Electrochemical biosensors II: Amperometric biosensors

Lecture 2

Amperometric Sensors: Problem formulation

 amperometric techniques have some selectivity as every RedOx reaction has it's own characteristic potential

	E ⁰ , V
$Cu^{2+} + e \to Cu^+$	+0.16
$Pb^{2+} + 2e \rightarrow Pb$	-0.13
$Tl^{2+} + 2e \rightarrow Tl$	-0.34
$In^{3+} + 3e \rightarrow In$	-0.34
$Cd^{2+} + 2e \rightarrow Cd$	-0.40
$Zn^{2+} + 2e \rightarrow Zn^{+}$	-0.76

Electrode Reactions

• Current:

 Faradaic current: current associated with Oxidation/Reduction of species of interest

$$A + e \rightarrow B$$

Capacitive current: charging of double layer

$$\frac{I_C}{A} = C' \frac{dE}{dt}$$

 Other background currents due to presence of other species e.g. oxygen

Electrode Reactions

• Faradaic current:

$$A + ne \rightarrow B$$

- Possible limiting steps:
 - electron transfer
 - mass transport

rate of arrival of A = 1/n rate of e-transfer = rate of departure

$$-J_A = \frac{1}{n} \frac{I}{AF} = J_B$$

The electrode-solution interface

Helmholtz layer model

Gouy-Chapman model

Stern model

Graham model = Stern model + IHP

The rate of charge transfer

$$Ox + \nu e^- \rightarrow Red$$

First order reaction

the rate of reduction:
$$v_{Ox} = k_c [Ox]$$
 $j_c = vFk_c [Ox]$ the rate of oxidation: $v_{Red} = k_a [Red]$ $j_a = vFk_a [Red]$ Cathodic Current

$$j = j_a - j_c = \nu F k_a [\text{Red}] - \nu F k_c [\text{Ox}]$$

The activation Gibbs energy

both processes involve activation $k = Be^{-\Delta^*G/RT}$

$$j = \nu F k_a B_a \left[\text{Red} \right] e^{-\Delta^* G_a / RT} - \nu F k_c B_a \left[\text{Ox} \right] e^{-\Delta^* G_c / RT}$$

The Butler-Volmer equation

• Reduction reaction $Ox + ve^- \rightarrow Red$

transition state is product like:
$$\Delta^* G_c = \Delta^* G_c(0) + F \Delta \phi$$

transition state is reagent like: $\Delta^* G_c \approx \Delta^* G_c(0)$

$$\Delta^*G_c = \Delta^*G_c(0) + \alpha F \Delta \phi$$
 cathodic transfer coefficient usually approx. 0.5

transition state is product like: $\Delta^*G_c = \Delta^*G_c(0) - F\Delta\phi$

transition state is reagent like: $\Delta^* G_c \approx \Delta^* G_c(0)$

$$\Delta^* G_c = \Delta^* G_c(0) - (1 - \alpha) F \Delta \phi$$

The Butler-Volmer equation

$$j = \nu F k_a B_a \left[\text{Red} \right] e^{-\Delta^* G_a(0)/RT} e^{(1-\alpha)F\Delta\phi/RT} - \nu F k_c B_a \left[\text{Ox} \right] e^{-\Delta^* G_c/RT} e^{-\alpha F\Delta\phi/RT}$$

if the cell is balanced (j=0) by an external source, E:

$$j_{\rm a}=j_{\rm c}=j_{\rm 0},\ f=\frac{F}{RT}$$
 exchange current density

$$j_{a} = vFk_{a}B_{a} \left[\text{Red} \right] e^{-\Delta^{*}G_{a}(0)/RT} e^{(1-\alpha)fE}$$

$$j_{c} = vFk_{c}B_{a} \left[\text{Ox} \right] e^{-\Delta^{*}G_{c}/RT} e^{-\alpha fE}$$

$$j_c = \nu F k_c B_a \left[\text{Ox} \right] e^{-\Delta^* G_c / RT} e^{-\alpha f E}$$

now, if a voltage is supplied:

The Butler-Volmer equation

$$\eta = E' - E$$
 $j = j_0 (e^{(1-\alpha)f\eta} - e^{-\alpha f\eta})$

The Butler-Volmer equation

$$j = j_0 \left(e^{(1-\alpha)f\eta} - e^{-\alpha f\eta} \right)$$

• The low overpotential limit $f\eta \ll 1$, in practice $\eta < 0.01V$

$$j = j_0(1 + (1 - \alpha)f\eta + ... - 1 - \alpha f\eta - ...) \approx j_0 f\eta$$

$$\eta \approx \frac{j}{j_0 f}$$
 Ohm's law

• The high overpotential limit in practice $\eta \ge 0.12V$

positive overpotential: $j=j_0e^{(1-\alpha)f\eta}$

negative overpotential: $j=j_0e^{-\alpha f\eta}$

Electrode polarizability

- non-polarizable electrodes: potential changes only slightly with current,
 polarizable electrodes: potential changes significantly with current
- reference electrodes are highly non-polarizable

$$\eta \approx \frac{j}{j_0 f}$$

high exchange current is benefitial for low polarizatbility

Tafel plot

a plot of ln(j) vs. overpotential is called Tafel plot

Electrode Reactions

- Mass transport modes:
 - Diffusion: spontaneous movement due to concentration gradient
 - Convection: transport by gross physical movement, e.g. stirring or flowing the solution, or rotating/vibrating the electrode
 - Migration: movement of charged particles

$$J(x,t) = -D\frac{\partial C(x,t)}{\partial x} - \frac{zFDC}{RT}\frac{\partial \phi(x,t)}{\partial x} + C(x,t)V(x,t)$$

Mass transport mechanisms

Migration (for ions) in response to a gradient of potential

$$J_{m} = \sum_{i} \frac{-z_{i}F}{RT} D_{i} \left[i\right] \frac{\partial \varphi}{\partial x}$$

Diffusion in response to a concentration gradient

$$J_d = -D_A \frac{\partial [A]}{\partial x}$$

Convection in response to pressure gradient

$$J_c = [A]v$$

Concentration polarization

 concentration polarization - phenomena related to consumption of the reactive species on the electrode

at zero current:

$$E = E^{\theta} + \frac{RT}{zF} \ln a = E^{\theta} + \frac{RT}{zF} \ln \gamma + \frac{RT}{zF} \ln c$$

$$E = E^{0} + \frac{RT}{zF} \ln c$$

with current:

$$E' = E^0 + \frac{RT}{zF} \ln c'$$

$$\eta^c = E' - E = \frac{RT}{zF} \ln\left(\frac{c'}{c}\right)$$

Concentration polarization

$$\eta^c = E' - E = \frac{RT}{zF} \ln \left(\frac{c'}{c}\right)$$

Mass transport through the Nernst layer:

First Fick's law:
$$J = -D\left(\frac{\partial c}{\partial x}\right) = D\frac{c - c'}{\delta}$$

$$j = zFJ = zFD\frac{c - c'}{\delta}$$

limiting current density

$$j_{\lim} = zFD\frac{c}{\delta} = \frac{cRT\lambda}{zF\delta}$$

using Nernst-Einstein equation: $D = \frac{RT\lambda}{z^2 F^2}$

conc. overpotential vs current:

$$\eta^c = \frac{RT}{zF} \ln \left(1 - \frac{j\delta}{zcFD} \right)$$

Potential step experiment

$$O + ne \rightarrow R$$

- Experiment: potential is increased stepwise to some value, only O is initially present.
- in a planar geometry:

$$C_O(x,t) = C_O(b) \left[1 - erf \left(\frac{x}{\sqrt{4D_O t}} \right) \right]$$

$$\frac{\partial C}{\partial x} = \frac{C_O(b)}{\sqrt{4D_O t}}$$

Cottrell equation

Potential step experiment

 At a spherical electrode the situation is different as the diffusion equation will have another term:

$$\frac{\partial C(x,t)}{\partial t} = D \left[\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} \right]$$

$$i(t) = nFAD_{o} \frac{C_{o}(b)}{\sqrt{4D_{o}t}} + nFAD_{o} \frac{C_{o}(b)}{r}$$

$$Time independent term$$

 This leads to unique transport properties of microelectrodes (due to their small radius)

