# Chapter 17

# THE GROUP VB(15) ELEMENTS: PHOSPHORUS, ARSENIC, ANTIMONY, AND BISMUTH

## 17-1 Introduction

Phosphorus occurs mainly in minerals of the *apatite* family,  $Ca_9(PO_4)_6 \cdot CaX_2$ ; X = F, Cl, or OH, which are the main components of amorphous phosphate rock, millions of tons of which are processed annually. The elements As, Sb, and Bi occur mainly as sulfide minerals, such as *mispickel* (FeAsS) or *stibnite* (Sb<sub>2</sub>S<sub>3</sub>).

Some properties of the elements are given in Table 8-5, and some general features and trends are noted in Chapter 8.

The valence shells of the atoms  $(ns^2np^3)$  are similar to the electron configuration of N, but beyond the similarity in stoichiometries of compounds such as NH<sub>3</sub> and PH<sub>3</sub>, there is little resemblance in the chemistry between even P and N. Phosphorus is a true nonmetal in its chemistry but As, Sb, and Bi show an increasing trend to metallic character and cationic behavior.

The principal factors responsible for the differences between nitrogen and phosphorus group chemistry are those responsible for the C to Si differences, namely, (a) the diminished ability of the second-row element to form  $p\pi$ - $p\pi$  multiple bonds, and (b) the possibility of utilizing the lower lying 3d orbitals.

The first explains features such as the fact that nitrogen forms esters O=NOR, whereas phosphorus gives  $P(OR)_3$ . Nitrogen oxides and oxoacids all involve multiple bonds (Section 16-1), whereas the phosphorus oxides have single P—O bonds, as in  $P_4O_6$ , and phosphoric acid is  $PO(OH)_3$  in contrast to  $NO_2(OH)$ .

The utilization of d orbitals has three effects. First, it allows some  $p\pi$ - $d\pi$  bonding as in  $R_3P$ =O or  $R_3P$ =CH<sub>2</sub>. Thus amine oxides,  $R_3NO$ , have only a single canonical structure ( $R_3N^+$ — $O^-$ ) and are chemically reactive, while P—O bonds are shorter than expected for the sum of single-bond radii, indicating multiple bonding, and are very strong, about 500 kJ mol<sup>-1</sup>. Second, there is the possibility of expansion of the valence shell, whereas nitrogen has a covalency maximum of four. Thus we have compounds such as PF<sub>5</sub>, P( $C_6H_5$ )<sub>5</sub>, P(OCH<sub>3</sub>)<sub>6</sub>, and PF<sub>6</sub>.

Notice that for many of the five-coordinate species, especially of phosphorus, the energy difference between the trigonal bipyramidal and square pyramidal configurations is small, and such species are usually stereochemically non-rigid (Section 6-6).

When higher coordination numbers occur for the elements in the III oxidation state, as in  $[SbF_5]^{2-}$ , the structures take the form of a square pyramid. As discussed in Chapter 3,  $AB_5E$  systems such as these accommodate one lone pair (E), in addition to the five peripheral atoms (B), at the central atom (A).

Finally, while trivalent nitrogen and the other elements in compounds such as  $N(C_2H_5)_3$ ,  $P(C_2H_5)_3$ , and  $As(C_6H_5)_3$  have lone pairs and act as donors, there is a profound difference in their donor ability toward transition metals. This follows from the fact that although  $NR_3$  has no low-lying acceptor orbitals, the others do have such orbitals, namely, the empty d orbitals. These can accept electron density from filled metal d orbitals to form  $d\pi$ - $d\pi$  bonds, as we shall discuss in detail later (Section 28-15).

### 17-2 The Elements

*Phosphorus* is obtained by reduction of phosphate rock with coke and sand in an electric furnace. Phosphorus distills and is condensed under water as P<sub>4</sub>. Phosphorus allotropes have been discussed (Section 8-4).

$$2 \text{ Ca}_3(\text{PO}_4)_2 + 6 \text{ SiO}_2 + 10 \text{ C} = \text{P}_4 + 6 \text{ CaSiO}_3 + 10 \text{ CO}$$
 (17-2.1)

 $P_4$  is stored under water to protect it from air in which it will inflame. Red and black P are stable in air but will burn on heating.  $P_4$  is soluble in  $CS_2$ , benzene, and similar organic solvents; it is very poisonous.

The elements As, Sb, and Bi are obtained as metals (Section 8-5) by reduction of their oxides with carbon or hydrogen. The metals burn on heating in oxygen to give the oxides.

All the elements react readily with halogens but are unaffected by nonoxidizing acids. Nitric acid gives, respectively, phosphoric acid, arsenic acid, antimony trioxide, and bismuth nitrate, which nicely illustrates the increasing metallic character as the group is descended.

Interaction with various metals and nonmetals gives phosphides, arsenides, and the like, which may be ionic, covalent polymers or metal-like solids. Gallium arsenide (GaAs)—one of the so-called III–V compounds of a Group IIIB(13) and a Group VB(15) element—has semiconductor properties similar to those of Si and Ge.

There are a number of ligands that consist exclusively of Group VB(15) atoms. The  $P_3$  ring forms an  $\eta^3$  attachment to metals that are also stabilized by tripod ligands (Chapter 6), as in LCoP<sub>3</sub>, where L=a tripod ligand. The  $P_4$  molecule can serve as an  $\eta^1$  or an  $\eta^2$  ligand, for example, in LNi( $\eta^1$ - $P_4$ ) and trans-[RhCl(PPh<sub>3</sub>)<sub>2</sub>( $\eta^2$ -  $P_4$ )]. The  $P_2$  and As<sub>2</sub> molecules can bind to metals in a variety of side-on and bridging attachments that resemble those of acetylene (Chapter 29).

# 17-3 Hydrides (EH<sub>3</sub>)

The stability of these EH<sub>3</sub> gases decreases in the series NH<sub>3</sub>, PH<sub>3</sub>, AsH<sub>3</sub>, SbH<sub>3</sub>, and BiH<sub>3</sub>. The last two in the series are very unstable thermally. The average bond energies are N—H, 391; P—H, 322; As—H, 247; and Sb—H, 255 kJ mol<sup>-1</sup>.

