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ABBREVIATIONS AND SYMBOLS

Dielectric constant
Overvoltage
Ionic strength
Kinematic viscosity
Angular velocity i

FUNDAMENTAL CONCEPTS

1.1 WHY ELECTROANALYSIS?

Electroanalytical techniques are concerned with the interplay between
electricity and chemistry, namely, the measurements of electrical quantities,
such as current, potential, or charge and their relationship to chemical param-
eters. Such use of electrical measurements for analytical purposes has found
a vast range of applications, including environmental monitoring, industrial
quality control, or biomedical analysis. Advances since the mid-1980s, in-
cluding the development of ultramicroelectrodes, the design of tailored inter-
faces and molecular monolayers, the coupling of biological components and
electrochemical transducers, the synthesis of ionophores and receptors
containing cavities of molecular size, the development of ultratrace voltam-
metric techniques or of high-resolution scanning probe microscopies, and
the microfabrication of molecular devices or efficient flow detectors, have led
to a substantial increase in the popularity of electroanalysis and to its expan-
sion into new phases and environments. Indeed, electrochemical probes are
receiving a major share of the attention in the development of chemical
sensors.

In contrast to many chemical measurements, which involve homogeneous
bulk solutions, electrochemical processes take place at the electrode-solution
interface. The distinction between various electroanalytical techniques reflects
the type of electrical signal used for the quantitation. The two principal types
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of electroanalytical measurements are potentiometric and potentiostatic. Both
types require at least two electrodes (conductors) and a contacting sample
(electrolyte) solution, which constitute the electrochemical cell. The electrode
surface is thus a junction between an ionic conductor and an electronic con-
ductor. One of the two electrodes responds to the target analyte(s) and is thus
termed the indicator (or working) electrode. The second one, termed the ref-
erence electrode, is of constant potential (i.e., independent of the properties
of the solution). Electrochemical cells can be classified as electrolytic (when
they consume electricity from an external source) or galvanic (if they are used
to produce electrical energy).

Potentiometry (discussed in Chapter 5), which is of great practical impor-
tance, is a static (zero-current) technique in which the information about the
sample composition is obtained from measurement of the potential estab-
lished across a membrane. Different types of membrane materials, possessing
different ion recognition processes, have been developed to impart high selec-
tivity. The resulting potentiometric probes have thus been widely used for
several decades for direct monitoring of ionic species such as protons or
calcium, fluoride, and potassium ions in complex samples.

Controlled-potential (potentiostatic) techniques deal with the study of
charge transfer processes at the electrode-solution interface, and are based on
dynamic (non-zero-current) situations. Here, the electrode potential is being
used to derive an electron transfer reaction and the resultant current is meas-
ured. The role of the potential is analogous to that of the wavelength in optical
measurements. Such a controllable parameter can be viewed as "electron pres-
sure," which forces the chemical species to gain or lose an electron (reduction
or oxidation, respectively).^Accordingly, the resulting current reflects the rate
at which electrons move across the electrode-solution interface. Potentiosta-
tic techniques can thus measure any chemical species that is electroactive, that
is, that can be made to reduce or oxidize. Knowledge of the reactivity of func-
tional group in a given compound can be used to predict its electroactivity.
Nonelectroactive compounds may also be detected in connection with indi-
rect or derivatization procedures.

The advantages of controlled-potential techniques include high sensitivity,
selectivity toward electroactive species, a wide linear range, portable and
low-cost instrumentation, speciation capability, and a wide range of electrodes
that allow assays of unusual environments. Several properties of these
techniques are summarized in Table 1.1. Extremely low (nanomolar)
detection limits can be achieved with very small (5-20-uL) sample volumes,
thus allowing the determination of analyte amounts ranging from 1(T13 to
10~15mol on a routine basis. Improved selectivity may be achieved via the
coupling of controlled-potential schemes with chromatographic or optical
procedures.

This chapter attempts to give an overview of electrode processes, together
with discussion of electron transfer kinetics, mass transport, and the
electrode-solution interface.
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TABLE 1.1 Properties of Controlled-Potential Techniques'1

Technique

DC polarography
NP polarography
DP polarography
DP voltammetry
SW polarography
AC polarography
Chronoamperometry
Cyclic voltammetry
Stripping voltammetry
Adsorptive stripping

voltammetry
Adsorptive stripping

voltammetry
Adsorptive catalytic

stripping voltammetry

Working
Electrode

DME
DME
DME
Solid
DME
DME
Stationary
Stationary
HMDE, MFE
HMDE

Solid

HMDE

Detection
Limit (M)

io-5

5 x 1(T7

io-8

5 x 10-7 '
io-8

5 x 10-7

io-5

io-5

10-io

10-io

io-9

io-12

Speed
(Time per

Cycle) (min)

3
3
3
3
0.1
1
0.1
0.1-2
3-6
2-5

4-5

2-5

Response
Shape

Wave
Wave
Peak
Peak
Peak
Peak
Transient
Peak
Peak
Peak

Peak

Peak

a All acronyms used here are included in the "Abbreviations and Symbols" list following the
Preface.

