.1 
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Figure A3.1. Brillouin zones of zinc-blende and wurzite lattices including high symmetry points 
and irreducible zones enclosed by red lines. 

 
 
A3.1 Zinc-Blende Lattice  
 
In the zinc-blende (ZB) case with lattice constant a, there are two atoms per unit cell:  
 

One cation C at  and one anion A at . 
 

This case also includes the diamond lattice, in which A and C atoms are identical. We 
also define symmetric and antisymmetric Fourier coefficients . This 
leads to a total of 
 
 . 
 
The great advantage here is that the angular dependence is only in the structure 
factors . The ZB lattice consists of two inter-penetrating FCC lattices. Hence, 

the reciprocal lattice is a BCC lattice with reciprocal lattice vectors  with 
 either all even or all odd. We can then tabulate the properties of the smallest 

-vectors: 
 

   
(0,0,0) 0 0 

(1,1,1) class 3  
(2,0,0) class 4  
(2,2,0) class 8  
(1,1,3) class 11  
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An important consequence is that one may ignore ,  and  because 
the associated structure factors vanish. Also, we may take  as a choice of 

zero point. Hence, truncating our potential at the -vector set in the table, we are left 
with 
 
 . 
 
Moreover, for the diamond lattice, all antisymmetric coefficients vanish. As two 
classic examples, one has (in Rydberg energy units) [1] 
 

 

 
The respective lattice constants a are 5.43 Å and 5.64 Å. In the examples below, we 
limit the -vectors in the basis set to those, for which , leading to a total of 
137 basis functions. The computed band structures of Si and GaAs (without spin-
orbit) are illustrated below, where bands are shifted such that the highest valence 
band state is at zero. 

 
Figure A3.2. Pseudopotential band structures of Si and zinc-blende GaAs. 

 
A3.2 Wurtzite Lattice  
 
The wurtzite (W) system has four atoms per unit cell and lattice constants a and c:  
 

Cations C at  and  and  

anions A at  and . 
 
This means that the Fourier potential is 
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Note that many references define the wurtzite structure factors with a factor of ¼ 
instead of ½. In the “ideal” case, all nearest-neighbor distances are identical and we 
have  as well as . The wurtzite lattice is formed as two inter-
penetrating HCP lattices and the reciprocal lattice is spanned by the vectors 
 

  

 
Reciprocal lattice vectors  have a magnitude  
 

 . 

 
When defining the Fourier components, it is advantageous to refer to the ideal lattice, 
in which . Listed in increasing order, the 
smallest vectors are 
 
 . 
 
 Among these, both structure factors vanish for , while  for 

 and  for . The remaining Fourier 
components for ZnO and GaN can be found in Refs. [2,3] and the lattice constants a 
are 3.25 Å and 3.189 Å, respectively. Limiting the -vectors to  leads to a 
total of 147 basis functions. 

 
 

Figure A3.3. Pseudopotential band structures of wurtzite ZnO and GaN. 
 
References 
 
[1] M.L. Cohen and T.K. Bergstresser, Phys. Rev. 141, 789 (1966). 
[2] S. Bloom and I. Ortenburger, Phys. Stat. Sol. (b) 58, 561 (1973). 
[3] Y.C. Yeo, T.C. Chong, and M.F. Li, J. Appl. Phys. 83, 1429 (1998). 

/ 8 /3c a  3 /8u

1 1
1 2 33 3

2 2 2( , 1,0), ( ,1,0), (0,0,1).b b b
a a c
  

   
  

1 2 3G kb lb mb  
  

2 2
2 2 2 24 2 2( )

3
G k l kl m

a c
                

2 2 2 2 2 2
224 ( ) 32( ) 9ag G k l kl m    

2 {0,9, 32,36, 41,68,81,96,105,113,128,132,137,144,164,176,...}g 

2 {9,81,105}g  ( ) 0SF G 


2 {144,176}g  ( ) 0AF G 


2 {0, 32,96,128}g 

G


2( ) 3aG  



 476 

Appendix 4. Density Functional Theory 
 
  
Density functional theory (DFT) is arguably the most important method in solid state 
electronic structure calculations. It is also rapidly becoming a standard tool of 
chemistry and as methods and computers evolve, DFT is able to tackle increasingly 
large structures. Thus, DFT is now heavily used in nanostructure simulations as well. 
In this appendix, we will briefly explain the basics of DFT. As a concrete 
implementation, the Perdew-Zunger parameterization of the exchange-correlation 
energy functional will be discussed along with the concepts of self-consistency and 
density mixing. We will then turn to a practical application: the DFT simulation of 
atomic states using a Gaussian basis. 
 
The formal foundation of DFT is the Hohenberg-Kohn theorem, which states that 
there exists a one to one correspondence between a system (specified by the 
arrangement of atomic nuclei) and its spatially varying electron density [1]. The 
potential produced by the nuclei is given by 
 

 , (A4.1) 

 
where atomic units (distances and energies measured in Bohrs and Hartrees, 
respectively) are applied and the sum is over the nuclei having charges  and 

positions . In standard quantum theory, the electrons would be described by a 
many-electron wave function  assuming a total of N electrons and 
suppressing spin. This wave function allows for the calculation of all relevant 
quantities including the electron density 
 
 . 

 
The key insight of Kohn and Sham is that a one can introduce a fictitious system of 
independent electrons having the same density as the true one [2]. For independent 
electrons subject to the Pauli principle only, the exact wave function is a Slater 
determinant 
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for which the electron density is simply 
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 . 