Chronoamperometry

 The potential is stepped to E₂>E_p, current is monitored as a function of time

Potential sweep experiments

Potential sweep experiment

- In the case of stirring, the distance a is maintained;
- The voltammogram will be sigmoidal in the case of stirring
- In aqueous solution distance a is typically 10-50μm for electrode rotation and 100-150 μm for solution stirring

Linear Sweep Voltammetry (LSW)

 Linearly varied potential is applied between working electrode and reference electrode while current is monitored.

$$E_{\rm p} = E^0 + 0.056/n$$

Kinetic and Catalytic Effects

- usually, there is another chemical reaction coupled to the electron transfer
 - consumption of reduced product

-regeneration of the oxidized reagent

$$Ox + ne^{-} = R$$

$$R + A \xrightarrow{k} Ox + B$$

Amperometric Sensors

- amperometric techniques have some selectivity as every RedOx reaction has it's own characteristic potential
- however the selectivity is limited unless modified electrodes are used

Differential pulse polarogram for a mixture of six cations

Amperometric Biosensors

- First Generation oxygen electrode based sensors
- Second Generation mediator based sensors
- Third Generation directly coupled enzyme electrodes

Possible glucose detection schemes

oxygen electrode based sensors

$$glucose + O_2 \xrightarrow{GOD} gluconic \ acid + H_2O_2$$

Analyte	Enzyme	Response time (min)	Stability (days)
Glucose	Glucose oxidase	2	>30
Cholesterol	Cholesterol oxidase	3	7
Monoamines	Monoamine oxidase	4	14
Oxalate	Oxalate oxidase	4	60
Lactate	Lactate oxidase	The state of the s	_
Formaldehyde	Aldehyde oxidase	_	_
Ethanol	Alcohol oxidase		_
Glycollate	Glycollate oxidase		
NADH	NADH oxidase		

Measuring oxygen:

$$O_2 + e^- \longrightarrow O_2^-$$
 E=-0.7V

Problems: fairly high potential (interference is probable), oxygen needs to be controlled and replenished (e.g. By oxygen generating reaction or by pumping oxygen containing buffer)

Measuring hydrogen peroxide:

$$H_2O_2 \longrightarrow 2H^+ + 2e^- + O_2$$
 E=+0.65V

Problem: still fairly high potential (interference from e.g. ascorbic asid)

Mediator Based Sensors

- Oxygen is substituted with another oxidizing agent (electron transfer agent)
- Iron ions or complexes are most common mediators

$$Fe(III) + e^- \longrightarrow Fe(II)$$

Free Fe3+ are subject to hydrolysis and precipitation

$$\begin{split} [Fe^{III}(CN)_6]^{3-} + e^- &\iff [Fe^{II}(CN)_6]^{4-} \quad (E^0 = +0.45 \text{ V}) \\ [Fe^{III}(Cp)_2]^+ + e^- &\iff Fe^{II}(Cp)_2 \quad (E^0 = +0.165 \text{ V}; \\ \text{ferrocene} \quad E_p(Ox) = +0.193 \text{ V}; \\ E_p(R) = +0.137 \text{ V}) \end{split}$$

glucose +
$$GOD_{Ox} \longrightarrow gluconolactone + $GOD_R + 2H^+$
 $GOD_R + 2Fc^+ \longrightarrow GOD_{Ox} + 2Fc$
 $2Fc - 2e^- \longrightarrow 2Fc^+$$$

Good Mediator

- Rapid reaction with enzyme
- Fast electron transfer kinetics
- Low overpotential
- Independent of pH
- Stable in Ox and R forms
- Doesn't react with oxygen
- Non toxic