Phosphine (PH<sub>3</sub>) is made by the action of acids on zinc phosphide. Pure PH<sub>3</sub> is not spontaneously flammable, but it often inflames owing to traces of  $P_2H_4$  or  $P_4$  vapor. It is exceedingly poisonous. Because of its poor ability to enter into hydrogen bonding, it is not associated in the liquid state, in contrast to the behavior of ammonia. Phosphine is sparingly soluble in water, and it is a very weak base. The proton affinities of PH<sub>3</sub> and NH<sub>3</sub> differ considerably, as indicated by the relative values of  $\Delta H^\circ$  for Reactions 17-3.1 and 17-3.2.

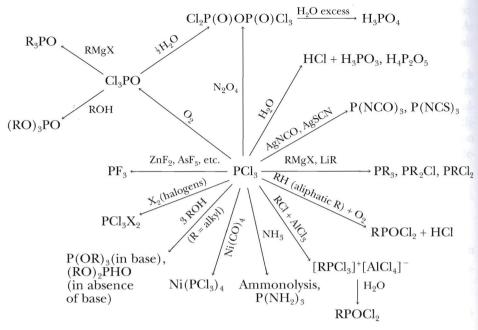
$$PH_3(g) + H^+(g) = PH_4^+(g)$$
  $\Delta H^\circ = -770 \text{ kJ mol}^{-1}$  (17-3.1)

$$NH_3(g) + H^+(g) = NH_4^+(g)$$
  $\Delta H^\circ = -866 \text{ kJ mol}^{-1}$  (17-3.2)

Although  $PH_3$  is the weaker base, it does react with gaseous HI to give  $PH_4I$  as unstable colorless crystals. Phosphonium iodide ( $PH_4I$ ) is completely hydrolyzed by water, as in Reaction 17-3.3.

$$PH_4I(s) + H_2O = H_3O^+ + I^- + PH_3(g)$$
 (17-3.3)

It is the low basicity of  $PH_3$  that forces the equilibrium in Reaction 17-3.3 to lie far to the right. Phosphine is used industrially to make organophosphorus compounds (Chapter 29).


# 17-4 Halides ( $EX_3$ , $EX_5$ ) and Oxohalides

The trihalides, except  $PF_3$ , are obtained by direct halogenation, keeping the element in excess. An excess of the halogen gives  $EX_5$ . The trihalides are rapidly hydrolyzed by water and are rather volatile; the gaseous molecules have pyramidal structures. The chlorides and bromides, as well as  $PF_3$  and  $PI_3$ , have molecular lattices. The compounds  $AsI_3$ ,  $SbI_3$ , and  $BiI_3$  have layer structures based on hexagonal close packing of iodine atoms with the Group VB(15) atoms in octahedral holes. Bismuth trifluoride  $(BiF_3)$  is known in two forms, in both of which Bi has the coordination number eight, while  $SbF_3$  has an intermediate structure in which  $SbF_3$  molecules are linked through F bridges to give each  $Sb^{III}$  a very distorted octahedral environment.

*Phosphorus trifluoride* is a colorless, toxic gas, made by fluorination of  $PCl_3$ . It forms complexes with transition metals similar to those formed by CO (Section 28-15). Unlike the other trihalides,  $PF_3$  is hydrolyzed only slowly by  $H_2O$ , but it is attacked rapidly by alkalis. It has no Lewis acid properties.

Phosphorus trichloride is a low-boiling liquid that is hydrolyzed by water to give phosphorous acid. It reacts with oxygen to give OPCl<sub>3</sub>. Figure 17-1 illustrates some of the important reactions of PCl<sub>3</sub>. Many of these reactions are typical of other EX<sub>3</sub> compounds and also, with obvious changes in formulas, of OPCl<sub>3</sub> and other oxo halides.

Arsenic trihalides are similar to those of phosphorus. Antimony trichloride (SbCl<sub>3</sub>) differs in that it dissolves in a limited amount of water to give a clear solution that, on dilution, gives insoluble oxo chlorides such as SbOCl and Sb<sub>4</sub>O<sub>5</sub>Cl<sub>2</sub>. No simple Sb<sup>3+</sup> ions exist in the solutions. Bismuth trichloride (BiCl<sub>3</sub>), a white, crystalline solid, is hydrolyzed by  $H_2O$  to BiOCl, but this reaction is reversible.



**Figure 17-1** Some important reactions of PCl<sub>3</sub>. Many of these are typical of other  $EX_3$  and  $OEX_3$  compounds.

$$BiCl_3 + H_2O \Longrightarrow BiOCl + 2 HCl$$
 (17-4.1)

Phosphorus pentafluoride (PF $_5$ ) is prepared by the interaction of PCl $_5$  with CaF $_2$  at 300–400 °C. It is a very strong Lewis acid and forms complexes with amines, ethers, and other bases, as well as with F $^-$ , in which phosphorus becomes six coordinate. However, these organic complexes are less stable than those of BF $_3$  and are rapidly decomposed by water and alcohols. Like BF $_3$ , PF $_5$  is a good catalyst, especially for ionic polymerization. Arsenic pentafluoride (AsF $_5$ ) is similar.

Antimony pentafluoride (SbF $_5$ ) is a viscous liquid (bp 150 °C). Its association is due to polymerization through fluorine bridging. The crystal has cyclic tetramers. Its main use is in "superacids" (Section 7-13).

The compounds  $AsF_5$ ,  $SbF_5$ , and  $PF_5$  are potent fluoride ion acceptors, forming  $MF_6^-$  ions. The  $PF_6^-$  ion is a common and convenient *noncomplexing* anion.

Phosphorus(V) chloride has a trigonal bipyramidal structure in the gas, melt, and solution in nonpolar solvents, but the solid is  $[PCl_4]^+[PCl_6]^-$ , and it is ionized in polar solvents like  $CH_3NO_2$ . The tetrahedral  $PCl_4^+$  ion can be considered to arise here by transfer of  $Cl^-$  to the  $Cl^-$  acceptor,  $PCl_5$ . Therefore, it is not surprising that many salts of the  $PCl_4^+$  ion are obtained when  $PCl_5$  reacts with other  $Cl^-$  acceptors, namely,

$$PCl_5 + TiCl_4 \longrightarrow [PCl_4^+]_2[Ti_2Cl_{10}]^{2-}$$
 and  $[PCl_4]^+[Ti_2Cl_9]^-$  (17-4.2)  
 $PCl_5 + NbCl_5 \longrightarrow [PCl_4]^+[NbCl_6]^-$  (17-4.3)

Solid *phosphorus pentabromide* is also ionic, but differs, being PBr<sub>4</sub><sup>+</sup>Br<sup>-</sup>. Antimony forms *antimony pentachloride*, a fuming liquid which is colorless when pure, but usually yellow. While it is a powerful chlorinating agent, it is also use-

17-5 Oxides 421

ful for removing chloride, as in Reaction 17-4.4.

$$CuCl_2 + 2 PhCN + 2 SbCl_5 \longrightarrow Cu(NCPh)_2^+ + 2 SbCl_6^-$$
 (17-4.4)

Arsenic does not form a pentabromide, and the pentachloride decomposes above -50 °C. The cations AsX<sub>4</sub><sup>+</sup> (X = F, Cl, Br, and I) are all known.