 
By means of the variational principle, the single-electron states  for the ground 
state are found to be eigenstates of the Kohn-Sham Hamiltonian 
 

  , (A4.2) 

 
where  is the nuclear potential given by Eq.(A4.1),  is the Hartree potential 
 

 , (A4.3) 

 
and  is the so-called exchange-correlation potential. This potential is, in fact, 
unknown except for the fact that it must be possible to express it in terms of the 
density  and nothing else. Excellent guesses exist, however. In particular, very 
accurate numerical results based on quantum Monte Carlo techniques have been 
used to parameterize . In the local density approximation (LDA),  is assumed to 
depend on  but not on its gradient or any higher derivatives. This means that 
Monte Carlo data for the homogeneous electron gas are enough to parameterize 
. This can then be done for various degrees of spin polarization, in particular, 
unpolarized and fully polarized cases. Perdew and Zunger [3] adopted the following 
parameterization for the exchange-correlation  energy  and potential  
 

  (A4.4) 

where the density dependence is via the Seitz radius . For the 
unpolarized and fully polarized cases, the parameters are 
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In the situation, where the spin polarization  is intermediate, 
interpolation between the two limits is done via the expression 
 

  (A4.5) 

 
with the limits . The eigenvalues of the Kohn-Sham Hamiltonian 
are denoted . In terms of these, we find a total energy of the entire electronic system 
of 
 

 . (A4.6) 

  
Because the potential depends on the density that, in turn, is computed from the 
wave functions it is necessary to solve using iterations. Thus, an initial guess at the 
density can be used and subsequently updated until convergence.   
 
A4.1 Atomic States  
 
In a spherically symmetric problem, we base the analysis on spherical coordinates 

 and the eigenstates are of the form , where  is a 
spherical harmonic and R contains the radial dependence. However, the electron 
density found by summing squares of these functions is typically not spherically 
symmetric. The reason is that the spherical harmonics lead to a net angular 
dependence of the density unless the atom has a closed valence shell. Consider, as an 
example, the C atom with two electrons in 2p orbitals. If these orbitals are taken to 
be, for instance,  and  the density contributions from these terms 

 will not be symmetric, i.e. independent of angles. On the 
other hand, for a closed shell atom such as Ne, the extra four electrons produce a total 
density without angular dependence because, quite generally, 
 

 . 

 
Thus, we can enforce spherical symmetry by making a “restricted” calculation in the 
sense that we force the occupation of such valence states to be equal. For instance, in 
the case of C, the occupancy of each of the 2p orbitals will be taken to be 2/3 so that 
the total density including s-orbitals becomes 
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For the N atom, the weight of the 2p term would be  and so on. With such a 
restricted calculation, the potential  and thereby the entire 
problem has full spherical symmetry. In fact, it is readily demonstrated that 
 

 . (A4.7) 

 
Accordingly, the radial eigenfunctions are solutions to 
 

 . (A4.8) 

 
In order to find the eigenstate, we expand in a basis so that . A 

Gaussian basis function for this problem is of the form . We will 
restrict the discussion to s, p, and d states, i.e. to l = 0, 1, and 2. To simplify notation, 
we introduce . Primarily, we need the overlap integrals: 
 

 . 

 

Also, we need matrix elements of the kinetic energy  

 

  

 
and Coulomb operator 
 

 . 

 

Optimized values of the exponents  have been tabulated by Koga and coworkers 
[4].  
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A4.2 Example: Carbon Atom  
 
As an important and illustrative example, we will study the carbon atom in detail. 
The electronic configuration is  in the neutral atom and 2p electrons are 
removed and added in the positive and negative ions, respectively. We use the Koga 
Gauss basis [4] but in order to describe delocalized 2p electrons more accurately, we 
add two additional p Gaussians with coefficients  and . Also, 
we use an equidistant radial grid with 2000 points between 0 and 15. As a starting 
point, we may totally ignore electron-electron interaction terms. In this case, the 
eigenstates are easily obtained from the generalized eigenvalue problem described 
above. Using the Gauss basis, we find eigenvalues of 

 Hartrees that should be compared to 
the exact values of . The associated electron 
density is shown as the black curve in Fig. A4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4.1. Radial densities for the C atom in various approximations. 
 
If we next turn on the Hartree term, we need to iterate until convergence. This 
procedure leads to the density plotted in red in Fig. A4.1 and eigenvalues 

. If we finally include the full xc potential, 
we find  and the density shown in blue. 
The total energy calculated using Eq.(A4.5) is then . 
We notice several things. First, ignoring e-e interactions vastly overestimates the 
binding energies and localizes the electrons much too close to the nucleus. On the 
other hand, the Hartree approximation underestimates electron binding and leads to 
a 2p state that is hardly bound at all. Accordingly, the density is too delocalized. 
Finally, the full DFT increases binding and localization of the electrons somewhat 
compared to the Hartree approximation. 
 

2 2 21 2 2s s p

538 10b   519 10b  

1 2 217.9999, 4.4979, 4.4999s s pE E E  
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1 2 29.9469, 0.5008, 0.1992s s pE E E  

37.423 Ha 1018.3 eVtotE  
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We can then go on to looking at positive and negative ions,  and , found by 
removing or adding one 2p electron, respectively. For the two ions we find 

 and . It 
follows that the ionization energy and electron affinity are 11.0 eV and 1.3 eV, 
respectively. Both of these values agree quite accurately with experiments. The 
electron densities of the ions are compared to the neutral case in Fig. A4.2. Note that 
the core region is virtually unaffected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4.2. Radial densities for the neutral and charged C atoms. 
 
A4.3 Density-Functional Based Tight-Binding  
 
In order to explain the idea behind the DFTB approach [5], we now switch to a 
slightly more complicated example: A two-atomic molecule consisting of nuclei 
having charges  and  at positions  and , respectively. In this case, 
the Kohn-Sham Hamiltonian is 
 

 . (A4.9) 

 
We would like to write this expression in terms of Hamiltonians for the individual 
atoms. However, this is clearly not rigorously possible. The physical reason is that 
electrons accumulate in the region between the nuclei because of binding. Hence, the 
Hartree and exchange-correlation terms are different from the simple sum of atomic 
terms. The Hartree potential for an isolated A atom will be denoted  and 
similarly for the xc term and for the B atom. Thus, if we ignored the binding effect, 
the two-atom Hamiltonian would be approximated by 
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 (A4.10) 

 
The extra  term is to avoid double-counting the kinetic energy. Simply 
replacing  by  would be much too inaccurate. However, rather than 
trying to improve , a different approach is followed in DFTB. The effect 
of binding is built into the basis states instead. What we need is pseudo-atomic states 
that effectively shift electron density into the binding region between the nuclei. If 
the distance between the nuclei is about , this is achieved by means of the pseudo-
atomic Hamiltonian 
 

 . (A4.11) 

 
Here, the compression term  serves to move electrons into the bond region. 
The pseudo-atomic eigenstates are easily obtained from the matrix elements 
 

 . 