1.2 FARADAIC PROCESSES

The objective of controlled-potential electroanalytical experiments is to
obtain a current response that is related to the concentration of the target
analyte. Such an objective is accomplished by monitoring the transfer of elec-
tron^) during the redox process of the analyte:

O+mT^R (1.1)

where O and R are the oxidized and reduced forms, respectively, of the redox
couple. Such a reaction will occur in a potential region that makes the elec-
tron transfer thermodynamically or kinetically favorable. For systems con-
trolled by the laws of thermodynamics, the potential of the electrode can be
used to establish the concentration of the electroactive species at the surface
[C0(G,r) and CR(0,r)] according to the Nernst equation

(1.2)
nF 'CR(0,f)

where E° is the standard potential for the redox reaction, R is the universal
gas constant (8.314JK^mol'1), T is the Kelvin temperature, n is the number
of electrons transferred in the reaction, and F is the Faraday constant [96,487 C
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(coulombs)]. On the negative side of £°, the oxidized form thus tends to be
reduced, and the forward reaction (i.e., reduction) is more favorable. The
current resulting from a change in oxidation state of the electroactive species
is termed the faradaic current because it obeys Faraday's law (i.e., the reaction
of 1 mol of substance involves a change of n x 96,487 C). The faradaic current
is a direct measure of the rate of the redox reaction. The resulting
current-potential plot, known as the voltammogram, is a display of current
signal [vertical axis (ordinate)] versus the excitation potential [horizontal axis
(abscissa)]. The exact shape and magnitude of the voltammetric response is
governed by the processes involved in the electrode reaction. The total current
is the summation of the faradaic currents for the sample and blank solutions,
as well as the nonfaradaic charging background current (discussed in Section

1.3).
The pathway of the electrode reaction can be quite complicated, and

takes place in a sequence that involves several steps. The rate of such
reactions is determined by the slowest step in the sequence. Simple reactions
involve only mass transport of the electroactive species to the electrode
surface, electron transfer across the interface, and transport of the product
back to the bulk solution. More complex reactions include additional chemi-
cal and surface processes that either precede or follow the actual electron
transfer. The net rate of the reaction, and hence the measured current, may
be limited by either mass transport of the reactant or the rate of electron
transfer. The more sluggish process will be the rate-determining step. Whether
a given reaction is controlled by mass transport or electron transfer is
usually determined by the type of compound being measured and by various
experimental conditions (electrode material, media, operating potential,
mode of mass transport, time scale, etc.). For a given system, the rate-deter-
mining step may thus depend on the potential range under investigation.
When the overall reaction is controlled solely by the rate at which the
electroactive species reach the surface (i.e., a facile electron transfer), the
current is said to be mass-transport-limited. Such reactions are called nernst-
ian or reversible, because they obey thermodynamic relationships. Several
important techniques (discussed in Chapter 4) rely on such mass-transport-
limited conditions.

1.2.1 Mass-Transport-Controlled Reactions

Mass transport occurs by three different modes:

. Diffusion—the spontaneous movement under the influence of concen-
tration gradient, from regions of high concentrations to regions of lower
ones, aimed at minimizing concentration differences.

• Convection—transport to the electrode by a gross physical movement; the
major driving force for convection is an external mechanical energy asso-
ciated with stirring or flowing the solution or rotating or vibrating the
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electrode (i.e., forced convection). Convection can also occur naturally
as a result of density gradients.

• Migration—movement of charged particles along an electrical field (i.e.,
where the charge is carried through the solution by ions according to their
transference number).
These modes of mass transport are illustrated in Figure 1.1.

The flux (/), a common measure of the rate of mass transport at a fixed
point, is defined as the number of molecules penetrating a unit area of an imag-
inary plane in a unit of time and is expressed in units of molcirfV1. The flux
to the electrode is described mathematically by a differential equation, known
as the Nernst-Planck equation, given here for one dimension

(1.3)

Figure 1.1 The three modes of mass transport. (Reproduced with permission from
Ref. 1.)
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where D is the diffusion coefficient (cm2/s); [3C(x,t)]/3x is the concentration
gradient (at distance x and time t)\ [d$(x,t)]/dx is the potential gradient; z and
C are the charge and concentration, respectively, of the electroactive species;
and V(x,i) is the hydrodynamic velocity (in the x direction). In aqueous media,
D usually ranges between 10~5 and 10~6cm2/s. The current (/) is directly pro-
portional to the flux and the surface area (A):

i = -nFAJ (1.4)

As indicated by Eq. (1.3), the situation is quite complex when the three
modes of mass transport occur simultaneously. This complication makes it dif-
ficult to relate the current to the analyte concentration. The situation can be
greatly simplified by suppressing the electromigration through the addition of
excess inert salt. This addition of a high concentration of the supporting elec-
trolyte (compared to the concentration of electroactive ions) helps reduce the
electrical field by increasing the solution conductivity. Convection effects can
be eliminated by using a quiescent solution. In the absence of migration and
convection effects, movement of the electroactive species is limited by diffu-
sion. The reaction occurring at the surface of the electrode generates a con-
centration gradient adjacent to the surface, which in turn gives rise to a
diffusional flux. Equations governing diffusion processes are thus relevant to
many electroanalytical procedures.