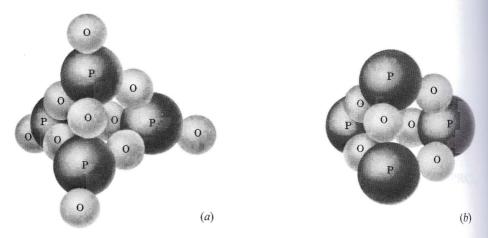
Phosphoryl halides are X<sub>3</sub>PO, in which X may be F, Cl, or Br. The most important one is Cl<sub>3</sub>PO, which is obtainable by the reactions

$$2 \text{ PCl}_3 + O_2 \longrightarrow 2 \text{ Cl}_3 PO \tag{17-4.5}$$

$$P_4O_{10} + 6 PCl_5 \longrightarrow 10 Cl_3PO$$
 (17-4.6)

The reactions of Cl<sub>3</sub>PO are much like those of PCl<sub>3</sub> (Fig. 17-1). Hydrolysis by water yields phosphoric acid. Cl<sub>3</sub>PO also has donor properties and many complexes are known, in which oxygen is the ligating atom.

The oxohalides SbOCl and BiOCl are precipitated when solutions of Sb<sup>III</sup> and Bi<sup>III</sup> in concentrated HCl are diluted.


## 17-5 Oxides

The oxides of the Group VB(15) elements clearly exemplify two important trends that are manifest to some extent in all groups of the periodic table: (1) the stability of the higher oxidation state decreases with increasing atomic number, and (2) in a given oxidation state the metallic character of the elements, and, therefore, the basicity of the oxides, increase with increasing atomic number. Thus, P<sup>III</sup> and As<sup>III</sup> oxides are acidic, Sb<sup>III</sup> oxide is amphoteric, and Bi<sup>III</sup> oxide is strictly basic.

Phosphorus pentoxide is so termed for historical reasons but its correct molecular formula is  $P_4O_{10}$  [Fig. 17-2(a)]. It is made by burning phosphorus in excess oxygen. It has at least three solid forms. Two are polymeric but one is a white, crystalline material that sublimes at 360 °C and 1 atm. Sublimation is an excellent method of purification, since the products of incipient hydrolysis, which are the commonest impurities, are comparatively nonvolatile. This form and the vapor consist of molecules in which the P atoms are at the corners of a tetrahedron with six oxygen atoms along the edges. The remaining four O atoms lie along extended threefold axes of the tetrahedron. The P—O—P bonds are single but the length of the four apical P—O bonds indicates  $p\pi$ - $d\pi$  bonding, that is, P—O.

The compound  $P_4O_{10}$  is one of the most effective drying agents known at temperatures below 100 °C. It reacts with water to form a mixture of phosphoric acids whose composition depends on the quantity of water and other conditions. It will even extract the elements of water from many other substances which are themselves considered to be good dehydrating agents; for example, it converts pure  $HNO_3$  into  $N_2O_5$  and  $H_2SO_4$  into  $SO_3$ . It also dehydrates many organic compounds, for example, converting amides into nitriles.

The *trioxide* is also polymorphous: one form contains discrete molecules  $(P_4O_6)$ . The structure [Fig. 17-2(b)] is similar to that of  $P_4O_{10}$  except that the four nonbridging apical oxygen atoms in the latter are missing.  $P_4O_6$  is a colorless, volatile compound that is formed in about 50% yield when  $P_4$  is burned in



**Figure 17-2** The structure of (a)  $P_4O_{10}$  and (b)  $P_4O_6$ .

a deficit of oxygen. The compounds  $As_4O_6$  and  $Sb_4O_6$  are similar to  $P_4O_6$  both structurally and in their acidic nature. The compound  $Bi_2O_3$  and the hydroxide,  $Bi(OH)_3$ , precipitated from bismuth(III) solution have no acidic properties.

#### 17-6 Sulfides

Phosphorus and sulfur combine directly above  $100\,^{\circ}\text{C}$  to give several sulfides, the most important being  $P_4S_3$ ,  $P_4S_5$ ,  $P_4S_7$ , and  $P_4S_{10}$ . Each compound is obtained by heating stoichiometric quantities of red P and sulfur. The compound  $P_4S_3$  is used in matches. It is soluble in organic solvents such as carbon disulfide and benzene. The compound  $P_4S_{10}$  has the same structure as  $P_4O_{10}$ . The others also have structures based on a tetrahedral group of phosphorus atoms with  $P\_S\_P$  bridges or apical  $P\_S$  groups.  $P_4S_{10}$  reacts with alcohols:

$$P_4S_{10} + 8 \text{ ROH} \longrightarrow 4(\text{RO})_2P(S)SH + 2 \text{ H}_2S$$
 (17-6.1)

to give dialkyl and diaryl dithiophosphates that form the basis of many extremepressure lubricants, of oil additives, and of flotation agents.

Arsenic forms  $As_4S_3$ ,  $As_4S_4$ ,  $As_2S_3$ , and  $As_2S_5$  by direct interaction. The last two can also be precipitated from hydrochloric acid solutions of  $As^{III}$  and  $As^V$  by hydrogen sulfide.  $As_2S_3$  is insoluble in water and acids but is acidic, dissolving in alkali sulfide solutions to give thio anions.  $As_2S_5$  behaves similarly.  $As_4S_4$ , which occurs as the mineral *realgar*, has a structure with an  $As_4$  tetrahedron.