 
We can now assume that we have computed pseudo-atomic eigenstates for A and B 
pseudo-atoms  and . The overlap matrix elements needed for the tight-
binding parameterization of compounds containing A and B atoms are then  
 

  (A4.12) 

 
As the effect of binding has been put into the eigenstates, we subsequently use these 
states along with the isolated-atoms Hamiltonian to compute the Hamilton matrix 
elements 
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For C and N atoms, the compression radii can be taken as 1.42Å [5] and 1.38Å [6], 
respectively. Thus, to compute the TB parameters, we need matrix elements between 
basis states located on different atoms. In general, these are quite complicated. As a 
relatively simple example, we consider the expression for s-states: 
 

 

 
Here,  and if two different atoms are considered  and  should 
be taken as coefficients of the A and B pseudo-atoms, respectively. In Fig. A4.3, we 
have taken the carbon orbitals as an example. The overlap and Hamilton matrix 
element for the 2s case are what is usually known as  and , see previous 
appendix.  
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4.3. Overlap (top) and Hamilton (bottom) integrals for a pair of C atoms. 

2 2

22

2 2

1/2 221/2 2
3

3/2 5/2

22 1/21/2
332 2

5/2 5/2

3 (1 )
0, ,0 0, , , 0, ,0 0, , ,

4 2 4

3 (1 )3 (1 )
0, ,0 0, , , 0, ,0 ( ) 0, , .

8 8

ij ij

i ijj ij

jij iji

R Ri j ij

ij ij

b Rb R
bR Rb

ij ij

b b R
i j R e i j R e

b b

i r j R e i r R j R e
b b

 


 

 



 

 


  


  

   

    



/( )ij i j i jb b b b   ib jb

ssS  ssH 



 484 

The final aspect of DFTB is the calculation of total energies. As in full DFT, the total 
energy is not just the sum of occupied energy eigenvalues, c.f. Eq. (A4.6). There are 
corrections for double counting etc. but also the Coulomb repulsion between nuclei. 
In DFTB, all these addition terms are collected in a repulsive potential  that 
depends on the inter-atomic distance R. Hence, the total energy is 
 

 .  

 
Two examples of total energies are shown in Fig. A4.4 along with repulsive potentials 
in the inset. Here, CC and NN dimers are considered and the energies are relative to 
those of the dissociated molecules. Hence, the curves actually display the binding 
energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A4.4. Binding energy of CC and NN dimers. The repulsive potentials are shown in the inset. 

 
Note that the potential minima are close to the experimental equilibrium distances. 
Also, the binding energies are found to agree with experiments, in particular, if spin-
polarization effects in the dissociated molecules are taken into account. 
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Appendix 5. Hartree-Fock Theory 
 
 
The full Schrödinger equation for an atom or molecule is easy to state but impossible 
to solve, generally. The problem lies primarily in the electron-electron interaction, 
which implies that the full wave function is a complicated function of all electron 
coordinates . In contrast, the wave function for N independent electrons 
is simply an antisymmetrized product of N single-electron orbitals, i.e. a Slater 
determinant. The idea of the Hartree-Fock approach is to approximate the full wave 
function by a Slater determinant. Applying the variational technique, the orbitals 
used in constructing the Slater determinant are found by minimizing the energy 
expectation value for the ground state. Hence, in this sense, the best possible Slater 
determinant is obtained. In this appendix, we explain how this is achieved in practice 
and illustrate the general principle through some examples.  
 
The full Schrödinger equation for a molecule can be formulated as 
 

  (A5.1) 

 
where  is the Hamiltonian of the i’th electron in the absence of e-e interactions, 
i.e. 
 

 . (A5.2) 

 
Here,  is the potential produced by the nuclei with charges  and positions 
. Note that atomic units (distances and energies measured in Bohrs and Hartrees, 
respectively) are applied. Now, as explained above, we proceed by approximating 
the exact wave function by a Slater determinant 
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More precisely, the general case is that a linear combination of a few distinct Slater 
determinants is applied. Hence, we will need matrix elements between  and a 
separate slater determinant  constructed by replacing all the orbitals  above by 
new ones . It may then happen, of course, that  for certain i but generally 
some of the orbitals will differ. Using the antisymmetry and the orthogonality 
between orbitals it can then be shown that 
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Here, . Similarly, for the e-e term  
 

 
 
Here, we introduced the compact notation  with 
 

  

 
The J and K integrals are known as Coulomb and exchange integrals, respectively. It 
follows that the energy expectation value for a single slater determinant is 
 
 . (A5.3) 

 
Minimizing this expression with respect to the orbitals  is a classic exercise in 
variational calculus. Eventually, it is found that the orbitals satisfy the Hartree-Fock 
equations , where  is the Fock operator 
 

  , (A5.4) 
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and  is the exchange operator defined by its action on a state 
 

 .  

 
It is noted that the Hartree and exchange contributions from the i’th orbital to the 
equation for the same orbital cancel and can therefore be left out. 
 
So far, we have completely suppressed the spin degrees of freedom. In fact, all 
integrals over space should be supplemented by additional “integrals” over spin. 
This is of no consequence for the Coulomb integrals and Hartree potential as orbitals 
only appear in absolute squares. However, the exchange operator terms and 
exchange integrals are only non-zero if orbitals  and  have identical spins. 

 
A5.1 Two-Electron Systems 
 
For systems having only two electrons, such as the He atom, the ground state is a 
space symmetric spin singlet, i.e. the two orbitals constructing the Slater determinant 
have identical spatial parts but opposite spin parts. We write these as  and  
with the understanding that  means  and  means . In 

compressed notation, the ground state Slater determinant is then written 
. The Hartree-Fock equations for the two orbitals are identical and given by 
 

 . (A5.5) 

 
This Hartree potential, in fact, only includes the effect of one electron because of the 
cancellation between Hartree and exchange self-interaction terms discussed above. 
The total energy, in turn, is given by 
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Next, we turn to the excited states. If only one of the ground state orbitals is replaced 
by an excited one, we find four options, i.e. 
 
