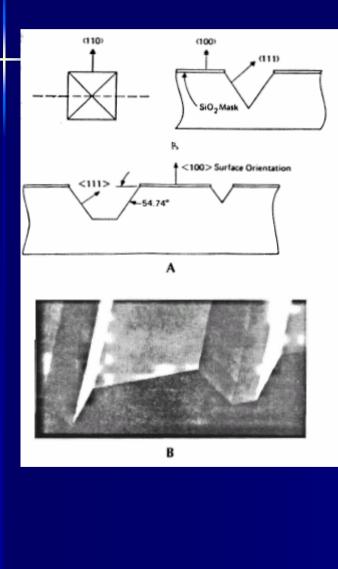
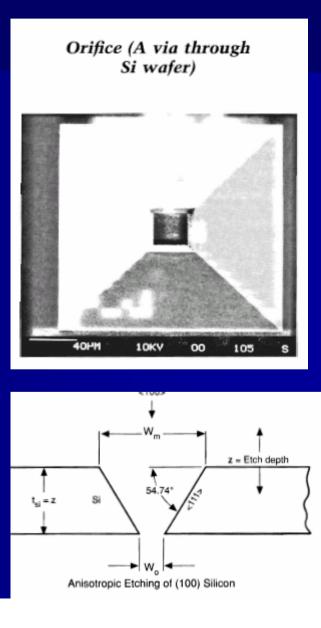
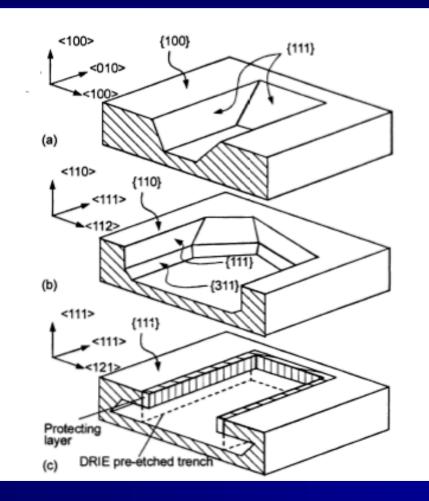
Lecture 10 Part II:

Microfabrication for Microfluidics and Microfluidics Devices

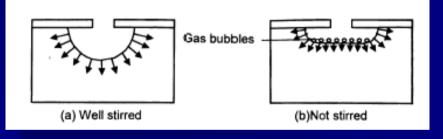

Silicon Etching Polymer-based Micromachining Assembly and Packaging Biocompartibility


Techniques involved:

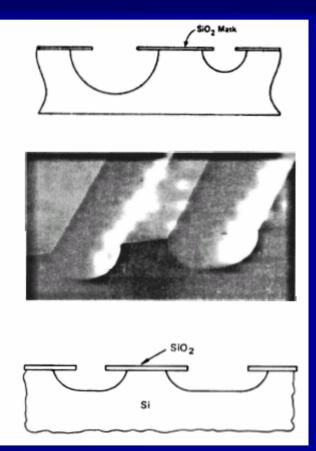
 Wet etching of channels in Si and glass (isotropic, anysotropic)


- Dry etching
- Resist lithography
- PDMS soft lithography
- Hot embossing
- Other machining techniques in plastics, glass etc.
- Bonding