According to Pick's first law, the rate of diffusion (i.e., the flux) is directly
proportional to the slope of the concentration gradient:

J(x,t) = -
,ac(x,t)

(1.5)

Combination of Eqs. (1.4) and (1.5) yields a general expression for the current
response:

/ = nFAD
9C(x,t)

(1.6)

Hence, the current (at any time) is proportional to the concentration gradient
of the electroactive species. As indicated by the equations above, the diffu-
sional flux is time-dependent. Such dependence is described by Pick's second
law (for linear diffusion):

9C(x.t) 32C(x.t)
at dx2 (1.7)

This equation reflects the rate of change with time of the concentration
between parallel planes at points x and (x + dx) (which is equal to the differ-
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ence in flux at the two planes). Pick's second law is valid for the conditions
assumed, namely, planes parallel to one another and perpendicular to the
direction of diffusion, specifically, conditions of linear diffusion. In contrast,
for the case of diffusion toward a spherical electrode (where the lines of flux
are not parallel but are perpendicular to segments of the sphere), Pick's second
law is expressed as

r 3 r (1.8)

where r is the distance from the center of the electrode. Overall, Pick's laws
describe the flux and the concentration of the electroactive species as func-
tions of position and time. The solution of these partial differential equations
usually requires application of a (Laplace transformation) mathematical
method. The Laplace transformation is of great value for such application, as
it enables the conversion of the problem into a domain where a simpler math-
ematical manipulation is possible. Details of using the Laplace transformation
are beyond the scope of this text, and can be found in Ref. 2. The establish-
ment of proper initial and boundary conditions (which depend on the
specific experiment) is also essential for this treatment. The current-
concentration-time relationships resulting from such treatment are described
below for several relevant experiments.

1.2.1.1 Potential-Step Experiment Let us see, for example, what happens
in a potential-step experiment involving the reduction of O to R, a potential
value corresponding to complete reduction of O, a quiescent solution, and a
planar electrode embedded in a planar insulator. (Only O is initially present
in solution.) The current-time relationship during such an experiment can be
understood from the resulting concentration-time profiles. Since the surface
concentration of O is zero at the new potential, a concentration gradient is
established near the surface. The region within which the solution is depleted
of O is known as the diffusion layer, and its thickness is given by 8. The con-
centration gradient is steep at first, and the diffusion layer is thin (see Fig. 1.2
for /]). As time goes by, the diffusion layer expands (to 52 and S3 at t2 and f3),
and hence the concentration gradient decreases.

Initial and boundary conditions in such an experiment include C0(xfl) =
C0(b) [i.e., at t = 0, the concentration is uniform throughout the system and
equal to the bulk concentration, C0(6)], C0(0,f) = 0 for t > 0 (i.e., at later times
the surface concentration is zero); and C0(jt,0) -> C0(b) as x —> oo (i.e., the
concentration increases as the distance from the electrode increases). Solution
to Pick's laws (for linear diffusion, i.e., a planar electrode) for these conditions
results in a time-dependent concentration profile:

= C0(b){l - erf[jt/(4ZV)1/2]} (1.9)
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Figure 1.2 Concentration profiles for different times after the start of a potential-step
experiment.

whose derivative with respect to x gives the concentration gradient at the
surface

N ' / 2
(1.10)

when substituted into Eq. (1.6) leads to the well-known Cottrell equation:

i(t) = nFAD0C0(b)/(nD0t)
1/2

(1.11)

Thus, the current decreases in proportion to the square root of time, with
(7iD00

1/2 corresponding to the diffusion-layer thickness.
Solving Eq. (1.8) (using Laplace transform techniques) will yield the time

evolution of the current of a spherical electrode:

+ nFAD0 C0/r (1.12)

The current response of a spherical electrode following a potential step thus
contains both time-dependent and time-independent terms—reflecting the
planar and spherical diffusional fields, respectively (Fig. 1.3)—becoming time
independent at long timescales. As expected from Eq. (1.12), the change from
one regime to another is strongly dependent on the radius of the electrode.

(a)

Figure 1.3 Planar (a) and spherical (b) diffusional fields at spherical electrodes.

The unique mass transport properties of ultramicroelectrodes (discussed in
Section 4.5.4) are attributed to shrinkage of the electrode radius.

L2.1.2 Potential-Sweep Experiments Let us move to a voltammetric
experiment involving a linear potential scan, the reduction of O to R and a
quiescent solution.The slope of the concentration gradient is given by (C0(b,0
- C0(0,f))/8, where C0(b,r) and C0(0,/) are the bulk and surface concentrations
of O. The change in the slope, and hence the resulting current, are due to
changes of both C0(0,r) and 8. First, as the potential is scanned negatively and
approaches the standard potential (£°) of the couple, the surface concentra-
tion rapidly decreases in accordance with the Nernst equation [Eq. (1 2)] For
example, at a potential equal to E° the concentration ratio is unity [C0(0,0/
CR(0,0 = 1]. For a potential 59mV more negative than E°, CR(0,/) is present
at 10-fold excess [C0(0,/)/CR(0,0] = '/,„(« = 1). The decrease in C0(0 t) is
coupled with an increase in the diffusion-layer thickness, which dominates the
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change in slope after C0(0,r) approaches zero. The net result is a peak-
shaped voltammogram. Such current-potential curves and the correspond-
ing concentration-distance profiles (for selected potentials along the scan)
are shown in Figure 1.4. As will be discussed in Section 4.5.4, shrinking the
electrode dimension to the micrometer domain results in a sigmoid-shaped
voltammetric response under quiescent conditions, characteristic of the dif-
ferent (radial) diffusional field and higher flux of electroactive species of
ultramicroelectrodes.