Fc derivatives

Derivative	$E(V)^{a}$	$k (10^5 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})$
1,1'-Dimethyl	0.100	0.8
Acetic acid	0.142	_
Ferrocene ^b	0.165	0.3
Amidopentylamidopyrrole	0.200	2.07
Aminopropylpyrrole	0.215	0.75
Vinyl	0.253	0.3
Monocarboxylic acid	0.275	2.0
1,1'-Dicarboxylic acid	0.290	0.3
Methyltrimethylamino	0.387	5.3
Polyvinyl	0.435	_

^aVersus the saturated-caloinel electrode (SCE).

Various mediators (natural and artificial)

Natural	$E(V)^{\prime\prime}$	Artificial	$E(V)^a$
Cytochrome a ₃	+0.29	Hexacyanoferrate(III)	+0.45
Cytochrome c ₃	+0.24	2,6-Dichlorophenol	+0.24
Übiquinone	+0.10	Indophenol	+0.24
Cytochrome b	+0.08	Ferrocene	+0.17
Vitamin K ₂	-0.03	Phenazine methosulfate	± 0.07
Rubredoxin	-0.05	Methylene Blue	+0.04
Flavoproteins	-0.4 to $+0.2$	Phthalocyanine	-0.02
FAD/FADH ₂	-0.23	Phenosafranine	-0.23
FMN/FMNH ₂	-0.23	Benzylviologen	-0.36
NAD+/NADH	-0.32	Methylviologen	-0.46
NADP+/NADPH	-0.32		
Ferridoxin	-0.43		

[&]quot;Versus the standard hydrogen electrode (SHE).

How it works...

$$R \Longrightarrow Ox + e^{-}$$

$$E_R + Ox \Longrightarrow E_{Ox} + R$$

$$E_{Ox} + glucose \Longrightarrow E_{red} + gluconolactone$$

In real biosensors both GOD and Fc are immobilised

Directly Coupled Enzyme

- Generally, the enzyme might denature on the electrode surface;
- electron transfer reaction might be slow
- Thus, the surface has to be modified...

- Enzymes can be directly wired to the electrode using organic conducting salts (e.g.TTF/TCNQ) or redox polymers
- Enzymes can be modified to facilitate electron transfer and attachement

$$\begin{bmatrix} S \\ S \end{bmatrix}$$
TTF

Possible glucose detection schemes

Design example: Glucose sensor

- Aim: for use by patient at home (should be simple, reliable and cheap)
- Performance: blood glucose range 1.1-33.3 mM; precision 3-8%; test time 30s; life time 6 month.
- Selective element: Glucose Oxidase inexpensive, stable over long period
- Transducer: Amperometric (GOD+Fc) cheap, reliable, easy read-out with LCD.
- Immobilisation: covalent bonding for long life (graphite foil coated with Fc, GOD immobilised)

ExacTech Glucose Sensor

electrode

carbon track

layer

Problems

- Atkins 25.16a. The transfer coefficient of a certain electrode in contact with M³+ and M⁴+ in aqueous solution at 25°C is 0.39. The current density is found to be 55.0 mA·cm⁻² when the overvoltage is 125 mV. What is the overvoltage required for a current density of 75 mA·cm⁻²?
- Atkins 25.20a Estimate the limiting current density at an electrode in which the concentration of Ag⁺ ions is 2.5 mmol dm⁻³ at 25°C. The thickness of the Nernst diffusion layer is 0.40 mm. The ionic conductivity of Ag⁺ at infinite dilution and 25°C is 6.19 mS m² mol⁻¹.
- Atkins 25.26a What is the effective resistance at 25°C of an electrode interface when the overpotential is small? Evaluate it for 1.0 cm² (a) Pt,H₂|H⁺,(j₀=7.9x10⁻⁴ A/cm²), (b) Hg,H₂|H⁺ (j₀=7.9x10⁻¹³ A/cm²) electrodes.