Wet etching of (100) Silicon



Wet etching of other orientation of Silicon



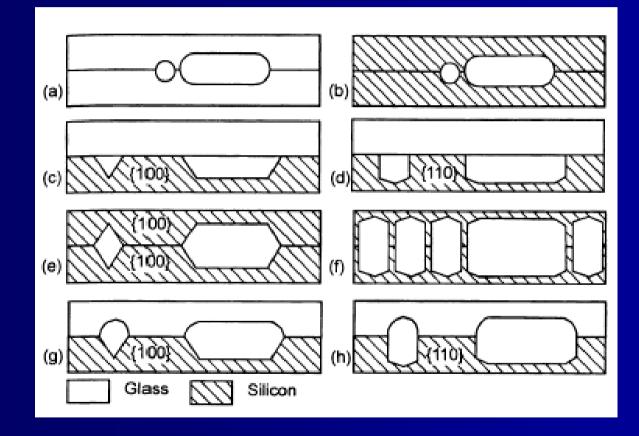
Isotropic etching of Silicon and Glass

Silicon: Etchant: 66% HNO3 and 34% HF Etching rate: 5um/min

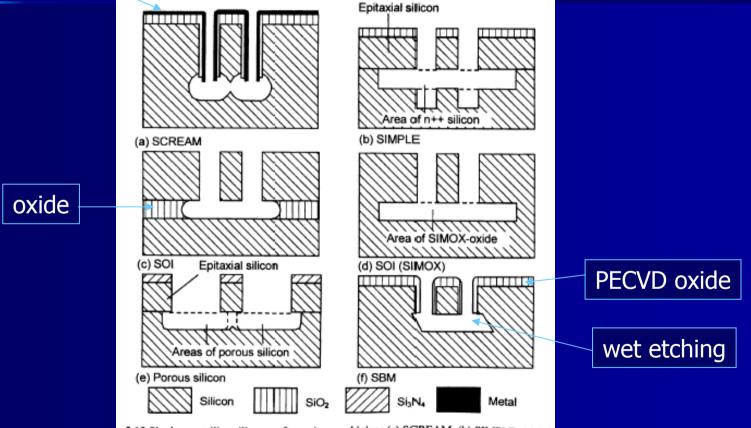


<u>Glass:</u> Etchant: HF (or BHF)

Chemical dry etching


- Deep trenches with high aspect ratios can be made in Si, glass or plastic
- Gases used:
 - Fluorine chemistry (CHF₃, SF₆, CF₄)
 - Chlorine chemistry (HCl, Cl₂)
 - Oxygen

Recipes of Dry Etchant Gases for Thin Films of Functional Materials (After [3])


Material	Etchart gases	Selective To
Si	BCl ₃ / Cl ₂ , BCl ₃ / CF ₄ , BCl ₃ / CHF ₃ , Cl ₂ / CF ₄ , Cl ₂ / He, Cl ₂ / CHF ₃ , HBr, HBr /Cl ₂ / He / O ₂ , HBr /NFl ₃ / He / O ₂ , HBr / SiF ₄ / NF ₃ , HCl, CF ₄	SiO ₂
SiO2	CF4/ H2, C2F6, C3F8, CHF3, CHF3/ O2, CHF3/ CF4, (CF4/ O2)	Si (Al)
Si ₃ N ₄	CF4/H2, (CF4/CHF3/He, CHF3, C2F4)	Si (SiO ₂)
AI	BCl ₃ , BCl ₃ / Cl ₂ , BCl ₃ / Cl ₂ /He, BCl ₃ / Cl ₂ /CHF ₃ / O ₂ , HBr, HBr / Cl ₂ , HJ, SiCl ₄ , SiCl / Cl ₂ , Cl ₂ / He	SiO ₂
Organics	O2, O2/CF4, O2/SF6	

Bulk micromachined channels

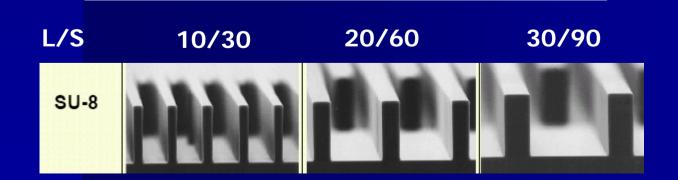
Silicon surface micromachining

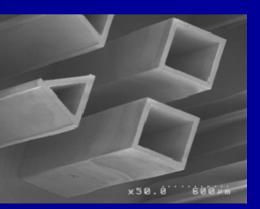
PECVD oxide

e 3.13 Single crystalline silicon surface micromachining: (a) SCREAM; (b) SIMPLE: (c) SO

Polymer based micromachining

Thick resist lithography
Polymeric based micromachining
Soft lithography
Microstereo lithography
Micromolding

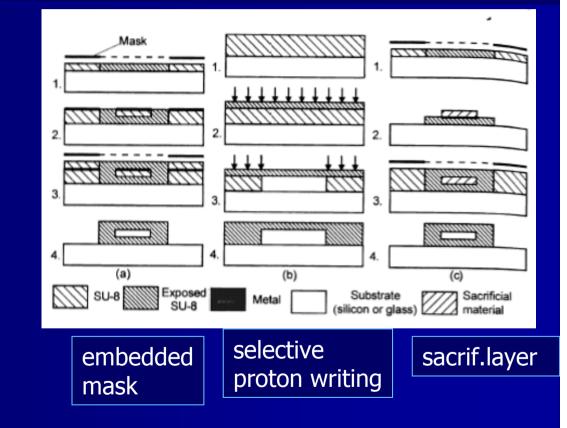

SU-8 resist


Negative photoresist for NUV exposure

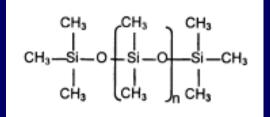
Film Thickness of Different SU-8 Types at a Spin Speed of 1,000 rpm (After [76, 77])

Туре	Kinematic Viscosity (m ² /s)	Thickness (µm)
SU-8 2	4.3×10 ⁻⁵	5
SU-8 5	29.3×10 ⁻⁵	15
SU-8 10	105×10 ⁻⁵	30
SU-8 25	252.5×10 ⁻⁵	40
SU-8 50	1,225×10 ⁻⁵	100
SU-8 100	5,150×10 ⁻⁵	250

Really thick layers in one spin!