Antimony forms  $Sb_2S_3$  either by direct interaction or by precipitation with  $H_2S$  from  $Sb^{\rm III}$  solutions; it dissolves in an excess of sulfide to give anionic thio complexes, probably mainly  $SbS_3^{3-}$ . Antimony trisulfide  $(Sb_2S_3)$ , as well as  $Bi_2S_3$ , possess a ribbonlike polymeric structure in which each Sb atom and each S atom is bound to three atoms of the opposite kind, forming interlocking  $SbS_3$  and  $SSb_3$  pyramids.

Bismuth gives dark brown Bi<sub>2</sub>S<sub>3</sub> on treatment of Bi<sup>III</sup> solutions with H<sub>2</sub>S; it is not acidic.

Some of the corresponding selenides and tellurides of As, Sb, and Bi have been studied intensively as semiconductors. (See Section 32-3.)

#### 17-7 The Oxo Acids

The nature and properties of the oxoanions of the Group VB(15) elements have been discussed in Chapter 5. Here we discuss only the important acids and some of their derivatives.

Phosphorous acid is obtained when PCl<sub>3</sub> or P<sub>4</sub>O<sub>6</sub> are hydrolyzed by water. It is a deliquescent colorless solid (mp 70 °C, pK= 1.26). The acid and its mono- and diesters differ from PCl<sub>3</sub> in that there are *four* bonds to P, one being P—H. The presence of hydrogen bound to P can be demonstrated by NMR or other spectroscopic techniques. Phosphorous acid is, hence, best written HP(O)(OH)<sub>2</sub> as in Structure 17-I. Hypophosphorous acid, H<sub>3</sub>PO<sub>2</sub>, has two P—H bonds (Structure 17-II). By contrast the triesters have only three bonds to phosphorus, thus being analogous to PCl<sub>3</sub>. The trialkyl and aryl phosphites, P(OR)<sub>3</sub>, have excellent donor properties toward transition metals and many complexes are known.

Phosphorous acid may be oxidized by chlorine or other agents to phosphoric acid, but the reactions are slow and complex. However, the triesters are quite readily oxidized and must be protected from air.

$$2(RO)_{3}P + O_{2} = 2(RO)_{3}PO$$
 (17-7.1)

These compounds also undergo the Michaelis-Arbusov reaction with alkyl halides, forming dialkyl phosphonates:

P(OR)<sub>3</sub> + R'X 
$$\longrightarrow$$
 [(RO)<sub>3</sub>PR']X  $\longrightarrow$  RO  $\longrightarrow$  P $\longrightarrow$  RO  $\longrightarrow$  Phosphonium intermediate OR

Trimethylphosphite easily undergoes spontaneous isomerization to the dimethyl ester of methylphosphonic acid.

$$P(OCH_3)_3 \longrightarrow CH_3PO(OCH_3)_2$$
 (17-7.3)

Orthophosphoric acid,  $\rm H_3PO_4$ , commonly called phosphoric acid, is one of the oldest known and most important phosphorus compounds. It is made in vast quantities, usually as 85% syrupy acid, by the direct reaction of ground phosphate rock with sulfuric acid and also by the direct burning of phosphorus and subsequent hydration of  $\rm P_4O_{10}$ . The pure acid is a colorless crystalline solid (mp 42.35 °C). It is very stable and has essentially no oxidizing properties below 350–400 °C. At elevated temperatures it is fairly reactive toward metals, which reduce it, and it will attack quartz. *Pyrophosphoric acid* is also produced:

$$2 H3PO4 \longrightarrow H2O + H4P2O7$$
 (17-7.4)

but this conversion is slow at room temperature.

The acid is tribasic: at 25 °C, p $K_1$  = 2.15, p $K_2$  = 7.1, p $K_3$  ≈ 12.4. The pure acid and its crystalline hydrates have tetrahedral PO<sub>4</sub> groups connected by hydrogen bonds. Hydrogen bonding persists in the concentrated solutions and is responsible for the syrupy nature. For solutions of concentration less than about 50%, the phosphate anions are hydrogen bonded to the liquid water rather than to other phosphate anions.

Phosphates and the polymerized phosphate anions (for which the free acids are unknown) are discussed in Section 5-4. Large numbers of *phosphate esters* can be made by the reaction

$$OPCl_3 + 3 ROH = OP(OR)_3 + 3 HCl$$
 (17-7.5)

or by oxidation of trialkylphosphites. Phosphate esters, such as tributylphosphate, are used in the extraction of certain +4 metal ions (see Section 26-2) from aqueous solutions.

Phosphate esters are also of fundamental importance in living systems. It is because of this that their hydrolysis has been studied. Triesters are attacked by OH<sup>-</sup> at P and by H<sub>2</sub>O at C, depending on pH.

$$OP(OR)_{3} \xrightarrow{l^{8}OH} OP(OR)_{2}(^{18}OH) + RO^{-}$$

$$(17-7.6)$$

$$H_{2}^{18}OP(OR)_{2}(OH) + R^{18}OH$$

$$(17-7.7)$$

Diesters, which are strongly acidic, are completely in the anionic form at normal (and physiological) pH values.

$$\begin{array}{c} O \\ \parallel \\ RO - P - OR' \Longrightarrow R'OPO_2OR^- + H^+ \qquad K \approx 10^{-1.5} \\ OH \end{array}$$
 (17-7.8)

These diesters are thus relatively resistant to nucleophilic attack by either  $OH^-$  or  $H_2O$ , which is the reason why enzymic catalysis is indispensible if we wish to achieve useful rates of reaction.

Much remains to be learned concerning the mechanisms of most phosphate ester hydrolyses, especially the many enzymic ones. Two important possibilities are the following:

1. One-step nucleophilic displacement (S<sub>N</sub>2) with inversion.

$$H_2O(\text{or }OH^-) + OR \longrightarrow HO \longrightarrow POR \longrightarrow HO \longrightarrow OR' + HOR$$
 (17-7.9)

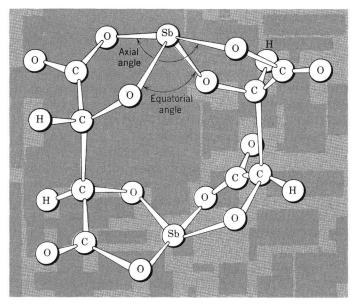
2. Release of a short-lived *metaphosphate* group ( $PO_3^-$ ) which rapidly recovers the four-connected orthophosphate structure.

# 17-8 Complexes of the Group VB(15) Elements

The main aqueous chemistry of Sb<sup>III</sup> is in oxalato, tartrato, and similar hydroxy acid complexes.