Let us see now what happens in a similar linear scan voltammetric experi-
ment, but utilizing a stirred solution. Under these conditions, the bulk con-
centration (C0(b.o) *s maintained at a distance 5 by the stirring. It is not
influenced by the surface electron transfer reaction (as long as the electrode-
area : solution-volume ratio is small). The slope of the concentration-distance
profile {[C0(b,r) - C0(0,f)]/5) is thus determined solely by the change in the
surface concentration [C0(0,f)]. Hence, the decrease in C0(0,f) during the
potential scan (around E°) results in a sharp rise in the current. When a poten-
tial more negative than E° by 118mV is reached, C0(0,r) approaches zero, and
a limiting current (/,) is achieved:

nFAD0C0(bj)
8

(1.13)

Distance

Figure 1.4 Concentration profiles (left) for different potentials during a linear sweep
voltammetric experiment in unstirred solution. The resulting voltammogram is shown
on the right, along with the points corresponding to each concentration gradient.
(Reproduced with permission from Ref. 1.)
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The resulting voltammogram thus has a sigmoidal (wave) shape. By increas-
ing the stirring rate (£7), the diffusion layer thickness becomes thinner, accord-
ing to

ua (1.14)

where B and a are constants for a given system. As a result, the concentration
gradient becomes steeper (see Fig. 1.5, curve b), thereby increasing the limit-
ing current. Similar considerations apply to other forced convection systems,
including those relying on solution flow or electrode rotation (see Sections 3.6
and 4.5, respectively). For all of these hydrodynamic systems, the sensitivity of
the measurement can be enhanced by increasing the convection rate.

Initially it was assumed that no solution movement occurs within the dif-
fusion layer. Actually, a velocity gradient exists in a layer, termed the hydro-
dynamic boundary layer (or the Prandtl layer), where the fluid velocity
increases from zero at the interface to the constant bulk value (£7). The thick-
ness of the hydrodynamic layer 5H is related to that of the diffusion layer

(1.15)

where v is kinematic viscosity. In aqueous media (with v ~ 10 2cm2/s and D ~
10~5cm2/s), 5H is approximately 10-fold larger than 8, indicating negligible con-

s"c
o

c=o
Distance

Figure 1.5 Concentration profiles for two rates of convection transport: low (curve a)
and high (curve b).
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vection within the diffusion layer. The discussion above applies to other
forced convection systems, such as flow detectors or rotating electrodes (see
Sections 3.6 and 4.5, respectively). Layer thickness (5) values of 10-50 jim and
100-150 (im are common for electrode rotation and solution stirring, respec-
tively. Additional means for enhancing the mass transport and thinning the
diffusion layer, including the use of power ultrasound, heated electrodes, or
laser activation, are also being studied (3,4). These methods may simultane-
ously minimize surface fouling effects, as desired for retaining the surface
reactivity.

1.2.2 Reactions Controlled by the Rate of Electron Transfer

In this section we consider experiments in which the current is controlled by
the rate of electron transfer (i.e., reactions with sufficiently fast mass trans-
port). The current-p'otential relationship for such reactions is different from
those discussed (above) for mass-transport-controlled reactions.

Consider again the electron transfer reaction: O + ne~ ̂  R; the actual elec-
tron transfer step involves transfer of the electron between the conduction
band of the electrode and a molecular orbital of O or R (e.g., for a reduction,
from the conduction band into an unoccupied orbital in O). The rate of the
forward (reduction) reaction Vf is first-order in O:

while that of the reversed (oxidation) reaction Vb, is first-order in R:

(1-16)

(1.17)

where fcf and kb are the forward and backward heterogeneous rate constants,
respectively. These constants depend on the operating potential according to
the following exponential relationships:

kf = k°exp[-anF(E - E°)/RT]

kb = £°exp[(l - a)nF(E - E°)/RT]

(1.18)

(1.19)

where k° is the standard heterogeneous rate constant and a is the transfer
coefficient. The value of k° (in cm/s) reflects the reaction between the partic-
ular reactant and the electrode material used. The value of a (between zero
and unity) reflects the symmetry of the free-energy curve (with respect to the
reactants and products). For symmetric curves, a will be close to 0.5; a is a
measure of the fraction of energy that is put into the system used to actually
lower the activation energy (see discussion in Section 1.2.2.1). Overall, Eqs.
(1.18) and (1.19) indicate that by changing the applied potential, we influence
k{ and kb in an exponential fashion. Positive and negative potentials thus speed

FARADAIC PROCESSES 13

up the oxidation and reduction reactions, respectively. For an oxidation, the
energy of the electrons in the donor orbital of R must be equal to or higher
than the energy of electrons in the electrode. For reduction, the energy of the
electrons in the electrode must be higher than their energy in the receptor
orbital of R.

Since the net reaction rate is

and as the forward and backward currents are proportional to Vt and Vb,
respectively

nFAV{

nFAVb

(1.21)

(1.22)

the overall current is given by the difference between the currents due to the
forward and backward reactions:

/net = if -/b = nFA[ktC0(09t) - kbCR (O,/)] (1.23)

By substituting the expressions for k{ and kb [Eqs. (1.17) and (1.18), respec-
tively], one obtains the Butler-Volmer equation:

nFAk°{C0(0,t)exp[-anF(E - E°)/RT]

- CR (0,f )exp[(l - a)nF(E - E*)/RT]} (1.24)

which describes the current-potential relationship for reactions controlled
by the rate of electron transfer. Note that the net current depends on both
the operating potential and the surface concentration of each form of the
redox (reduction-oxidation) couple. For example, Figure 1.6 displays
the current-potential dependence for the case where C0(0,f) = CR(0,f) and
oc = 0.50. Large negative potentials accelerate the movement of charge in the
cathodic direction, and also decelerate the charge movement in the opposite
direction. As a result, the anodic current component becomes negligible and
the net current merges with the cathodic component. The acceleration and
deceleration of the cathodic and anodic currents are not necessarily as sym-
metric (as depicted in Fig. 1.6), and would differ for a values different from
0.5. Similarly, no cathodic current contribution is observed at sufficiently large
positive potentials.