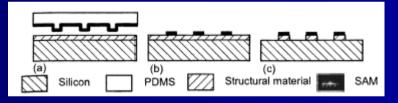


Example of SU-8 structures

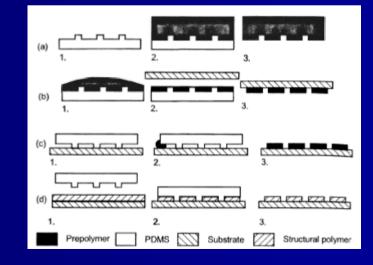

Fabrication of open channels

1. 1. 2. 2. 3. 2. 4. 4. 5. 5. 6. 6. (a) (b) SU-8 Exposed Mask 1.

Fabrication of covered channels



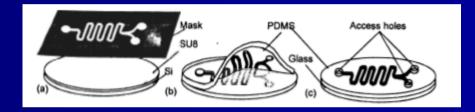
Soft lithography



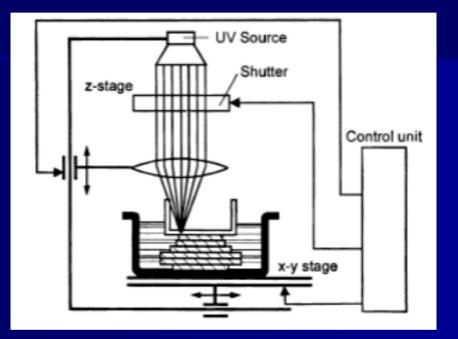
 Uses elastomeric stamp, usually PDMS (Polydimethylsiloxane) to transfer the pattern.

Microcontact printing

- Micromolding

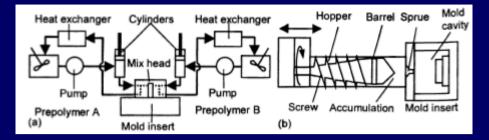

Fabrication of microchannels using soft lithography

Advantages of PDMS:


- Low cost
- Transparency in VIS and NUV
- Chemically inert

Technology:

- Mix prepolymer and curing agent 10:1 5:1
- Pour into solid master made in SU-8 with inlets defined by glass posts
- Cure at 60 80 oC for couple of hours
- Peel off
- treat with ozon or Oxygen plasma and attach to clean glass, silicon or another PDMS



Microstereo lithography

Single photon adsorbtion Two photon absorbtion Layer-by-Layer photolithography

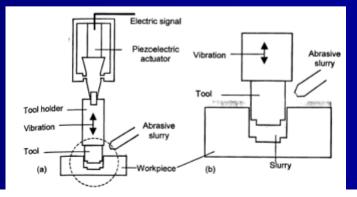
Micromolding

 Injection molding: high pressure injection of molten PMMA, PC (polycarbonate), PSU (polysulfone) etc.

Resist	РММА	PC	PS	COC	PP
leat resistance (°C)	105	140	100	130	110
Density (kg/m ³)	1,190	1,200	1,050	1,020	900
Refractive index	1.42	1.58	1.59	1.53	opaque
Resistant to:					
 Aqueous solutions 	yes	limited	yes	yes	yes
· Concentrated acids	no	no	yes	yes	yes
 Polar hydrocarbons 	no	limited	limited	yes	yes
 Hydrocarbons 	yes	yes	no	no	no
uitable for micromolding	moderate	good	good	good	moderate
Permeability coefficients (× 10 ⁻¹	⁷ m ² /s-Pa):				
• He	5.2	7.5			
• O ₂	0.12	1.1	-	-	
• H ₂ O	480 -1,900	720 - 1,050	-	-	-
lot-embossing parameters;					
imbossing temperature (°C)	120-130	160-175	-		
Deembossing temperature (°C)	95	135	-	-	
mbossing pressure (bars)	25 – 37	25 - 37	-	-	
fold time (s)	30 - 60	30 - 60			

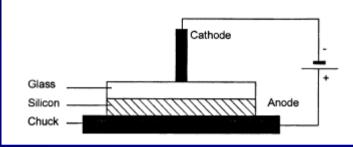
Compression molding (hot embossing)

Other micromachining techniques


 Laser micromachinig (usually using an excimer lasers, Nd:YAG or CO₂ lasers) Typical Ablation Depths Per Pulse of Different Material (Nanosecond Laser)