The  $[Sb(C_2O_4)_3]^{3-}$  ion forms isolable salts and has been shown to have the incomplete pentagonal bipyramid structure (Fig. 17-3) with a lone pair at one axial position. The tartrate complexes of antimony(III) have been greatly studied, and have been used medicinally as "tartar emetic" for more than 300 years. The structure of the anion in this salt,  $K_2[Sb_2(d-C_4H_2O_6)_2]\cdot 3H_2O$ , is shown in Fig. 17-4.

Only for bismuth is there a true cationic chemistry. Aqueous solutions contain well-defined hydrated cations, but there is no evidence for a simple aqua ion  $[Bi(H_2O)_n]^{3+}$ . In neutral perchlorate solutions the main species is  $[Bi_6O_6]^{6+}$  or its hydrated form,  $[Bi_6(OH)_{12}]^{6+}$ , while  $[Bi_6O_6(OH)_3]^{3+}$  is formed at a higher pH. The  $[Bi_6(OH)_{12}]^{6+}$  species contains an octahedron of  $Bi^{3+}$  ions with an  $OH^-$  bridging each edge.


# 17-9 Phosphorus-Nitrogen Compounds

Many compounds are known with P—N and P=N bonds. The  $R_2N$ —P bonds are particularly stable and occur widely in combination with bonds to other univalent groups, such as P—R, P—Ar, and P—halogen.

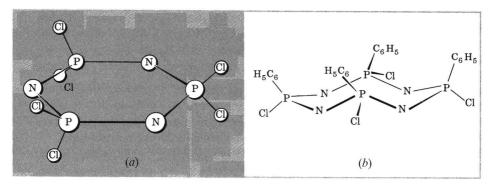
Phosphazenes are cyclic or chain compounds that contain alternating phosphorus and nitrogen atoms with two substituents on each phosphorus atom. The three main structural types are the cyclic trimer (Structure 17-III), cyclic tetramer (Structure 17-IV), and the oligomer or high polymer (Structure 17-V). The alternating sets of single and double bonds in Structures 17-III to 17-V are written for convenience but, in general, all P—N distances are found to be equal. It appears that they are of the order of about 1.5, since their lengths (1.56-1.61 Å) are appreciably shorter than expected ( $\approx 1.80 \text{ Å})$  for P—N single bonds. Hexachlorocyclotriphosphazene,  $(\text{NPCl}_2)_3$ , is a key intermediate in the



**Figure 17-3** The  $[Sb(C_2O_4)_3]^{3-}$  ion. Two oxalato,  $C_2O_4^{2-}$ , ligands are bidentate and one is monodentate. The oxygen donor atoms form a pentagonal base to the pyramid that is capped by  $Sb^{3+}$ .



**Figure 17-4** Geometry of the anion  $[Sb_2(C_4H_2O_6)_2]^{2^-}$ . Water molecules link the anions into sheets by hydrogen bonding to carboxylate carbon atoms. [Reproduced by permission from Tapscott, R. E., Belford, R. L., and Paul, I. C., *Coord. Chem. Rev.*, **1969**, *4*, 323.]


synthesis of many other phosphazenes and is manufactured by Reaction 17-9.1:

$$n \operatorname{PCl}_5 + n \operatorname{NH}_4 \operatorname{Cl} \xrightarrow{\text{in } \operatorname{C}_2 \operatorname{H}_2 \operatorname{Cl}_4 \text{ or } \operatorname{C}_6 \operatorname{H}_5 \operatorname{Cl}} (\operatorname{NPCl}_2)_n + 4n \operatorname{HCl}$$
 (17-9.1)

Reaction 17-9.1 produces a mixture of cyclic (NPCl<sub>2</sub>)<sub>n</sub> compounds with  $n = 3, 4, 5, \ldots$ , as well as some low-molecular weight linear polymers. Control of the reaction conditions can give 90% yields of either the compound with n = 3 or 4, which can be purified by extraction, recrystallization, or sublimation.

Structures are given in Fig. 17-5 of the cyclic trimer  $[NPCl_2]_3$  and the tetramer  $[NPClPh]_4$ . Most six-membered rings such as  $[NPX_2]_3$  are planar, while the larger rings are nonplanar. The fluoroderivatives,  $[NPF_2]_n$  are planar, or nearly so, when n = 3-6.

The majority of the reactions of phosphazenes involve replacement of the substituents at phosphorus by nucleophiles (e.g., OH, OR, NR<sub>2</sub>, or R) to give substituted derivatives, as in Reactions 17-9.2 to 17-9.4.



**Figure 17-5** The structures of two representative cyclic phosphazenes (a)  $[NPCl_2]_3$  and (b) all-cis- $[NPClPh]_4$ .

$$[NPCl2]3 + 6 NaOR \longrightarrow [NP(OR)2]3 + 6 NaCl$$
 (17-9.2)

$$[NPCl_2]_3 + 6 NaSCN \longrightarrow [NP(SCN)_2]_3 + 6 NaCl$$
 (17-9.3)

$$[NPF_2]_3 + 6 PhLi \longrightarrow [NPPh_2]_3 + 6 LiF$$
 (17-9.4)

Hexachlorotriphosphazene,  $[NPCl_2]_3$ , is especially susceptible to hydrolysis as in Reaction 17-9.5.

$$[NPCl_2]_3 + 6 H_2O \longrightarrow [NP(OH)_2]_3 + 6 HCl$$
 (17-9.5)

Hexachlorotriphosphazene undergoes a ring-opening polymerization above 250 °C to give the linear polydichlorophosphazene represented in Structure 17-VI. Although the dichloro polymer is hydrolytically unstable, it is readily converted, by reactions analogous to those of the cyclic trimer, to derivatives such as Structures 17-VII and 17-VIII. The properties of such polymers depend largely on the nature of the groups attached to phosphorus. Especially stable fibers and useful elastomers are obtained when the substituents are the perfluoroalkoxy groups, such as  $CF_3(CF_2)_nCH_2O$ , or the amides such as  $-NHCH_3$ .

$$\begin{bmatrix} CI \\ | \\ N = P \\ | \\ CI \end{bmatrix}_{n} \begin{bmatrix} OR \\ | \\ N = P \\ | \\ OR \end{bmatrix}_{n} \begin{bmatrix} NR_{2} \\ | \\ N = P \\ | \\ NR_{2} \end{bmatrix}_{n}$$
17-VII 17-VIII 17-VIII

# 17-10 Compounds with Element-Element Double Bonds

Although N $\equiv$ N double bonds abound, other Group VB(15) E $\equiv$ E bonds were unknown until only recently. Now we have stable compounds that contain P $\equiv$ P, P $\equiv$ As, and As $\equiv$ As bonds. Similar E $\equiv$ E or E $\equiv$ E' bonds involving antimony or bismuth are still unknown. The best calculations show that the HN $\equiv$ NH and HP $\equiv$ PH  $\pi$ -bond strengths are 256 and 150 kJ mol $^{-1}$ , respectively. Thus the P $\equiv$ P  $\pi$  bond has considerable strength, but is weaker than the N $\equiv$ N  $\pi$  bond.

