Lecture 5

Mechanical biosensors.
Microcantilevers. Thermal sensors.

Mechanical Mass Sensitive Sensors

 Mechanical shift of a resonance can be used for detection of mass change (due to adsorption or chemical reaction)

Mechanical Mass Sensitive Sensors

Quartz crystal - The heart of the QCM

Sauerbrey equation:

$$\Delta f = -[2 \times f_0^2 \times \Delta m] / [A \times (\rho_q \mu_q)^{1/2}], \text{ where}$$

 Δf = measured frequency shift,

fo = resonant frequency of the fundamental mode of the crystal,

 Δm = mass change per unit area (g/cm²),

A = piezo-electrically active area,

 ρ_q = density of quartz, 2.648 g/cm³,

 μ_q = shear modulus of quartz, 2.947×10¹¹ g/cm×s².

$$\Delta f = -2.3 \times 10^6 f^2 \Delta m/A$$

Quartz Crystal Microbalance

Mechanical Mass Sensitive Sensors

Gas-Sensor Applications

Mechanical Mass Sensitive Sensors

Surface Acoustic Waves

Cantilever-based sensing

- label-free measurements
- low fabrication costs, mass production possible
- high sensitivity

Cantilever-based biosensing

- static bending
- frequency change
- reference is required

Static mode sensing

Static mode:

- essential to functionalize one side of the cantilever only.
- cantilever deformation is related to the interaction forces (binding to the receptor and the surface as well as intermolecular interaction incl.
 - electrostatic,
 - van der Waals,
 - changes in surface hydrophobicity
 - conformational changes of the adsorbed molecules

Stoney formula (1909):

$$\Delta \sigma_1 - \Delta \sigma_2 = \frac{Eh^2}{3L^2(1-\nu)} \Delta z$$

 $(\Delta \sigma_1 - \Delta \sigma_2)$ – surface stress change between top and bottom,

E – Young's modulus

L and h - length and thickness of the cantilever

v – Poissonmodule

 Δz – cantilever free end displacement

Dynamic mode sensing

- Measures the total mass adsorbed
- Can be used with both sides functionalization
- Attogram sensitivities can be achieved
- Main difficulties related to the energy dissipation and low Q-factor in fluids

$$\Delta f = \sqrt{3} \, \frac{f_0}{Q} \qquad \qquad \text{operating frequency}$$
 operating frequency

- using high eigen frequency cantilevers
- performing measurements in air after functionalization
- using higher harmonics
- using external feedback (Q-control)

Detection Techniques

Most used technique!

- Optical beam deflection
 - sub-angstrom resolution achievable
 - array measurement (difficult!) achievable using photodetector arrays or scanning laser sources
- Piezoresistivity
- Piezoelectricity
- Interferometry,
- Capacitance

Detection techniques

Detection via waveguide coupling

Functionalization of Microcantilevers

Mainly based on Au-thiols binding

 binding of mercapto-acids with subsequent EDC-NHS esterification and binding of a protein via an amino group

- Direct binding of S-terminated DNA molecules
- Binding to silicon via silane chemistry
- Coating with poly-L-lysine, nitrocellulose etc.

Functionalization of Microcantilevers

Challenging!

insertion into microfluidic channels

insertion into microcapillaries

individual coating with inkjet dispenser

Sensing with cantilevers

 static bending detection is very sensitive to the environment (pH, ionic strength). Functionalization allows to detect specific ions

Detection of CrO4 ions using ATAC ((3-Acrylamidopropyl)-trimethylammonium chloride) hydrogel coated cantilevers

Sensing with cantilevers

Genomics:

- hybridization of DNA (1bp mismatch can be detected)
- melting temperature
- conformational changes in DNA

Sensing with cantilevers

Immunosensing (incl. detecting bacteria and spores)

Further development

- Cantilevers with surface nanostructures show better sensitivity
- cantilevers of different geometry
- polymer cantilevers (SU8, PDMS)
- cantilever arrays (lab-on-achip)
- cantilever integrated in microfluidic sysems

Cantilever-based biosensing

- Canteon technology (NanoNord)
 - Static bending is detected
 - Piezoresistive cantilvers
 - •Can be used in referenced mode
 - Placed in a fluidic catridge

Thermal sensors

 Thermistors – based on strong change of resistance with temperature – can be used to measure heat production in chemical reactions

glucose +
$$O_2$$
 + H_2O \xrightarrow{GOD} gluconic acid + H_2O_2

$$\xrightarrow{\Delta H = -80 \text{ kJ mol}^{-1}}$$
 Enzyme reaction
$$CO(NH_2)_2 + H_2O \xrightarrow{\text{urease}} CO_2 + 2NH_3$$

$$CH_4 + 2O_2 \xrightarrow{\Delta H = -800 \text{ kJ mol}^{-1}} CO_2 + 2H_2O$$

Catalytic gas sensor

Thermal sensors

Thermal conductivity devices (typically gas chromatography)

Laboratory exercise

Cyclic voltammetry study of ferrocyanide redox reaction.

Aims:

- experimentally find electrochemical potential for ferroganide redox reaction
- check peak current dependence on concentration and voltage scan rate
- observe transition from reversible to irreversible behaviour, find α for the reaction (if possible \odot)

Laboratory exercise

Theory

reversible limit

$$\Delta E_{pp} = 2.218 \frac{RT}{F} \approx 57 mV (at 298K)$$

$$I_p = 0.446FA[C_0]\sqrt{\frac{FDv}{RT}}$$

irreversible limit

$$\Delta E_{pp} \propto \frac{RT}{\alpha F} \ln v; \Delta E_{pp} = \frac{59.4 mV}{\alpha F} \log_{10} v + const (at 298K)$$

$$I_p = 0.496\sqrt{\alpha} FA \left[C_0\right] \sqrt{\frac{FDv}{RT}}$$

peak-peak distance

reversible limit

irreversible limit

Laboratory exercise

Experiment

- prepare solutions
 - 100mM KCI
 - 100mM K₃Fe(CN)₆ (stock) and 100mM K₄Fe(CN)₆ (stock)
- Measurements:
 - Pt film working and counter electrodes, Ag/AgCl reference
 - working concentrations 2mM, 5mM, 10mM, 20mM (at 100 mV/s)
 - scan rates 50mV/s, 100mV/s, 200mV/s, 500mV/s, 1V/s, 2V/s, 5V/s, 10V/s (at 5mM)
- Processing:
 - use diffusion coefficient from Roffel and Graaf article.