Material	Depth Per Pulse (µm)
Polymers	0.3 - 0.7
Ceramics and glass	0.1 - 0.2
Diamond	0.05 - 0.1
Metals	0.1 - 1.0

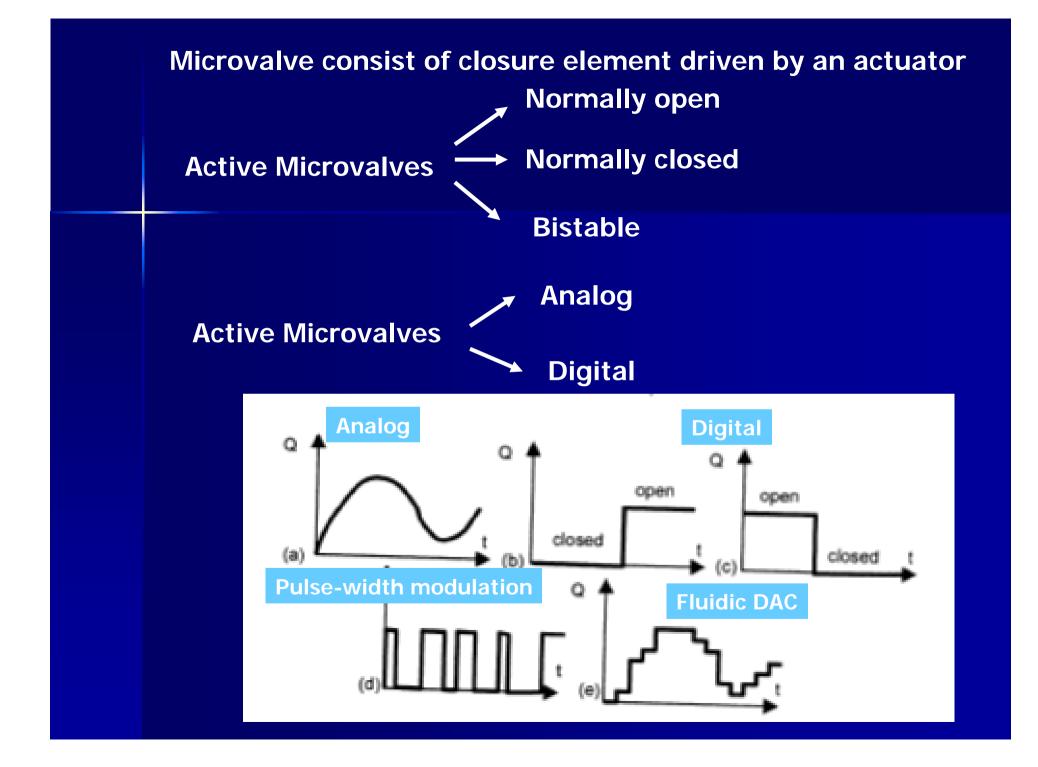
- Focused ion beam
- Microelectro discharge

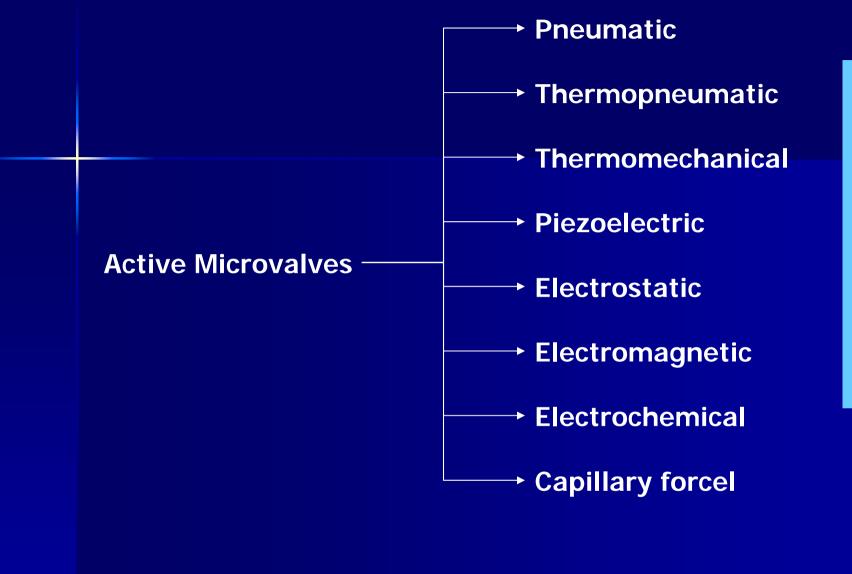


Ultrasonic micromachining

Assembly and packaging

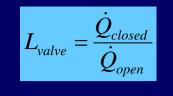
 Anodic bonding (T=400 °C, V=1kV)