It is thermodynamics that makes obtaining compounds with E=E bonds difficult. Compounds with such bonds are unstable relative to cyclic oligomers of the type  $(RP)_n$  or  $(RAs)_n$ . It has been found that cyclization can be thwarted by employing large R groups, partly because they diminish the rate of oligomeriza-

tion, and partly because they reduce the stability of certain cyclic products.

Some of the E=E bond distances of RE=E'R' molecules (Structure 17-IX)

are listed in Table 17-1. The molecules are all planar in their X—E=E'=X portions, and the E=E' distances are approximately 0.20 Å shorter than the corresponding E—E' single-bond lengths.

**Table 17-1** Bond Distances in Some RE=ER Compounds (Structure 17-IX)

| E  | E' | $R^a$         | R'             | Distance<br>E=E' (Å) |
|----|----|---------------|----------------|----------------------|
| P  | P  | Ar*           | Ar*            | 2.034                |
| P  | P  | $(Me_3Si)_3C$ | $(Me_3Si)_3C$  | 2.014                |
| P  | As | Ar*           | $(Me_3Si)_2CH$ | 2.124                |
| As | As | Ar*           | $(Me_3Si)_2CH$ | 2.224                |

 $<sup>^{</sup>a}$  Ar\* = 2,4,6-(Me<sub>3</sub>C)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>.

Two of the principal methods of preparation are shown in Reactions 17-10.1 and 17-10.2.

$$2 \text{ RPCl}_2 + 2 \text{ Mg} \longrightarrow \text{RP=PR} + 2 \text{ MgCl}_2$$
 (17-10.1)

$$RECl_{2} + H_{2}E'R' \xrightarrow{base} RE = E'R'$$
 (17-10.2)

# 17-11 Summary of Group Trends for the Elements of Group VB(15)

The list of periodic chemical properties from Section 8-11 can be used now, together with properties mentioned in Chapters 16 and 17, to summarize the periodic trends in the properties and reactivities of the elements of Group VB(15). Among these trends one finds increasing metallic character on descent of the group.

#### 1. Nitrogen

- (a) Forms covalent compounds almost exclusively, the only important exceptions being simple nitrides, such as Li<sub>3</sub>N.
- (b) Forms oxides that are covalent and serve as acid anhydrides.
- (c) Forms halides (fluorides predominantly) that are covalent (e.g.,  $NF_3$  and  $NF_4^+$ ).
- (d) Forms hydrides that are covalent and nonhydridic.
- (e) Forms esters of the type

(f) Frequently forms compounds that are electronically unsaturated, in which the unsaturation is exclusively of the  $p\pi-p\pi$  type.

# 2. Phosphorus

(a) Forms covalent substances almost exclusively, most of which are electronically saturated.

- (b) Forms electronically saturated covalent oxides that serve as acidic anhydrides.
- (c) Forms low-valent (PX $_3$ ) and high-valent (PX $_5$ ) molecular halides that are readily hydrolyzed.
- (d) Forms a gaseous hydride, PH3.
- (e) Forms electronically saturated esters of the type P(OR)<sub>3</sub>.
- (f) Forms compounds that are electronically saturated, but which contain  $p\pi d\pi$  (rather than  $p\pi p\pi$ ) double bonding.
- (g) Compounds with P=P and P=As double bonds are becoming increasingly known.
- 3. Arsenic, Antimony, and Bismuth
  - (a) Increasingly form ionic compounds rather than covalent ones on descent of the group.
  - (b) Rather than simple ions such as M<sup>3+</sup> or M<sup>5+</sup>, form oxo ions such as SbO<sup>+</sup> and BiO<sup>+</sup>.
  - (c) Form oxides that are, on descent of the group, increasingly basic, as seen by the following trend: P and As (acidic oxides), Sb (amphoteric oxide), and Bi (basic oxide).
  - (d) Form halides that are ionic and increasingly aggregated in the solid state through halide bridges, giving expanded coordination numbers at the metal ion.
  - (e) Form increasingly weaker bonds to hydrogen.
  - (f) Increasingly form more stable low-valent compounds than is typical of phosphorus, for example, the oxochloride of bismuth, BiOCl.
  - (g) Compounds containing As—As and As—P double bonds are known, but the antimony and bismuth analogs are not.

# 17-12 Descriptive Summary of Reactions

Some of the important reactions of PCl<sub>3</sub> were given in Fig. 17-1. As a study aid, other reactions of phosphorus and its compounds are diagrammed in Figs. 17-6 and 17-7.



**Figure 17-6** Some reactions of  $P_4$  and its derivatives.

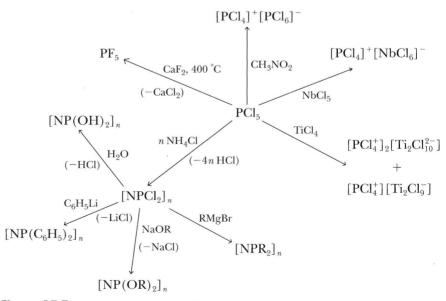



Figure 17-7 Some reactions of PCl<sub>5</sub>.