When E = £°, no net current is flowing. This situation, however, is dynamic
with continuous movement of charge carriers in both directions and with equal
opposing anodic and cathodic current components. The absolute magnitude of
these components at E° is the exchange current (i0), which is directly propor-
tional to the standard rate constant:
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Figure 1.6 Current-potential curve for the system O + ne <-> R, assuming that elec-
tron transfer is rate-limiting, C0 = CR, and a = 0.5. The dotted lines show the ic and /a

components.

(1.25)

The exchange current density for common redox couples (at room tempera-
ture) can range from lO^uA/cm2 to A/cm2. The Butler-Volmer equation can
be written in terms of the exchange current

i = i0[exp(-anFit//?r) - exp((l - a)n (1.26)

where i\ = E - £eq is the overvoltage (i.e., the extra potential beyond the equi-
libration potential leading to a net current /).The overvoltage is always defined
with respect to a specific reaction, for which the equilibrium potential is
known.

Equation (1.26) can be used for extracting information on /0 and a, which
are important kinetic parameters. For sufficiently large overvoltages (i\ >
118mV//i), one of the exponential terms in Eq. (1.26) will be negligible com-
pared with the other. For example, at large negative overpotentials, ic » /a and
Eq. (1.26) becomes

/ = /o exp(-anFr\./RT) (1.27)

and hence, we get

In / = In /o - an Fr^/RT (1.28)
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This logarithmic current-potential dependence was derived by Tafel, and is
known as the Tafel equation. By plotting log / against rt one obtains the Tafel
plots for the cathodic and anodic branches of the current-overvoltage curve
(Fig. 1.7). Such plots are linear only at high overpotential values; severe devi-
ations from linearity are observed as i\ approaches zero. Extrapolation of the
linear portions of these plots to the zero overvoltage gives an intercept, which
corresponds to log/(); the slope can be used to obtain the value of the transfer
coefficient a. Another form of the Tafel equation is obtained by rearrange-
ment of Eq. (1.28):

a = 0-Mog/ (1.29)

with 6, the Tafel slope, having the value of 2.3Q3RT/anF. For a = 0.5 and n =
1, this corresponds to 118mV (at 25°C). Equation (1.29) indicates that the
application of small potentials (beyond the equilibrium potential) can increase
the current by many orders of magnitude. In practice, however, the current
could not rise to an infinite value because of restrictions imposed by the rate
at which the reactant reaches the surface. (Recall that the rate-determining
step depends on the potential region.)

For small departures from E°, the exponential term in Eq. (1.27) may be
linearized, with the current approximately proportional to i\:

/ = i'o nFt\./RT (1.30)

Hence, the net current is directly proportional to the overvoltage in a narrow
potential range near E°.

-200

Figure 1.7 Tafel plots for cathodic and anodic branches of the current-potential curve.
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Note also that at equilibrium (E = £eq) the net current is zero (i.e., equal
currents are passing reversibly in both directions); one can thus obtain the fol-
lowing from Eq. (1.24):

C0(0,f)exp[-anF(E - E°)/RT] = CR (0,r)exp[(l - a)nF(E - E°)/RT] (1.31)

Rearrangement of Eq. (1.31) yields the exponential form of the Nernst
equation

(1.32)
CR((U)

expected for equilibrium conditions.
The equilibrium potential for a given reaction is related to the formal

potential

(1.33)

where Q is the equilibrium ratio function (i.e., ratio of the equilibrium con-
centrations).

1.2.2.1 Activated Complex Theory The effect of the operating potential
on the rate constants [Eqs. (1.18) and (1.19)] can be understood in terms of
the free-energy barrier. Figure 1.8 shows a typical Morse potential energy

O + ne Activated complex R

Reaction coordinate

Figure 1.8 Free-energy curve for a redox process at a potential more positive than
the equilibrium value.
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curve for the reaction O + ne - R, at an inert metallic electrode (where O
and R are soluble). Because of the somewhat different structures of O and R,
there is a barrier to electron transfer (associated with changes in bond lengths
and bond angles). In order for the transition from the oxidized form to occur,
it is thus necessary to overcome the free energy of activation, AG*. The fre-
quency with which the electron crosses the energy barrier as it moves from
the electrode to O (i.e., the rate constant) is given by

fr- Ap-*G*/RT (134)/c — s\e v ^ — ' v

Any alteration in AG* will thus affect the rate of the reaction. If AG* is
increased, the reaction rate will decrease. At equilibrium, the cathodic and
anodic activation energies are equal (AG*rt = AG|t0) and the probability of elec-
tron transfer will be the same in both directions. A, known as the frequency
factor, is given as a simple function of the Boltzmann constant k' and the
Planck constant, h:

A =
kT

(1.35)

Now let us discuss nonequilibirum situations. By varying the potential of
the working electrode, we can influence the free energy of its resident elec-
trons, thus making one reaction more favorable. For example, a potential shift
E from the equilibrium value moves the O + ne~ curve up or down by § =
-nFE. The dashed line in Figure 1.9 displays such a change for the case of