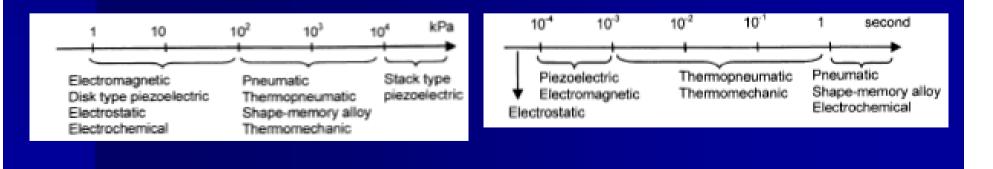

- Silicon direct bonding reaction of OH groups on Si surfaces at T=300 – 1000 °C
- Glass direct bonding (T=600 °C for 6-8h)
- Polymer direct bonding
- Adhesive bonding (low melting glass (400-600°C, photoresists, UV curable epoxies, epoxies etc.)
- Eutectic bonding (e.g. gold/silicon eutectic at 363°C)


Other microfabrication issues: Biocompartibility

 Material responce to biological environments (swelling, corrosion etc.)
 Tissue and cellular responce to the material

Microfluidics: Devices for Flow Control

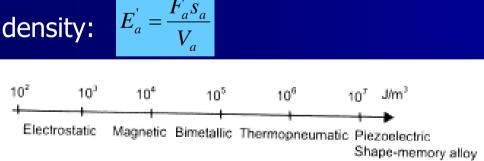

ValvesPumpsMicromixers


Valve specification:

- leakage
- valve capacity

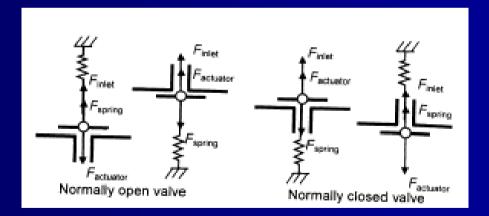
$$C_{valve} = \frac{\dot{Q}_{max}}{\sqrt{\Delta p_{max} / (\rho g)}}$$

- power consumption total power consumption in active state
- closing force (pressure range) pressure generated by the valve
- temperature range
- responce time
- reliability
- biocompartibility
- chemical compartibility


Design considerations

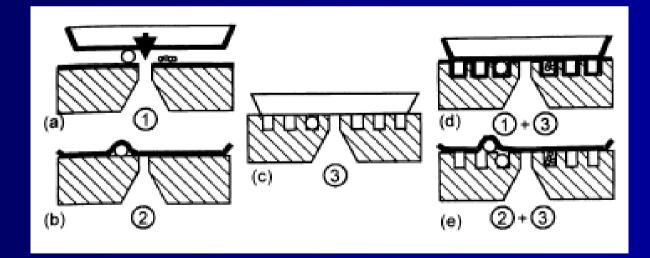
Specification required
Materials to be used
Cost
Suitable type of actuators
Optimal valve spring and valve seat

Design consideration: Actuators

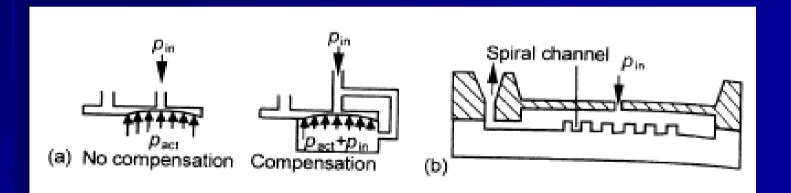

- Moving function (enough force, displacement and controllability)
- Holding function (should keep valve in a set position)
- Dynamic function (required response time)

Energy density:

Design consideration: Valve spring


- For normally closed valves (NC) large spring constant to resist the pressure
- For normally open valves (NO) soft spring constant, optimized for actuator closing force

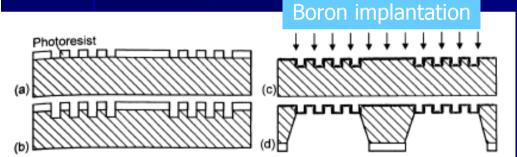
Design consideration: Valve seat

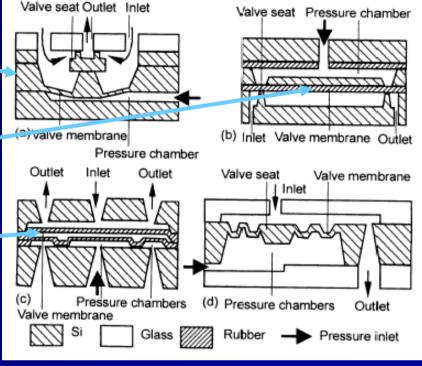

Main requirements:

- Zero leakage
- Resistance against particles trapped

Design consideration: Pressure compensation

Aim: Maintain closing force when the inlet pressure vary

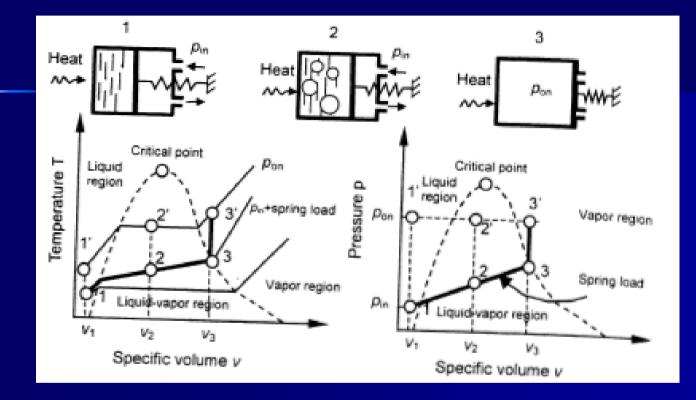

Passive flow controller


Silicon rubber membrane 25 um thick prepared — by spin coating, hole drilled with laser

Stack of 3 directly bonded Si wafers, Si

membrane 25 um thick

Silicon rubber membrane 30 um thick prepared by surface micromachinig, photoresist used as a sacrificial layer.

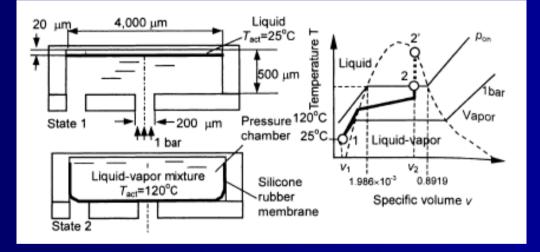


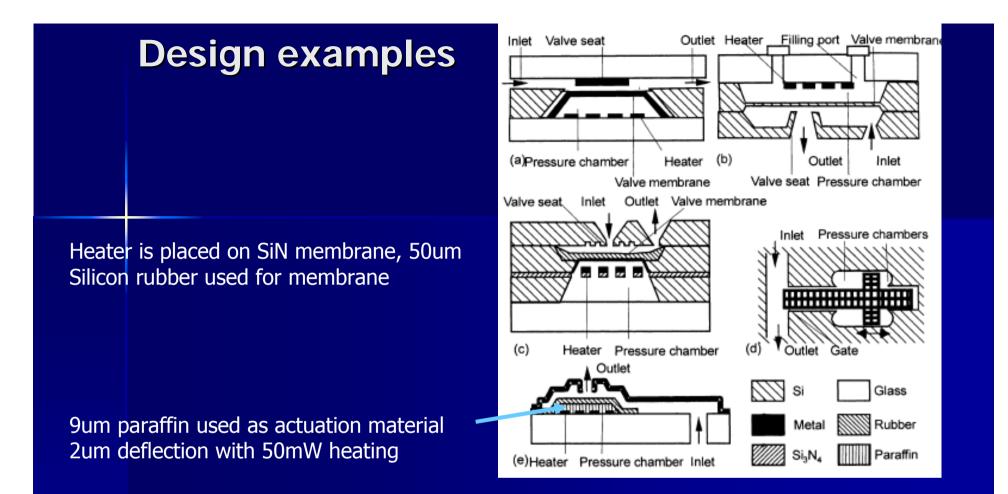
Typical parameters of pneumatic valves:

	Typical Parameters of Pneumatic Valves (Lvalve: Leakage ratio)						
Refs.	Type	Size (mm×mm)	Q _{max} (ml/min)	Pmax/Pacsuator (kPa)	L _{valve}	Material	Technology
[3]	NC	15×15	120 air	241/69	>300	Glass, silicon	Bulk
[4]	NO	0.225×0.225	0. 26 water	100/50	10,000	Rubber, silicon	Bulk
[5]	NC	20×20	35 N2	65/12	35	Glass, silicon	Bulk
[6]	NO	8.5×4.2	0.5 water	60/10	10,000	Rubber, silicon	Bulk
[7]	NO	10×10	5 N ₂	107/275	100,000	Glass, silicon	Bulk

Thermopneumatic valves

Relies on the change in volume of sealed liquid or solid under thermal loading. Usually utilize solid/liquid and liquid/gas phase transition for maximum performance


Example


Thermopneumatic valve with air. Height of the expansion cylinder 500um.