431 Study Guide

#### STUDY GUIDE

# Study Questions

#### A. Review

- 1. Why does phosphorus form  $P_4$  molecules while nitrogen is  $N_2$ ?
- 2. How are white and red phosphorus obtained from phosphate rock?
- 3. What are the principal factors responsible for the differences between the chemistry of nitrogen and the chemistry of phosphorus?
- 4. Explain the differences in (a) basicity and (b) donor ability toward transition metals of  $N(CH_3)_3$  and  $P(CH_3)_3$ .
- **5.** Write balanced equations for the reactions:
  - (a)  $P_4 + HNO_3$
- (b)  $AsCl_3 + H_2O$
- (c)  $POCl_3 + H_9O$
- (d)  $P_4O_{10} + HNO_3$  (e)  $P_4O_6 + H_2O$
- (f) Zn<sub>3</sub>P + dilute HCl
- 6. How is PCl<sub>5</sub> made? What is its structure in solutions and in the solid state?
- 7. Draw the structures of  $P_4O_{10}$  and  $As_4O_6$ .
- 8. What happens when H<sub>9</sub>S is passed into acidic (HCl) solution of trivalent P, As, Sb, and Bi?
- 9. What are the structures of (a) phosphorous acid and (b) triethylphosphite?
- 10. What is the Michaelis–Arbusov reaction?
- 11. Why is pure phosphoric acid syrupy?
- 12. What is the structure of "tartar emetic"?
- 13. What are phosphazenes and how are they made?
- 14. Describe the interaction of water with SbCl<sub>3</sub> and BiCl<sub>3</sub>.
- 15. How is PF<sub>5</sub> prepared? Give its main chemical properties.
- 16. Compare the structure and properties of nitric and phosphoric acids.

#### B. Additional Exercises

- 1. Discuss the importance of  $d\pi$ – $p\pi$  bonding for phosphorus. Give examples, with explanations for differences between the chemistries of N and P.
- 2. The compound NF<sub>3</sub> had no donor properties at all, but PF<sub>3</sub> forms numerous complexes with metals, for example, Ni(PF<sub>3</sub>)<sub>4</sub>. Explain.
- 3. Both P and Sb form stable pentachlorides but As does not. Why?
- 4. Compare the oxides of N with those of P.
- 5. Show with drawings the formation of the  $\pi$  bonds in R<sub>3</sub>PO and R<sub>3</sub>P=CH<sub>9</sub>. What is the geometry at P in each case?
- 6. Draw the Lewis diagrams and discuss the geometries in PF<sub>3</sub>, PF<sub>5</sub>, and PF<sub>6</sub>.
- 7. Write balanced equations for the following reactions.
  - (a) The hydrolysis of PCl<sub>3</sub>.
  - (b) Air oxidation of PCl<sub>3</sub>.
  - (c) The hydrolysis of BiCl<sub>3</sub>.
  - (d) A synthesis of triethylphosphine.
  - (e) Oxidation of PCl<sub>3</sub> by F<sub>9</sub>.
  - (f) Methanolysis of trichlorophosphine oxide.
  - (g) Dissolution of PCl<sub>5</sub> in polar solvents.
  - (h) Ammonolysis of PCl<sub>3</sub>.
  - (i) The synthesis of hexachlorotriphosphazene.

- 8. Suggest a synthesis of [NP(CH<sub>3</sub>)<sub>2</sub>]<sub>3</sub> starting with PCl<sub>5</sub>, NH<sub>4</sub>Cl, and a Grignard reagent.
- 9. How many isomers are possible for the partially substituted cyclic trimer N<sub>3</sub>P<sub>3</sub>F<sub>2</sub>Cl<sub>4</sub>?
- 10. Discuss the changes in hybridization, oxidation state, and geometry (use the  $AB_xE_y$  classification scheme of Chapter 3 and VSEPR theory) that take place on forming
  - (a) SbF<sub>6</sub> from SbF<sub>5</sub>
- (b) PCl<sub>4</sub> from PCl<sub>5</sub>
- (c) PCl<sub>6</sub> from PCl<sub>5</sub>
- (d)  $[SbF_5]^{2-}$  from  $SbF_5$
- 11. Use the Lewis theory of acids and bases to discuss the reactions that are found in Problem 10, part B.
- **12.** Beginning with PCl<sub>5</sub>, and using two steps or fewer, list as many derivatives as can be made using the reactions of this chapter.
- 13. Give the chemical equation that represents each of the following reactions.
  - (a) Reduction of phosphate rock by carbon and sand.
  - (b) Hydrolysis of OPCl<sub>3</sub>, using an excess of water.
  - (c) Reaction (condensation) of OPCl<sub>3</sub> with phenol.
  - (d) Oxidation of phosphorus with an excess of oxygen.
  - (e) Air oxidation of  $P(OC_6H_5)_3$ .
  - (f) Reaction of PCl<sub>3</sub> with C<sub>2</sub>H<sub>5</sub>MgBr.
  - (g) Reaction of PCl3 with CH3OH.
  - (h)  $PCl_3 + AsF_3$
  - (i)  $PCl_5 + H_2$
- 14. Of P<sub>4</sub>, Sb<sub>4</sub> and Bi, which is the only element that forms an oxoacid on treatment with HNO<sub>3</sub>? Explain.
- 15. Although compounds such as OPCl<sub>3</sub> are properly said to be electronically saturated, the OP linkage possesses considerable double-bond character. Explain.
- 16. Which elements of Group VB(15) form hydrolyzable halides of both the low- and high-valent variety?
- 17. Which elements of Group VB(15) form an amphoteric oxide?
- 18. Give the products to be expected on reaction of  $P_4$  with
  - (a) A deficiency of oxygen.
  - (b) An excess of oxygen.
  - (c) A deficiency of Cl<sub>2</sub>.
  - (d) An excess of Cl<sub>2</sub>.
  - (e) S<sub>8</sub>.
- 19. Give the principal P-containing product for each of the following:
  - (a) PCl<sub>5</sub> + NbCl<sub>5</sub>
  - (b)  $PCl_5$  dissolved in  $CH_3NO_2(\ell)$
  - (c) Metathesis of PCl<sub>5</sub> and CaF<sub>2</sub> at 400 °C
  - (d) Thermal reaction of PCl<sub>5</sub> and NH<sub>4</sub>Cl
  - (e)  $[NPCl_2]_3 + NaOC_2H_5$
  - (f)  $[NPCl_2]_3 + C_6H_5Li$
  - (g)  $[NPCl_2]_3 + C_6H_5MgBr$
  - (h)  $PCl_3 + C_6H_5MgBr$
  - (i) PCl<sub>5</sub> + TiCl<sub>4</sub>
- **20.** Explain how the differing reactions of the M<sub>4</sub> elements of Group VB(15) with nitric acid are consistent with increasing metallic behavior on descent of the group.
- 21. Compare the oxides of phosphorus with those of nitrogen and bismuth.