Reaction coordinate

Figure 1.9 Effect of a change in the applied potential on the free energies of activa-
tion for reduction and oxidation.
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a positive E. Under this condition the barrier for reduction, AG*, is larger
than AG*0. A careful study of the new curve reveals that only a fraction (a) of
the energy shift <|> is actually used to increase the activation energy barrier,
and hence to accelerate the rate of the reaction. On the basis of the symme-
try of the two potential curves, this fraction (the transfer coefficient) can range
from zero to unity. Measured values of a in aqueous solutions have ranged
from 0.2 to 0.8. The term a is thus a measure of the symmetry of the activa-
tion energy barrier. A a value of 0.5 indicates that the activated complex is
exactly halfway between the reagents and products on the reaction coordinate
(i.e., an idealized curve); a values close to 0.5 are common for metallic elec-
trodes with a simple electron transfer process. The barrier for reduction at E
is thus given by

, /1 i£.\
AGC; = AGt:() + anFE (i.Joj

Similarly, examination of the figure reveals also that the new barrier for oxi-
dation, AGi, is lower than AGt0:

(1.37)

By substituting the expressions for AG* [Eqs. (1.36) and (1.37)] in Eq. (1.34),
we obtain the following equations for reduction

and for oxidation:

kb = .

• exp[-anFE/RT]

- exp[(l-a)nFE/RT]

(1.38)

(1.39)

The first two factors in Eqs. (1.38) and (139) are independent of the poten-
tial, and thus these equations can be rewritten as

(1.40)

(1.41)kb = k°b exp[(l - a)nFE/RT]

When the electrode is at equilibrium with the solution, and when the
surface concentrations of O and R are the same, E = £°, and kf and kb are
equal

(1.42)

and correspond to the standard rate constant k°. By substituting for /c?and kb

[using Eq. (1.42)] in Eqs. (1.40) and (1.41), one obtains Eqs. (1.18) and (1.19)
(which describe the effect of the operating potential on the rate constants).
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1.3 ELECTRICAL DOUBLE LAYER

The electrical double layer is the array of charged particles and/or oriented
dipoles existing at every material interface. In electrochemistry, such a layer
reflects the ionic zones formed in the solution, to compensate for the excess
of charge on the electrode (#e). A positively charged electrode thus attracts a
layer of negative ions (and vice versa). Since the interface must be neutral, qe

+ <7s = 0 (where gs is the charge of the ions in the nearby solution). Accord-
ingly, such a counterlayer consists of ions of sign opposite that of the electrode.
As illustrated in Figure 1.10, the electrical double layer has a complex struc-
ture of several distinct parts.

The inner layer (closest to the electrode), known as the inner Helmholz
plane (IMP), contains solvent molecules and specifically adsorbed ions (such
as Br~ or I~ that are not hydrated in aqueous solutions). It is defined by the
locus of points for the specifically adsorbed ions. The next layer, the outer
Helmholz plane (OHP), reflects the imaginary plane passing through the

IMP OHP

Figure 1.10 Schematic representation of the electrical double layer.
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center of solvated ions at their closest approach to the surface. The solvated
ions are nonspecifically adsorbed and are attracted to the surface by long-
range coulombic forces. Both Helmholz layers represent the compact layer.
Such a compact layer of charges is strongly held by the electrode and can
survive even when the electrode is pulled out of the solution. The Helmholz
model does not take into account the thermal motion of ions, which loosens
them from the compact layer.

The outer layer (beyond the compact layer), referred to as the diffuse layer
(or Gouy layer), is a three-dimensional region of scattered ions, which extends
from the OHP into the bulk solution. Such ionic distribution reflects the coun-
terbalance between ordering forces of the electrical field and the disorder
caused by a random thermal motion. The equilibrium between these two
opposing effects, indicates that the concentration of ionic species at a given
distance from the surface, C(x), decays exponentially with the ratio between
the electrostatic energy (zFO) and the thermal energy (RT), in accordance
with the Boltzmann equation):

(1.43)

The total charge of the compact and diffuse layers equals (and is opposite
in sign) to the net charge on the electrode side. The potential-distance
profile across the double-layer region involves two segments, with a linear
increase until the OHP and an exponential one within the diffuse layer.
Such two-potential drops are displayed in Figure 1.11. Depending on the
ionic strength, the thickness of the double layer may extend to more than
10 nm.

The electrical double layer resembles an ordinary (parallel-plate) capaci-
tor. For an ideal capacitor, the charge (q) is directly proportional to the poten-
tial difference:

q = CE (1.44)

where C is the capacitance (in farads, F), specifically, the ratio of the charge
stored to the applied potential. The potential-charge relationship for the elec-
trical double layer is

(1.45)

where Cd, is the capacitance per unit area and Epzc is the potential of zero
charge (i.e., where the sign of the electrode charge reverses and no net
charge exists in the double layer). The Cdi values are usually in the range of
10-40 jiF/cm2.

The capacitance of the double layer consists of a combination of the capac-
itance of the compact layer in series with that of the diffuse layer. As is
common for two capacitors in series, the total capacitance is given by
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Figure 1.11 Variation of the potential across the electrical double layer.

(1.46)

where CH and CG represent that capacitances of the compact and diffuse
layers, respectively. The smaller of these capacitances determines the observed
behavior. By analogy to a parallel-plate (ideal) capacitor, CH is given by

CH = -z/4nd (1.47)

where d is the distance between the plates and e is the dielectric constant, (e
= 78 for water at room temperature.) Accordingly, CH increases with decreas-
ing separation between the electrode surface and the counterionic layer, as
well as with increasing the dielectric constant in the intervening medium. The
value of CG is strongly affected by the electrolyte concentration; the compact
layer is largely independent of the concentration. For example, at sufficiently
high electrolyte concentration, most of the charge is confined near the
Helmholz plane, and little is scattered diffusely into the solution (i.e., the
diffuse double layer becomes sufficiently small). Under these conditions, 1/CH

» 1/CG, IIC ^ 1/CH, or C — CH. In contrast, for dilute solutions, CG is very
small (compared to CH) and C =* CG.