Assuming the volume constant:

$$\frac{T_1}{T_2} = \frac{p_1}{p_2} \to T_2 = T_1 \frac{p_2}{p_1} = 300 \frac{109.67}{100} = 329K = 56C$$

Example

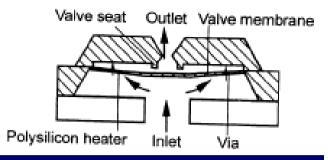
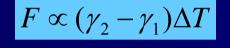


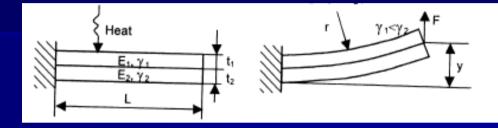
	Table 6.2								
Typical Parameters of Thermopneumatic Valves									
Refs.	Туре	Size (mm×mm)	Q _{max} (ml/min)	P _{max} (kPa)	L_{raive}	P (mW)	Membrane Material	Actuation Fluid	
[8]	NO	5×5	1,500 air	700	-	200	Aluminum	Methyl chloride	
[9-10]	NO	8×6	10 N ₂	1.3	33,000	3,500	Silicon	FC	
[11,12]	NO	8×8	1,800 N ₂	227	-	100	Rubber	FC	
[13]	NO	0.1×0.8	0.24 water	1.4	1.15	100		Water	
[14-15]	NO	8.5×4.2	2 N ₂	100	14	50	Rubber	Paraffin	

Thermomechanical valves

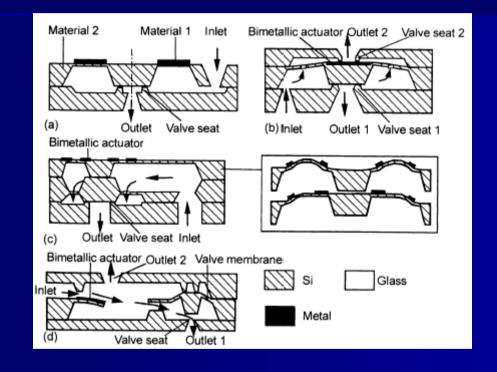
Solid expansion
Bimetallic
Shape-memory alloys

Solid expansion valves

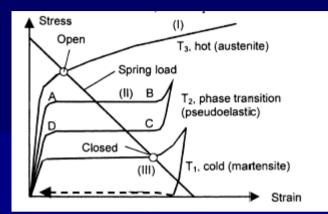

• Generated force: $F \propto \gamma \Delta T$ where γ is the thermal expansion coefficient

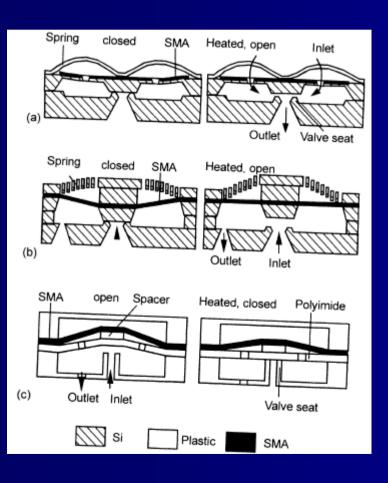

Material	Density (kg/m ³)	Heat Capacity (J/kgK)	Thermal Conductivity (W/mK)	Thermal Expansion Coefficient (10 ⁻⁶ K ⁻¹)
Silicon	2,330	710	156	2.3
Silicon oxide	2,660	750	1.2	0.3
Silicon nitride	3,100	750	19	2.8
Aluminum	2,700	920	230	23
Copper	8,900	390	390	17
Gold	19,300	125	314	15
Nickel	8,900	450	70	14
Chrome	6,900	440	95	6.6
Platinum	21,500	133	70	9
Parylene-N	1,110	837.4	0.12	69
Parylene-C	1,290	711.8	0.082	35
Parylene-D	1,418		-	30-80

Thermal Properties of Some Materials at 300K (After [17, 28])