22. The compound  $P_4S_{10}$  is isostructural with  $P_4O_{10}$ . It also undergoes the following alcoholysis reaction:

$$P_4S_{10} + 8 \text{ ROH} \longrightarrow 4(RO)_2P(S)SH + 2 H_2S$$

Draw the Lewis diagram of each reactant and product, and give the occupancy notation ( $AB_xE_y$ , as in Chapter 3) for each distinct P, O, and S atom.

# C. Questions from the Literature of Inorganic Chemistry

- Consider the paper by B. H. Christian, R. J. Gillespie, and J. F. Sawyer, *Inorg. Chem.*, 1981, 20, 3410-3420.
  - (a) Salts of the cations  $As_3S_4^+$  and  $As_3Se_4^+$  have been prepared starting with  $As_4S_4$  or As-Se alloys and using (as oxidants) the Lewis acids  $AsF_5$  or  $SbF_5$ . Draw Lewis diagrams for the cations and anions that are formed in these reactions.
  - (b) What (different) products were obtained upon oxidation of  $As_4F_4$  by  $SbCl_5$ ,  $Cl_2$ , or  $Br_2$ ? Why?
  - (c) How does the structure of the starting material  $As_4S_4$  differ from its oxidized product,  $As_3S_4^+$ ?
- The dianion [Sb<sub>2</sub>OCl<sub>6</sub>]<sup>2-</sup> is described in a paper by M. Hall and D.B. Sowerby, J. Chem. Soc., Chem. Commun., 1979, 1134–1135.
  - (a) How is this dianion uniquely different from other antimony chlorides or antimony oxide chlorides?
  - (b) Show with drawings how each  $Sb^{III}$  center can be viewed as an  $AB_5E$  system (according to the classification of Chapter 3) in which the "sixth position" of a pseudooctahedron is occupied by a lone electron pair.
  - (c) Is there evidence among the structural data (either in terms of bond angles or bond lengths) for the presence of a lone pair of electrons on each Sb<sup>III</sup> center? Answer in terms of VSEPR theory (Chapter 3).
- **3.** The structure of the ion  $[SbCl_5]^{2-}$  was reported by R. K. Wismer and R. A. Jacobson, *Inorg. Chem.*, **1974**, *13*, 1678-1680.
  - (a) Use VSEPR theory and the AB<sub>x</sub>E<sub>y</sub> classification that was presented in Chapter 3 to discuss the hybridizations and geometries around antimony in the compounds SbCl<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SbCl<sub>5</sub>, (pyH)SbCl<sub>4</sub>, and [Co(NH<sub>3</sub>)<sub>6</sub>][SbCl<sub>6</sub>].
  - (b) In the crystals of K<sub>2</sub>SbCl<sub>5</sub>, the square-pyramidal [SbCl<sub>5</sub>]<sup>2-</sup> units were found to be packed base to base. The short interion Sb-Sb distance indicates little *stereochemical effect* from a localized lone pair of electrons on Sb. Elaborate and explain.
- Consider the work by P. Wisian-Neilson and R. H. Neilson, J. Am. Chem. Soc., 1980, 102, 2848–2849.
  - (a) What problems normally arise in the syntheses of *fully alkylated* polymeric dialkylphosphazenes, [NPR<sub>2</sub>]<sub>n</sub>, starting with [NPCl<sub>2</sub>]<sub>n</sub> polymers and using Grignard reagents?
  - (b) Compound 2 as reported in this work leads to fully alkylated polymers, [NPR<sub>2</sub>]<sub>n</sub>, without the problems mentioned in (a). Why? Show the elimination that must take place upon polymerization.
  - (c) Draw the Lewis diagrams and discuss the hybridizations and geometries around all atoms in Compounds 1 and 2 of this paper.
  - (d) Show at each Si, N, and P atom how a p or d orbital may become involved in a  $\pi$ -bond system in each Molecule 1 and 2.
  - (e) Elimination reactions of Compound 1 gave a cyclic tetramer, [NP(CH<sub>3</sub>)<sub>2</sub>]<sub>4</sub>. Show the necessary elimination reactions and draw the likely structure of the cyclized product.

# SUPPLEMENTARY READING

Allcock, H. R., Phosphorus-Nitrogen Compounds, Academic, New York, 1972.

Allcock, H. R., "Inorganic Macromolecules," Chem. Eng. News, 1985, March 18, 22–36.

Corbridge, D. E. C., The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974.

Corbridge, D. E. C., *Phosphorus: An Outline of its Chemistry, Biochemistry and Technology*, 4th ed., Elsevier, Amsterdam, 1990.

Cowley, A. H. and Norman, N. C., "The Synthesis, Properties and Reactivities of Stable Compounds Featuring Double Bonding Between Heavier Group 14 and 15 Elements," in *Progress in Inorganic Chemistry*, Vol. 34, Wiley-Interscience, New York, 1986.

Doak, G. O. and Freedman, L. D., Organometallic Compounds of Arsenic, Antimony, and Bismuth, Wiley, New York, 1970.

Emsley, J. and Hall, D., The Chemistry of Phosphorus, Harper & Row, New York, 1976.

Fluck, E., "The Chemistry of Phosphine," in *Topics in Current Chemistry*, Springer-Verlag, Berlin, 1973.

Goldwhite, H., Introduction to Phosphorus Chemistry, Cambridge University Press, Cambridge, UK, 1981.

Mann, F. G. Heterocyclic Derivatives of P, As, Sb, and Bi, Wiley, New York, 1970.

McAuliffe, C. A. and Levason, W., *Phosphine, Arsine, and Stibine Complexes of the Transition Elements*, Elsevier, Amsterdam, 1979.

Regitz, M., Ed. Multiple Bonds and Low Coordination in Phosphorus Chemistry, G. Thieme, Stuttgart, 1990.

Toy, A. D. F., The Chemistry of Phosphorus, Pergamon Press, New York, 1975.

Toy, A. D. and Walsh, E. N., *Phosphorus Chemistry in Everyday Living*, 2nd ed., American Chemical Society, Washington, DC, 1987.

Walsh, E. N. et al., Eds., "Phosphorus Chemistry: Developments in American Science," ACS Symposium Series, No. 486, American Chemical Society, Washington, DC, 1992.

Woolins, J. D., Nonmetal Rings, Cages, and Clusters, Wiley, New York, 1988.