22 FUNDAMENTAL CONCEPTS

Figure 1.12 displays the experimental dependence of the double-layer
capacitance on the applied potential and electrolyte concentration. As
expected for the parallel-plate model, the capacitance is nearly independent
of the potential or concentration over several hundred millivolts. Yet, a sharp
dip in the capacitance is observed (around -0.5 V) with dilute solutions, reflect-
ing the contribution of the diffuse layer. The charging of the double layer is
responsible for the background (residual) current known as the charging
current, which limits the detectability of controlled-potential techniques. Such
a charging process is nonfaradaic because electrons are not transferred across
the electrode-solution interface. It occurs when a potential is applied across
the double layer, or when the electrode area or capacitances are changing.
Note that the current is the time derivative of the charge. Hence, when
such processes occur, a residual current is flowing according to the differen-
tial equation

dq

^ =at
dE
—at at at

(1.48)

where dE/dt and dAldt are the potential scan rate and rate of area change,
respectively. The second term is applicable to the dropping mercury electrode
(discussed in Section 4.2). The term dCd,/dt is important when adsorption
processes change the double-layer capacitance.
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Figure 1.12 Double-layer capacitance of a mercury drop electrode in NaF solutions
of different concentrations. (Reproduced with permission from Ref. 5.)
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1

Alternately, for potential-step experiments (e.g., chronoamperometry; see
Section 3.1), the charging current is the same as that obtained when a poten-
tial step is applied to a series RC circuit:

= —e~t/RCdl
(1.49)

Thus, the current decreases exponentially with time. Here, E is the
magnitude of the potential step, while Rs is the (uncompensated) solution
resistance.

Equation (1.48) can be used for calculating the double-layer capacitance of
solid electrodes. By recording linear scan voltammograms at different scan
rates (using the supporting electrolyte solution), and plotting the charging
current (at a given potential) versus the scan rate, one would obtain a straight
line, with a slope corresponding to Cd{A.

Measurements of the double-layer capacitance provide valuable insights
into adsorption and desorption processes, as well as into the structure of film-
modified electrodes (6).

Further discussion of the electrical double layer can be found in several
reviews (5,7-11).

1.4 ELECTROCAPILLARY EFFECT

Electrocapillary is the study of the interfacial tension as a function of the elec-
trode potential. Such a study can shed useful light on the structure and prop-
erties of the electrical double layer. The influence of the electrode-solution
potential difference on the surface tension (y) is particularly pronounced at
nonrigid electrodes (such as the dropping mercury one, discussed in Section
4.5). A plot of the surface tension versus the potential (like the ones shown in
Fig. 1.13) is called an electrocapillary curve.

The excess charge on the electrode can be obtained from the slope of the
electrocapillary curve (at any potential), by the Lippman equation:

(1.50)
'const.pressure

The more highly charged the interface becomes, the more the charges repel
each other, thereby decreasing the cohesive forces and lowering the surface
tension. The second differential of the electrocapillary plot gives directly the
differential capacitance of the double layer:

(1.51)
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Figure 1.13 Electrocapillary curve of surface tension (y) versus the potential.

Hence, the differential capacitance represents the slope of the plot of q versus
E.

An important point of the electrocapillary curve is its maximum. Such
maximum value of y, obtained when q = 0, corresponds to the potential of zero
charge (£pxc). The surface tension is a maximum because on the uncharged
surface there is no repulsion between like charges.The charge on the electrode
changes its sign after passing the potential through the Er7£. Experimental elec-
trocapillary curves have a nearly parabolic shape around the £pzc. Such a par-
abolic shape corresponds to a linear change of the charge with the potential.
The deviation from a parabolic shape depends on the solution composition,
particularly on the nature of the anions present in the electrolyte. In particu-
lar, specific interaction of various anions (e.g., halides) with the mercury
surface, occurring at positive potentials, causes deviations from the parabolic
behavior (with shifts of Ep7C to more cathodic potentials). As shown in Figure
1.14, the change in surface tension and the negative shift in Ep/c increase in the
following order: I" > Br~ > CNS~ > NO.i > OH~. (These changes are expected
from the strength of the specific adsorption.) Such ions can be specifically
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-1.2

Figure 1.14 Electrocapillary curves for different electrolytes showing the relative
strength of specific adsorption. (Reproduced with permission from Ref. 7.)

adsorbed because they are not solvated. Inorganic cations, in contrast, are less
specifically adsorbed (because they are usually hydrated). Similarly, blockage
of the surface by a neutral adsorbate often causes depressions in the surface
tension in the vicinity of the Epzc (Fig. 1.15). Note the reduced dependence of
y on the potential around this potential. At more positive or negative poten-
tials, such adsorbates are displaced from the surface by oriented water
molecules.

1.5 SUPPLEMENTARY READING

Several international journals bring together papers and reviews covering
innovations and trends in the field of electroanalytical chemistry:

Bioelectrochemistry and Bioenergetics
Biosensors and Bioelectronics
Electro analysis
Electrochemistry Communications
Electrochimica Acta
Journal of Applied Electrochemistry
Journal of Electroanalytical and Interfacial Electrochemistry
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Figure 1.15 Electrocapillary curves of background (•), ethynylestradiol (•), (3-
estradion (A), and morgestrel (*). (Reproduced with permission from Ref. 12.)