 . 
 
These four states actually form one triplet T (with three members of equal energy) 
and one singlet S given by 
 

 . 

 
The three triplet components correspond to the three possible spin projections 1, 0, -
1 of a state with a total spin 1 while the singlet is a spin 0 state. Using the matrix 
element rules above, it is found that the energies are given by 
 
 . 
 
Expanding the Koga basis with two diffuse Gaussians  to accurately 
describe the 2s state in helium, one find in this case  and . 
Relative to the ground state, we then find energy differences of  
and . The corresponding experimental values are 19.82 eV and 
20.62 eV, respectively. The absolute energies found experimentally are 
, , and . In a similar manner, excited states of the types 

 and  can be obtained. To this end, we need integrals 
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A5.2 Configuration Interaction 
 
It is instructive to see how these excited states emerge from a more general matrix 
problem. To this end, we will try expanding the wave function in a large basis 
 
 . 

Hence, we need the matrix elements 
 
 . 
 
We first consider the matrix element coupling the ground state to a singly excited 
state, i.e. 
 
 . 
 
However, if we consider the Hartree-Fock equation Eq.(A1.5) and multiply from the 
left by  we immediately see that this matrix element vanishes. This is a particular 
instance of a completely general theorem (Brillouin’s theorem) that matrix elements 
between the ground state and singly excited configurations vanish. If we limit 
ourselves to the basis states  we find the 
configuration interaction matrix 
 

 . 

 
We see that if the last column and row are erased we get precisely the ground state 
and singlet and triplet excited states as eigenstates, realizing that  and 

. If, however, the full matrix is retained we find corrections to both the 
ground and excited states. In this simple example, we only considered the two lowest 
orbitals. A much better result is found if we use all 8 orbitals found above. In this 
manner, we find , , and .  
 
If, eventually, the basis is extended to include p-type orbitals as well, the agreement 
with experiments becomes really impressive. In fact, the s-state cannot couple to an 
arbitrary p-state. The reason is that the ground state is a singlet with vanishing total 
angular momentum and, naturally, vanishing projection. In the standard  
notation it is of the type . Now forming states from two p-orbital leads to 9 
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combination in total. A general un-coupled member of this basis is 
, which we will denote  for brevity. In the coupled 

representation, we find a D, a P and an S term. The D term includes the states 
 while the P and S terms are  and . Among 

these nine states, only the last couples to the ground state. We find it using the usual 
procedure of stepping down from a known state (here ) and requiring 

orthogonality. It then follows that . In terms 

of polar angles this state is . 
For this particular state, we need the integral 
 

  

 
Thus, full configuration interaction using the lowest 8 s- and p-orbitals leads to 

, , and . 
 
A5.3 Highly Excited States 
 
While the Gauss basis is excellent for localized states such as the ground state, it is 
not ideal for delocalized states such as highly excited ones or ionized states. 
Moreover, the very low number of basis states means that only a few states can be 
obtained from the Gauss basis. A better approach for delocalized states is to imagine 
the system embedded in a spherical quantum well with infinite barriers and use the 
quantum well eigenfunctions or similar functions to construct a basis. The states are 
taken to be 
 

  

 
Here, l is the angular momentum quantum number. The overlaps for s, p, and d states 
are (with the notation ) 
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And for the Coulomb potential (with Ci as the cosine integral) 
 

 

 
As an application, we show below the density of singlet p-type states  for a He 
atom calculated using the basis above with 600 members and R = 1000 Bohr. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A5.1. Density of p-type states in He using a spherical well basis with 600 members.  
The plot is broadened by 1 mHa. 
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Appendix 6. Jellium Model of Nanostructures 
 
 
The problem of finding electron eigenstates in nanostructures can be daunting if 
electron-electron (e-e) interactions cannot be ignored. In the previous appendices we 
saw some approaches to the problem and applied these to atomic systems. In a 
metallic nanostructure, e-e interactions are expected to be important because of the 
high electron density. On the other hand, many electron states are expected to be 
highly delocalized in a good metal. Hence, electrons in such states don’t see the 
details of the attractive nuclear potentials but, rather, a smoothed out version. This is 
the background for the so-called jellium model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A6.1. An atomistic ion charge distribution and the jellium approximation. 
 
We may think of valence electrons as moving in an effective potential created by the 
positive ion cores. If the actual distribution of positive charges determined by the 
crystal lattice is replaced by a homogeneous positive charge density we find the 
picture in Fig. A6.1. In the jellium approach, this approximation is made for the ion 
charges and the electron charge is determined from the self-consistent quantum 
problem of electrons moving in the approximate potential. Hence, e-e interactions are 
retained in the model. If each atom supplies  valence electrons, the homogeneous, 
positive jellium charge density is given by , where  is the atomic 
density, i.e. the number of atoms per volume. If exchange and correlation is included, 
electrons are governed by a Schrödinger equation  
 

 , (A6.1) 

 
where  is the total Coulomb potential. We can now introduce the characteristic 
function of our nanostructure defined by 
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In this manner, the total charge density is , where  is the 
electron charge density. In turn, the Coulomb potential is derived from the Poisson 
equation . The sign implies that V is the potential acting on 
negatively charged electrons. Below, we look in detail at the potential for some 
typical nanostructures in various dimensions: the sphere, the cylinder, and the slab. 
 
Before looking into various low-dimensional applications, we briefly recall the 
results for a bulk material in the jellium picture. In this case, the electron density n is 
homogeneous and equal to  everywhere to ensure neutrality. Thus, all classical 
Coulomb interactions cancel. The kinetic and exchange energies, however, are non-
zero and the values per volume  are given by the expressions [1] 
 

 . (A6.2) 

 
The exchange potential in DFT is simply the density-derivative of the energy, i.e. 

 in agreement with Appendix 3. 
 
A6.1 Low-Dimensional Poisson Equations 
 
For 0-dimensional spheres, symmetry dictates that charges and potential are radially 
symmetric, i.e. functions of r alone. Thus, the Poisson equation reads 
 

 . 

