Lecture 7

Data processing in SPR Surface Reaction Kinetics on a Biochip

Surface plasmon sensor

Principle of affinity SP biosensor

- Processing steps:
 - zero response to the base line before analyte injection
 - align all responses so that injection starts at the same point
 - subtract the reference cell response
 - subtract the averaged response to buffer injection

- Software:
 - Scrubber2, (Biosensor Tools <u>http://www.cores.utah.edu/Interaction/scrubber.html</u>)
 - BiaEvaluation (Biacore AB, Sweden)

General biosensor model

Rates of chemical reactions

Consider reaction:

$$A+2B -> 3C+D$$

The rates are:

$$\frac{d[D]}{dt} = \frac{1}{3} \frac{d[C]}{dt} = -\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt}$$

We can define rate of reaction:

$$0 \to 3C + D - A - 2B$$

$$v = \frac{d[\xi]}{dt}, dn_j = v_j d\xi$$

Rate laws

 Rate of reaction is often proportional to the concentration raised to some power, e.g.

$$v = k[A]^a [B]^b$$

- Overall order of the reaction: a+b+...
 order of the reaction with respect to A: a
- Reactions of <u>zero</u> order

$$v = k$$

First order reaction close to equilibrium

Consider reactions:

$$A \to B$$
$$B \to A$$

 At equilibrium forward and reverse rates are the same

$$\frac{d[A]}{dt} = \frac{d[B]}{dt},$$

$$k[A]_{eq} = k'[B]_{eq}, K = \frac{k}{k'} = \frac{[B]_{eq}}{[A]_{eq}}$$
Equilibrium constant

Modeling Molecular Interaction in SPR

 The aim: design a model kinetic equation that describes how amount of ligand-analyte depends on time, concentration of analyte and amount of free binding sites left.

The signal is proportional to the mass (per unit area)

surface

concentration

of a ligand

of bound analyte:

mass of the analyte

$$\xi = const \cdot M_A \cdot \gamma$$

The maximal signal:

$$\xi_{S} = const \cdot M_{A} \cdot \beta_{R}$$
$$\xi / \xi_{S} = \gamma / \beta$$

sensor surface

For an analyte A (in solution) and a receptor R (immobilized)

$$A + R \xrightarrow{k_a} AR$$

Association rate:

$$\frac{d\gamma_a}{dt} = k_a \alpha (\beta - \gamma) \qquad \alpha = [A]; \beta = [R]_0; \gamma = [RA]$$

Dissociation rate:

$$\frac{d\gamma_a}{dt} = -k_d \gamma$$

• Summing:

$$\frac{d\gamma}{dt} = k_a \alpha (\beta - \gamma) - k_d \gamma$$

 Let's consider a situation when a concentration of analyte a₀ is injected into the volume V with the surface S.

$$\alpha V + \gamma S = \alpha_0 V = const$$

$$\frac{d\gamma}{dt} = k_a \left(\alpha_0 - \frac{S}{V}\gamma\right) (\beta - \gamma) - k_d \gamma$$

At the equilibrium (when time passed)

$$\frac{d\gamma}{dt} = 0 \quad K = \frac{k_a}{k_d} = \frac{\gamma_{eq}}{\left(\alpha_0 - \frac{S}{V}\gamma_{eq}\right)\left(\beta - \gamma_{eq}\right)}$$

$$\frac{d\gamma}{dt} = k_a \left(\alpha_0 - \frac{S}{V}\gamma\right) (\beta - \gamma) - k_d \gamma$$

• if the concentration of analyte is high:

$$\frac{d\gamma}{dt} = k_a \alpha_0 \left(\beta - \gamma\right) - k_d \gamma; \quad K = \frac{k_a}{k_d} = \frac{\gamma_{eq}}{\alpha_0 \left(\beta - \gamma_{eq}\right)}$$

Equilibrium analysis (not affected by mass transport)

$$\frac{\xi_{EQ}}{\xi_S} = \frac{\gamma_{eq}}{\beta} = \frac{K\alpha_0}{(1 + K\alpha_0)}$$

Other kinetic models

 Zero-order reaction following initial binding (conformational change in AR complex that blocks dissociation)

$$A + R \xrightarrow{k_{a1}} AR \xrightarrow{k_{a2}} AR *$$

$$\xrightarrow{d\gamma_2} = k_{a2}\gamma_1 - k_{d2}\gamma_2$$

$$\xrightarrow{d\gamma_1} = k_{a1}\alpha_0(\beta - \gamma_1 - \gamma_2) - k_{d1}\gamma_1 - k_{a2}\gamma_1 + k_{d2}\gamma_2$$

As the total mass is measured by the sensor

$$\xi/\xi_S = (\gamma_1 + \gamma_2)/\beta$$

Other kinetic models

 Parallel pseudo first-order reactions (e.g. two different receptors or two different analytes)

$$A + R_1 \xrightarrow{k_{a1}} AR_1$$

$$A + R_2 \xrightarrow{k_{a2}} AR_2$$

$$\beta_{1} = [R_{1}] = p\beta \qquad \beta_{2} = [R_{2}] = (1-p)\beta$$

$$\frac{d\gamma_{2}}{dt} = k_{a1}\alpha_{0}(\beta_{1} - \gamma_{1}) - k_{d1}\gamma_{1}$$

$$\frac{d\gamma_{1}}{dt} = k_{a2}\alpha_{0}(\beta_{2} - \gamma_{2}) - k_{d2}\gamma_{2}$$