Journal of the Electrochemical Society
Langmuir
Sensors and Actuators

Useful information can be found in many prominent journals that cater to
all branches of analytical chemistry, including The Analyst, Analytica Chimica
Acta, Analytical Chemistry, Talanta, Analytical Letters, and Analytical and Bio-
analytical Chemistry. Biennial reviews published in the June issue of Analyti-
cal Chemistry offer comprehensive summaries of fundamental and practical
research work.

Many textbooks and reference works dealing with various aspects of elec-
troanalytical chemistry have been published since the 1960s. Some of these are
listed below as suggestions for additional reading, in alphabetic order:

Albery, W. J., Electrode Kinetics, Clarendon Press, Oxford, UK, 1975.
Bard, A. J.; Faulkner, L., Electrochemical Methods, 2nd ed., Wiley, New York, 2000.
Bond, A. M., Modern Polcirographic Methods in Analytical Chemistry, Marcel Dekker,

New York, 1980.
Bockris, J. M.; Reddy, A., Modem Electrochemistry, Vols. 1,2, Plenum Press, New York,

1970.
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Brett, G; Oliveira Brett, A. M., Electrochemistry: Principles, Methods and Applications,
Oxford Univ. Press, Oxford, UK, 1993.

Diamond, D., Chemical and Biological Sensors, Wiley, New York, 1998.
Gileadi, E., Electrode Kinetics, VCH Publishers, New York, 1993.
Kissinger, P.; Heineman, W, Laboratory Techniques in Electroanalytical Chemisry, 2nd

ed., Marcel Dekker, New York, 1996.

Janata, J., Principles of Chemical Sensors, Plenum Press, New York, 1989.
Koryta, J.; Dvorak, J., Principles of Electrochemistry, Wiley, Chichester, UK, 1987.
Rieger, P., Electrochemistry, Prentice-Hall, Englewood Cliffs, NJ, 1987.

Sawyer, D.; Roberts, I, Experimental Electrochemistry for Chemists, Wiley, New York,
1974.

Smyth, M.; Vos, J., Analytical Voltammetry, Elsevier, Amsterdam, 1992.
Turner, A. P.; Karube, I.; Wilson, G., Biosensors, Oxford Univ. Press, Oxford, UK, 1987.
Wang, J., Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine,

VCH Publishers, New York, 1988.

PROBLEMS

1.1 Describe and draw the concentration profile or gradient near the elec-
trode surface during a linear scan voltammetric experiment in a stirred
solution. (Use five or six potentials on both sides of E°.) Show also the
resulting voltammogram, along with points for each concentration gra-
dient (in a manner analogous to Fig. 1.4).

1.2 Describe and draw the structure of the electrical double layer (with its
several distinct parts).

1.3 Use the activated complex theory for explaining how the applied poten-
tial affects the rate constant of an electron transfer reaction. Use or
draw free-energy curves and use proper equations for your explanation.

1.4 Use equations to demonstrate how an increase in the stirring rate will
affect the mass-transport-controlled limiting current.

1.5 Derive the Nernst equation from the Butler-Volmer equation.

1.6 Explain clearly why polyanionic DNA molecules adsorb onto electrode
surfaces at potentials more positive than £pzc, and suggest a protocol for
desorbing them back to the solution.

1.7 Which experimental conditions assure that the movement of the elec-
troactive species is limited by diffusion? How do these conditions sup-
press the migration and convection effects?

1.8 Explain clearly the reason for the peaked response of linear sweep
voltammetric experiments involving a planar macrodisk electrode and
a quiescent solution.
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1.9 The net current flowing at the equilibrium potential is zero, yet this is a
dynamic situation with equal opposing cathodic and anodic current
components (whose absolute value is i0). Suggest an experimental route
for estimating the value of /0.

1.10 Explain clearly why only a fraction of the energy shift (associated with
a potential shift) is used for increasing the activation energy barrier.
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2
STUDY OF ELECTRODE
REACTIONS AND
INTERFACIAL PROPERTIES

2.1 CYCLIC VOLTAMMETRY

Cyclic voltammetry is the most widely used technique for acquiring qualita-
tive information about electrochemical reactions. The power of cyclic voltam-
metry results from its ability to rapidly provide considerable information on
the thermodynamics of redox processes and the kinetics of heterogeneous
electron transfer reactions and on coupled chemical reactions or adsorption
processes. Cyclic voltammetry is often the first experiment performed in an
electroanalytical study. In particular, it offers a rapid location of redox poten-
tials of the electroactive species, and convenient evaluation of the effect of
media on the redox process.

Cyclic voltammetry consists of scanning linearly the potential of a station-
ary working electrode (in an unstirred solution), using a triangular potential
waveform (Fig. 2.1). Depending on the information sought, single or multiple
cycles can be used. During the potential sweep, the potentiostat measures the
current resulting from the applied potential. The resulting current-potential
plot is termed a cyclic voltammogram. The cyclic voltammogram is a compli-
cated, time-dependent function of a large number of physical and chemical
parameters.

Figure 2.2 illustrates the expected response of a reversible redox couple
during a single potential cycle. It is assumed that only the oxidized form O is
present initially. Thus, a negative-going potential scan is chosen for the first
half-cycle, starting from a value where no reduction occurs. As the applied

Analytical Electrochemistry, Third Edition, by Joseph Wang
Copyright © 2006 John Wiley & Sons, Inc.

29