 
Integrating twice immediately shows that 
 

  

 
The innermost integral may be viewed as a function of  and upon integration by 
parts we find 
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We can now evaluate the ion part of the potential . If the radius of the sphere 
is R we have 
 

  

 
Thus, 
 

  

 
For 1-dimensional wires, the analysis is almost completely identical. All quantities 
now only depend on the radial coordinate r perpendicular to the wire axis. However, 
the starting point is a slightly different Poisson equation 
 

 . 

 
After a few manipulations including, again, integration by parts we then find 
 

  

 
For a wire of radius R, it follows that the ion part is 
 

  

 
Finally, we look at the 2D slab or quantum well geometry. Taking the quantization 
dimension to be the z-axis we find 
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Hence, integrating this expression twice and using the integration by parts trick again 
leads to 
 

  

 
In this case, this ion charge can be written as  for a slab of width d. We 
then find 
 

  

 
This asymmetric potential arises because the ion-system is not neutral. The total 
potential including both electrons and ions will be symmetrical in z, however. The 
ion potentials of 0D and 1D structures are illustrated in Fig. A6.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A6.2. Ion Coulomb potentials of 0D and 1D cases in normalized units. 

 
For the 0D potential the limiting value far from the particle is  while the 1D 
potential keeps increasing logarithmically. 
 
A6.2 Jellium Model of Nanowires 
 
We now go into some detail in the nanowire case. In particular, we wish to see how 
quantities such as work function and surface energy vary with wire radius and 
approach the bulk values for large wires. The jellium approach clearly applies better 
to free electron like metals than e.g. transition metals. For this reason we will consider 
Na wires with a bulk charge density of . The cylindrical 
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symmetry of the problem means that we adopt cylindrical coordinates  and 
that eigenstates for a wire of length L are of the form 
 

 . 

 
Here, k is the continuous k-vector, m is the angular quantum number and n labels the 
radial eigenstates for a particular m. If the corresponding eigenvalues are denoted 

, integration of the density of states Eq. (A1.2) shows that the (zero temperature) 
density is 
 

 . (A6.3) 

  
The radial functions can be obtained in many different ways and the results in the 
present appendix were found by expanding in a Gauss-Laguerre basis and using the 
accompanying quadrature for numerical integration [2]. We note that in addition to 
the Coulomb potential above, we also include the exchange term 

. Finally, we add the so-called stabilized jellium correction [3], 

which amounts to the term . Similarly to 

standard DFT, the jellium approach requires an iterative procedure in order to obtain 
self-consistency. In general, convergence can be difficult to achieve and “mixing” 
schemes will be required during iteration. As an example, the final converged 
electron density and potential profiles are shown in Fig. A6.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A6.3. Converged total potential and density profiles for an R = 10 Bohr Na nanowire. 
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During the iterations the Fermi level must be continuously updated to ensure a 

correct integrated electron density, i.e. . Eventually, the 

converged Fermi level  can be determined in this manner. In Fig. A6.4, the 
dependence of on nanowire radius is illustrated. It is seen to vary in a series of 
peaks and troughs. A peak appears whenever a new subband (n,m) becomes 
occupied, i.e. when  moves below . For large enough wires, the Fermi level 
converges towards something like -2.2 eV. The work function in this limit is therefore 
2.2 eV and compares reasonably to the experimental value of bulk Na of 2.35 eV. In 
addition, the surface energy  can be obtained. This quantity is obtained by looking 
at the difference between the energies of the actual nanowire and a sample with the 
same shape but energy density given by the bulk expression. Writing this difference 
as a coefficient  times area  we eventually find 
 

 , 

 
where  is 
 

 . 

 
The total nanowire energy is mainly determined by the sum of occupied energy levels 

 that follows from an integral over the density of states 
 

  

 
However, as always in DFT, we need to make corrections for double counting of 
Coulomb and exchange terms. The final R- dependence is shown in Fig. A6.4 as the 
green curve. We see that the bulk limit is around . Experimentally, the 
values is more like  . Hence, forming a surface is predicted to cost 
energy, which is clearly correct since otherwise bulk Na would spontaneously 
disintegrate into nanoparticles. 
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Figure A6.4. Fermi level and surface energy versus Na nanowire radius. 
 
Particularly low values of the surface energy are found around R = 4, 7, and 9.5 Bohr 
and these “magic” radii are expected to correspond to relatively stable nanowire 
geometries. Similar effects are seen for nanospheres and have been verified 
experimentally. 
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Appendix 7. Spin-Orbit Interaction 
 
 
The spin-orbit (SO) interaction is an important relativistic correction to the 
Schrödinger equation that leads to several notable consequences. Primarily, the SO 
interaction splits degenerate levels and is therefore observed in e.g. absorption 
spectra. Secondly, the interaction mixes levels of definite spin, which means that 
selection rules are relaxed. One effect of this is the phenomenon of phosphorescence 
discussed in Chapter 33. The correction to the Schrödinger equation can be derived 
heuristically based on arguments treating the electron as affected by an effective 
magnetic field produced by the nucleus. The trick is to choose a coordinate system, 
in which the electron is stationary and the nucleus orbits the electron. Unfortunately, 
this approach does not properly treat relativistic requirements for the change in 
observation point and leads to a result that is precisely twice as large as the correct 
one. For this reason, we will use the full relativistic Dirac equation as our starting 
point and show how the SO term emerges in the non-relativistic limit.  
 
The time-independent Dirac equation for single electron in the absence of magnetic 
fields can be written as 
 

 . (A7.1) 

 
Here, V is electrostatic potential,  is the vector of Pauli spin matrices, and E is the 
usual (non-relativistic) energy that does not include the rest mass term . Also, 
both components of the wave function are, in fact, two-component “spinors” 
themselves. The lower of these equations can be solved to give 
 

 . 