$$\xi / \xi_{S} = (\gamma_{1} + \gamma_{2}) / \beta$$

Other kinetic models

 Multivalent receptor binding: single receptor binds more than one molecule (e.g. streptavidin, antibodies, triplex formation)

$$A + R \xrightarrow{k_{a1}} AR$$

$$AR + A \xrightarrow{k_{a2}} ARA$$

$$\beta_{1} = [R_{1}] = p\beta \qquad \beta_{2} = [R_{2}] = (1-p)\beta$$

$$\frac{d\gamma_{2}}{dt} = k_{a2}\alpha_{0}\gamma_{1} - k_{d2}\gamma_{2}$$

$$\frac{d\gamma_{1}}{dt} = k_{a1}\alpha_{0}(\beta - \gamma_{1} - \gamma_{2}) - k_{d1}\gamma_{1} - k_{a2}\alpha_{0}\gamma_{1} + k_{d2}\gamma_{2}$$

$$\xi / \xi_{S} = (\gamma_{1} + 2\gamma_{2}) / \beta$$

Thermodynamics in SPR

 change in Gibbs energy can be found from equilibrium constant:

$$\Delta G^0 = -RT \ln K$$

 Enthalpy and entropy of the reaction can be found from temperature dependence (van't Hoff equation)

$$\Delta G = \Delta H - T \Delta S$$

 Activation energy for association and dissociation can be found from Arrhenius equation:

$$k = P \exp(-E^{act} / RT)$$

Association/Dissociation in an experiment

Mass transport effects

In a flow cell:

flow is laminar

volume flow rate

Reynolds number:

$$Re = \frac{\rho \Phi}{\eta h}$$

For water at 20°C:
$$Re = (\Phi/h) \cdot 0.998 \, mm^2 / s$$

flow is laminar for Re<2100.

velocity profile is parabolic

$$v_{\text{max}} = \frac{3}{2} \frac{\Phi}{hw}$$

 in a case of no diffusion the transport is by convection

$$\frac{\partial \alpha(x, y, t)}{\partial t} = -4v_{\text{max}} \frac{y}{h} \left(1 - \frac{y}{h} \right) \frac{\partial \alpha(x, y, t)}{\partial x}$$

Mass transport effects

Let's take into account diffusion

$$\frac{\partial \alpha(x, y, t)}{\partial t} =$$

$$= D \left(\frac{\partial^2 \alpha(x, y, t)}{\partial x^2} + \frac{\partial^2 \alpha(x, y, t)}{\partial y^2} \right) -$$

$$-4v_{\text{max}} \frac{y}{h} \left(1 - \frac{y}{h} \right) \frac{\partial \alpha(x, y, t)}{\partial x}$$

Mass transport effects

- Complete model can be solved numerically like following
 - Navier-Stokes and Convection-Diffusion in the volume, e.g.

$$\frac{\partial \alpha(x, y, t)}{\partial t} = D \left(\frac{\partial^2 \alpha(x, y, t)}{\partial x^2} + \frac{\partial^2 \alpha(x, y, t)}{\partial y^2} \right) - 4v_{\text{max}} \frac{y}{h} \left(1 - \frac{y}{h} \right) \frac{\partial \alpha(x, y, t)}{\partial x}$$

Reaction kinetics on a biochip

$$\frac{d\gamma(x,t)}{dt} = k_a \alpha(x,0,t) [\beta - \gamma(x,t)] - k_d \gamma(x,t)$$

Boundary condition at the biochip

$$D\frac{\partial \alpha(x,0,t)}{\partial y} = \frac{\partial \gamma(x,t)}{\partial t}$$

SPR case: Mass transfer+Reaction

Simplified model of mass transport

Assumptions:

analyte transport in x direction is convective (no diffusion)

$$Pe = \frac{v_{\text{max}}h^2}{Dl} > 1$$

 velocity dependence v(y) considered linear (as only area near surface is important)

$$\frac{\partial \alpha(x, y, t)}{\partial t} = D \left(\frac{\partial^2 \alpha(x, y, t)}{\partial y^2} \right) - 4v_{\text{max}} \frac{y}{h} \frac{\partial \alpha(x, y, t)}{\partial x}$$

– "two compartment model": bulk of the channel with convection transport and constant α and layer of thickness h_l next to the sensor.

$$\frac{d\alpha}{dt} = \frac{1}{h_l} \left[k_M \left(\alpha_0 - \alpha \right) - \frac{d\gamma}{dt} \right] \qquad k_M \approx 1.282 \left(\frac{v_{\text{max}} D^2}{hl} \right)^{1/3}$$

- Software:
 - Scrubber2, (Biosensor Tools <u>http://www.cores.utah.edu/Interaction/scrubber.html</u>)
 - BiaEvaluation (Biacore AB, Sweden)

• Global analysis:
$$A + B \xrightarrow[k_D]{k_A} AB$$

- All responses within the data set are fitted to the same values of k_{Δ} and k_{D} .
- Chi-squared is calculated for all curves

mass transfer limited
$$A \xrightarrow[k_m]{k_m} A + B \xrightarrow[k_D]{k_A} AB$$

 conditions to reduce mass transfer effect: low ligand density, high flow rate.

Protein-antibody interaction

Best fit using bimolecular model

Best fit using mass-transport model

Thermodynamics for drug discovery

Problem

 Derive equations for parallel pseudo first-order reaction kinetics with a single receptor and two different analytes.