The last approximation relies on the rest mass energy being much larger than the 
other terms. When substituted back into the upper equation we find 
 

 . (A7.2) 

 
The spin matrices have the following multiplication properties:  and 

 as well as cyclic permutations. Using these, it can then be shown 

for general spatial operators  and  that . Hence 
, and we immediately see that ignoring the second term in the braces leads 

to usual Schrödinger equation. It is clear that, in general, several corrections are 
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found. The relevant term for us is . The first p factor operates on the V as 
well as on the wave function. We judiciously select the first term, i.e. , 
where the parenthesis is meant to indicate that the operator only acts inside. Since 

, with  the electric field, this is . 
The second term leads to the interaction 
 

  

 
This is the celebrated spin-orbit interaction. For a spherically symmetric potential we 
have  and so 
 

 . 

 
Also, in a spherically symmetric systems, the atomic eigenstates are of the form 

, where  is the spin part. It is readily demonstrated that 
among all the corrections stemming from Eq.(A7.2), only  mixes states of 
different angular momentum projections m and . Without mixing, these are 
degenerate and therefore  has important consequences for the corrected atomic 
energy levels. Remembering that , the matrix elements are given by 
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The  operator only couples states of identical angular momentum l. Hence, matrix 
elements are only non-vanishing for p states coupling to other p states etc. and 
obviously s states are unaffected. Their calculation can be carried out in various ways 
but a direct one involves introducing and writing 
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Similarly for d-d coupling with ordering  

 

 

 
The eigenvalues of  are  (degeneracy 2) and  (degeneracy 4). For  
they are  (degeneracy 4) and  (degeneracy 6). The general pattern for angular 
momentum l is a set of eigenvalues  and . Hence, the spin-orbit 
splitting is . In the hydrogen-like case with , we find 
 

 . 

 
We saw above that only the  case is relevant. If, in addition, we take  we 
find 
 

 . 

 
In the general case, the Kohn-Sham potential of density functional theory can be 
applied to estimate the spin-orbit coupling. As an example, for Al we find 

 corresponding to a splitting of  while the 
experimental splitting is 13.9 meV. Similarly for the d-electron case of Sc we calculate 

 meaning a splitting of  with the experiment at 21 
meV. We therefore see that our values seem to systematically overestimate the true 
ones. 

2 2 2 23
, , , ,xy yz zx x y z r

Y Y Y Y Y
 

†

0 1 0 00 0 0 2 0
1 0 0 30 0 0 0

0 0 0 0 , .0 0 1 3
2 0 0 0 0 0 1 0 0
0 0 0 0 0 0 3 3 0 0

ii
i ii

iH H H H i
i i

i

   

                                             

   

ppH  /2 ddH
3 /2 

( 1)/2l  /2l
1
2( )SOE l  2

0/4V Ze r

2 2

2 2
0 0

1( ) ( )
8 nl n l

Ze R r R r dr
m c r






  


l l n n

2 2 4 2
2

2 2 3
0 0

1( )
8 ( 1)(2 1)nl nl

Ze ZR r dr Ha
m c r n l l l








 
 



2 11.5 meVp  17.1 meVSOE 

3 12.5 meVd  31.3 meVSOE 



 502 

Appendix 8. Fermi’s Golden Rule and Scattering Processes 
 
 
In this appendix, we tie the connection to some other important formulations and 
results from perturbation theory. Primarily, we will derive Fermi’s golden rule as the 
transition probability from an initial state into various final states. Then, this result 
will be applied to compute the cross section for electrons scattering off a screened 
Coulomb potential. This leads, in the limit on vanishing screening, to the Rutherford 
scattering cross section. As a starting point, we consider the perturbation results from 
Chapter 1 in the case, where only a particular initial state  is occupied before the 

perturbation, i.e. . To first order, we have for a particular final state  
 

 

   
Integrating this result and introducing broadening then determines the correction to 
the expansion coefficient , c.f. Eq.(1.7) 
 

   

 
We will be interested in computing the probability  that the final state is 
occupied due to the perturbation. The rate, at which the probability changes, gives 
the scattering rate from initial to final state, i.e. . 

Combining the results above and assuming  we find 
 

   

  
We now assume a time-independent  perturbation and take the limit  
to find 
 

   

 
This is the standard form of Fermi’s golden rule. We wish to apply this result to 
scattering of electrons from a static potential . If both initial and final states 
are assumed to be free-electron states  we find 

 with  the Fourier transform of the potential. We now 
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consider a flux I of electrons moving with initial speed , so that , where n is 
the density that, considering just a single electron, equals . The cross section 

 for scattering out of the initial state is defined by stating that the probability rate 
 summed over all final states equals  for each electron. Hence,   

 

 . 

 
The sum over final states is actually a sum over wave vectors and applying the 
standard technique 
 

 . (A8.1) 

 
For a start, we will consider central potentials of the form . Their Fourier 

transform only depends on the magnitude of  so we write  with 
 

 . 

 
Due to the energy conserving delta-function in Eq.(A8.1), the initial and final wave 
vectors have the same magnitude  and therefore , where  is the 
scattering angle, i.e. the angle between initial and final directions. Further 
simplification follows from the facts that  and 
. Finally,  with  an infinitesimal solid angle element around the 
scattering direction. Defining the differential cross section as  we then find 
 

 . (A8.2) 

 
For the case of a screened Coulomb potential of the Yukawa form  
one then finds . Hence, in the un-screened case taking 
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Appendix 9. Response Theory and Green’s Functions 
 
 
In this appendix, we turn to a seemingly rather technical subject: Green’s functions. 
However, Green’s functions will provide an important link between some of the 
separate results obtained so far. In addition, using Green’s functions can in certain 
cases lead to great simplicity in the evaluation of responses. We consider a system 
with an unperturbed Hamiltonian  with eigenstates  defined by . 
The corresponding Green’s functions is 
 
  (A9.1) 
 
Since  the Green’s function can be written in the equivalent manner 
 

 . (A9.2) 

 
In fact, the Green’s function itself is intimately related to an important quantity, viz. 
the density of states . To see this, we note that 
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From the definition of  (including spin summation) we then see that 
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That is, the density of states is essentially the imaginary part of the Green’s function. 
The general principle can be illustrated by considering gapped graphene with the 
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 . 

 
In this case, the total Hamiltonian  is diagonal in the wave 

vector index  and so taking the trace means (i) summing over  and (ii) summing 

over the diagonal matrix elements in . Thus, 
 

 . 

 
Note that for this 2D material we replace volume by area A. Introducing 

 we see that 
 

  

 
and so 
 

  

 
with the limiting behavior 
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The integral is easily performed using  and finally 
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in agreement with Chapter 17.  
 
A9.1 Response Functions 
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Here,  in general has an imaginary part. By simple relabeling, we can write this as 
 

 . 

 
 
 
 
 
 
 
 
 
 
 

 
Figure A9.1. Integration contour for response functions. 

 
We now consider a range of eigenvalues  and introduce the integration 
contour defined in Fig. A9.1. We will require that all points  lie enclosed by the 
contour but that  are not. This allows us to write 
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 . 

 
As an important example, we will look at the electrical conductivity , which 
describes the current density induced by an electric field. Here, the observable is 

 and the perturbation is given by . In total, 
 

 , 

 
where spin has already been counted. For graphene, the sheet conductivity (replacing 
volume by area) after conversion of the q – part of the trace to an integral and addition 
of valley degeneracy is given by 
 

 . 

 

As shown in Chapter 17, the matrix representation of  is  and using 

standard contour integration it follows that 
 

 

 
Converting again to an energy integral similarly to the density of states we then find 
 

  

 
in agreement with Eq.(17.10). 
 
For calculations of the excitonic response, the Greens’ function approach is even more 
direct, at least in principle. To appreciate this fact, we consider the imaginary part of 
the many-body susceptibility Eq.(18.1)  
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 Here,  is the ground state and  is an eigenstate of the exciton Hamiltonian 
 in which  is written in a basis of single excitations, i.e. 

. We now introduce the many-body Green’s function 

 so that 
 

  

 
with the understanding that  should be taken to zero after evaluation. In fact, this 
result can be formulated even more briefly by introducing 
 
 . 

 
Hence, 
 

 . 

 
Diagonal matrix elements of the Green’s function such as  can be 
computed very efficiently, as we now demonstrate. 
 
Any matrix element  can be generated via the Lanczos-Haydock routine 
[1]. Here, we tri-diagonalize the Hamiltonian approximately by setting 

 and generating 
 
 

. 
 
In this rotated basis, the tri-diagonal Hamiltonian  is 
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 . (A9.5) 

 
Here, the sign of the square root has been chosen in accordance with Chapter 7. This 
method prides a very simple way of computing the excitonic response without 
diagonalizing large matrices. 
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Appendix 10. Stationary Perturbation Theory 
 
 
In this appendix, we will study the effect of static perturbations on the eigenstates. In 
several chapters, we have investigated time-dependent perturbations by solving the 
time-dependent Schrödinger equation. In the presence of a static perturbation, 
however, one still has a set of stationary eigenstates and, hence, we turn to the time-
independent Schrödinger equation. Typically, we encounter scenarios such as atoms 
exposed to static electric or magnetic fields. In this case, the zero’th order 
Hamiltonian can usually be regarded as completely dominating over the 
perturbations. It follows that the true eigenstates are close to the unperturbed ones 
and so are the energies. An exception is the case of degenerate unperturbed states 
that may be split by the perturbation. We shall study both standard and degenerate 
perturbation theory below. 
 
We assume, as usual, that the total Hamiltonian can be written as , 
where  is the perturbation. Hence, were trying to solve 
 
 . 

 
Next, similarly to the time-dependent case, we indicate by a superscript p the order 
of the perturbation. Thus,   and , 
where the p’th term is proportional to the p’th power of the perturbation. When 
inserted in the eigenvalue problem, we can then collect terms of identical order and 
find 
 

  (A10.1) 

 
By solving these equations order by order, we can systematically include the effects 
of the perturbation on wave functions and energies. We need to supplement with the 
normalization requirement, which reads 
 
  
 
Here, we assumed orthonormalized unperturbed states . It follows 
that the normalization corrections at each order must vanish. We now exploit the fact 
that the unperturbed states form a complete set, so that we can write 
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. If we insert this expansion into the first-order equation in 
Eq.(A10.1), we immediately find  
 
 .  

 
Now, if we multiply from the left with  and use orthonormality, we find 

. Alternatively, we multiply with  with . In this case, 

one readily sees that provided  one has . This 

does not determine  but the normalization requirement evaluated up to first order 

quickly leads to  since . Hence, the first-order perturbation 
becomes 
 

 . (A10.2) 

 
In turn, multiplying the second order equation in Eq.(A10.1) by  and using 

, we find  or 
 

 . (A10.3) 

 
One may note that, for the ground state, we have  irrespective of the form of 
the perturbation. 
 
In many cases, such as the Stark effect in hydrogen studied below, all odd corrections 
to the energy vanish. In the Stark case, this is because the direction of the perturbing 
electric field plays no role for the energy. We will find the fourth order correction for 
this situation using the notation ,  and 

. Importantly, interchanging p and q just amounts to a complex 

conjugation. Also,  and . We then find from Eq.(A10.1) 
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Conjugating the last relation and combining all of these, we eventually find 

. It is seen that, in fact, only second-order information 
is required to compute the fourth-order energy correction. A similar calculation 
shows that . 
 
A10.1 Stark Effect 
 
A classic application of perturbation theory is the Stark effect, i.e. the change in 
energy due to a constant electric field . In particular, the static polarizability 
associated with the second-order energy can be calculated. Hence, in this case the 
perturbation is . We will assume that the system is symmetric in the z-
direction so that the unperturbed states have definite z-parity. Then, it is readily 
shown that  so that the first-order energy vanishes. This is only 
valid for non-degenerate states, however, as we will demonstrate below. For these 
states, the first correction is of second order and, in terms of the oscillator strength 

, one may write 

 

 , (A10.4) 

 
where  is the polarizability of the n’th state. This result agrees with the static limit 
of the frequency-dependent result in Chapter 2. For the hydrogen ground state, using 
atomic units and oscillator strengths from Chapter 30, one finds contributions from 
transitions to bound and free states, i.e.  with 
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1Ĥ e z 

(0) (0)
1

ˆ 0n nH  

2

22 (0) (0) (0) (0)( )em
mn m n m ng z E E  



2 2
(2) 2

(0) (0) 2
1 ,
2 ( )

mn
n n n

m ne m n

geE
m E E

 


 




n

Bound Free
n n n   

8 5 2 4
1Bound

1 12 2 2 4
2

2 ( 1)4 ,
(1 ) 3( 1)

n
np s

s np s n
n

g n ng
n n




 



 

 

  
8 1

Free
1 2 2 2 4

0

2 tan4 ( ) , ( ) exp 4 / 1 exp 2 / .
(1 ) 3(1 )s

k kg k dk g k k
k k k

 
               


Bound
1 3.663s  Free

1 0.837s  Bound Free
1 1 9 /2s s  



 513 

The perturbation of the hydrogen ground state is an excellent example of non-
degenerate perturbation theory. If, however, we consider the  
manifold, we need to worry about degeneracies. One can show that 

 while all other matrix elements within this block vanish. We 

now attempt to find perturbed states in the  block by writing a general state as 
. With the full Hamiltonian, this leads to the matrix eigenvalue 

problem 
 

  

 
Generally, the eigenvalues of this matrix would be 

. However, precisely because 
, diagonalization of the matrix produces the eigenstates 

 

 . 

 
Hence, in this case, the correction is actually linear in the electric field. 
 
A10.2 Zeeman Effect 
 
A second classic application is the Zeeman effect describing the energy change in 
response to a constant magnetic field . In atomic units taking the magnetic 
field in units of , the perturbation with  reads . 
We will apply perturbation theory to compute the magnetic corrections. The first 
(paramagnetic) term is very simple for a spherical system with quantum number nlm 
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Hence, at first order, a particular state is only coupled to states shifted by  in 
angular momentum. This means, in fact, that the five lowest states are uncoupled. 
We then find the energy including first-order Zeeman shifts for the hydrogen states 
 

  

 
For the  block with , we have a three-fold degeneracy and a matrix 
given by 
 

 . 

 
The coupling between s and d states then leads to the eigenstates 
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Appendix 11. Dalgarno-Lewis Perturbation Theory 
 
 

In this appendix, we introduce the Dalgarno-Lewis perturbation technique [1] for the 
calculation of static polarizabilities of centrosymmetric systems. We start by 
analyzing one-dimensional systems and then extend to higher dimensions. The 
starting point is the perturbed problem in a static field is then 
 

 .  

 
The normalized solution to the  problem is . We note that since 
the unperturbed system is inversion symmetric, the energy is of the form 

 even if the wave function contains all orders 
 Using the fact that there is no first order energy 

correction, the first order wave function satisfies the inhomogeneous Dalgarno-Lewis 
equation 
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A clever trick for solving this problem is to write , which means that 
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So, multiplying by  and integrating leads to the second order energy 
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Using partial integration and Eq.(A11.2), this is also 
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method is connected to logarithmic perturbation theory [2]. There, one introduces 
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The first order version is , which is identical to Eq.(A11.1). 
 
A11.1 One-dimensional Examples 
 
We now illustrate the general approach by applying it to a number of representative 
cases. 
 
Harmonic Oscillator 
 
In this case,  and . Then,  is 

found. In turn, the second order energy becomes  and the 

polarizability is . 
 

0 ( )x

2
2 0 1 0 ( ) ( )E x x f x xdx  





   

2 2 2
2 0 0

1( ) ( ) ( )[ ( )]
2

x

E x x dx f x dx x f x dx 
 

  

 
       
  

  

 21
2 2E  

( ) ( )/ ( )x x x   2/     

0 1 0 1 1
0 1 2

0 0 0 0

( ) ( ) ( ) ( ) ( )( ) , ( ) ( )
( ) ( ) ( ) ( )
x x x x xdx x f x
x x x dx x

    
 

   

            

2 2
2 0 1

1 ( )[ ( )]
2

E x x dx 




 

( ) ( )/ ( )x x x  

 21 ( )
2

V x x E     

1 0 12 2 0x     

2 21
2( )V x x  1/4 2

0 2( ) exp( )x x 
   ( ) /f x x 

2 21
2 2 /E  

21/ 



 517 

 
Dirac-  potential 
 
Here,  and . Then, 

From this result, we compute the second order energy correction  

leading to a polarizability of .  
 
Square well 
 
We take the potential to vanish in the range  and be infinite otherwise. 
Then, the ground state is . Hence, 

 and  so that 

. 
 
Softened Coulomb potential 
 
Here,  and . Then, 

. From this result, 

we compute the second order energy correction  

leading to a polarizability of .  
 
Linear well 
 
We take the potential to be . Then, the ground state is 

, where  is the first zero 

of . Numerical integration yields  so that 

. 
 
A11.2 Two-dimensional Examples 
 
In two-dimensional systems with cylindrical symmetry, the Schrödinger equation 
reads (pulling a factor  out of all wave functions to simplify the radial Laplacian) 
 

        
. (A11.5) 

 
We now expand and write . In this 
manner, the first order equation becomes 
 

δ
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Moreover, with  the second order energy becomes 
 

 , (A11.6) 

 
where the factor  comes from the angular integration.  
 
Cylindrical quantum well 
 
Here, the potential vanishes  and is infinite otherwise. Hence, 

, where  is the first zero of . Hence, 
. Integrating leads to the energy 

 and polarizability . 
 
2D hydrogen atom 
 
With the potential  and ground state  the 
general procedure yields . This produces an energy 

 and a polarizability . 
 
A11.3 Three-dimensional Examples 
 
In three-dimensional systems with spherical symmetry, the Schrödinger equation 
reads (pulling a factor  out of all wave functions to simplify the radial Laplacian)  
 

 . (A11.7) 

 
We now expand and write . In this 
manner, the first order equation becomes 
 

 . 

 
Moreover, with  the second order energy becomes 
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 , (A11.8) 

 
where the factor  comes from the angular integration.  
 
Spherical quantum well 
 
Here, the potential vanishes  and is infinite otherwise. Hence, 

 and . Integrating 

leads to the energy  and polarizability 
. 

 
3D hydrogen atom 
 
With the potential  and ground state  the 
general procedure yields . This produces an energy 

 and a polarizability  
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