Bimetallic valves

Uses difference in thermal expansion coefficient of two metals


Bimetallic valves: Design examples



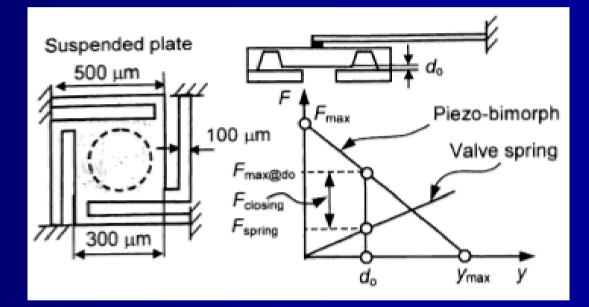
Shape memory Alloy valves

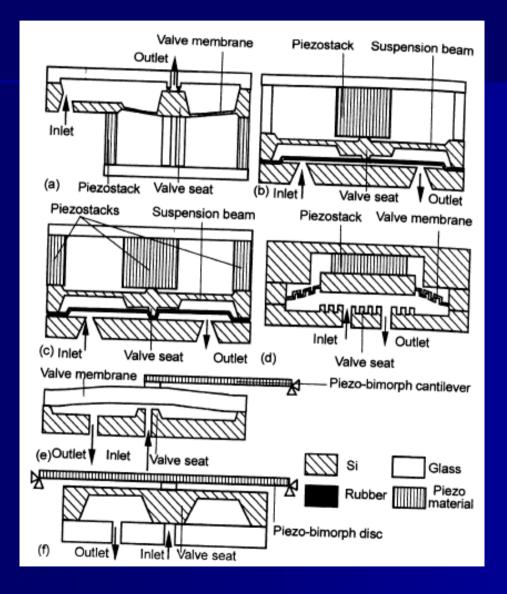
- Shape memory alloys (SMA) are materials that have property to return to their original undeformed shape upon a change of temperature
- Advantages: high force and large stroke
- Disadvantages: low efficiency, low frequency (bandwidth)

alloy	Composition	Transf. Temp. Range (°C)	Transf. Hysteresis (°C)
Cd	44/49 at.% Cd	-190 to -50	15
Cd	46.5/50 at.% Cd	30 to 100	15
Al-Ni	14/14.5 wt.% Al	-140 to 100	35
	3/4.5 wt.% Ni		
s-Sn	approx. 15 at.% Sn	-120 to 30	
-Zn	38.5/41.5 wt.% Zn	-180 to -10	10
Ti	18/23 at.% Ti	60 to 100	4
-Al	36/38 at.% Al	-180 to 100	10
-Ti	49/51 at.% Ni	-50 to 110	30
-Pt	approx. 25 at.% Pt	approx130	4
n-Cu	5/35 at.% Cu	-250 to 180	25
	32 wt.% Mn, 6 wt.% Si	-200 to 150	100

Piezolelectric valves

 generate small strain (0.1%) and high stresses (MPa), therefore suitable for applications with high force and low displacement

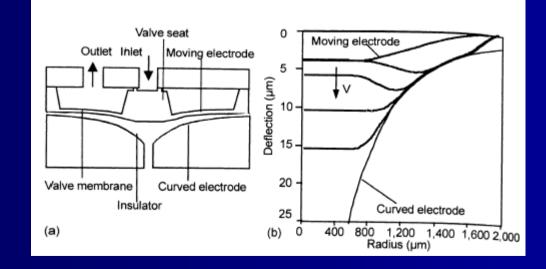

$$\varphi_l = \varphi_t = d_{31} E_{el}$$
$$\varphi_v = d_{33} E_{el}$$

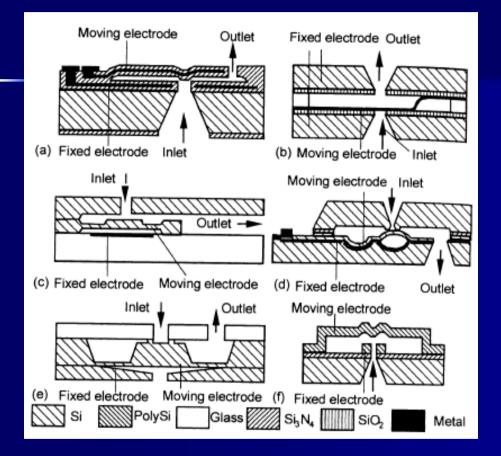

$$\begin{bmatrix} E \\ E \\ E \\ E \\ E \\ E \\ E_1 \end{bmatrix}$$

Material	d31 (10"2 C/N)	d ₃₃ (10 ⁻¹² C/N)	Relative Permittivity &
PZT	-60270	380 590	1,700
ZnO	-5	12.4	1,400
PVDF	6-10	13-22	12
BaTiO ₃	78	190	1,700
LiNbO3	-0.85	6	1,700

Example:

Dimension (mm)	Voltage (V)	C (nF)	Y _{max} (µm)	$F_{max}(N)$	Frequency (Hz)
25×7.5×0.4	±70	20	±200	0.15	300

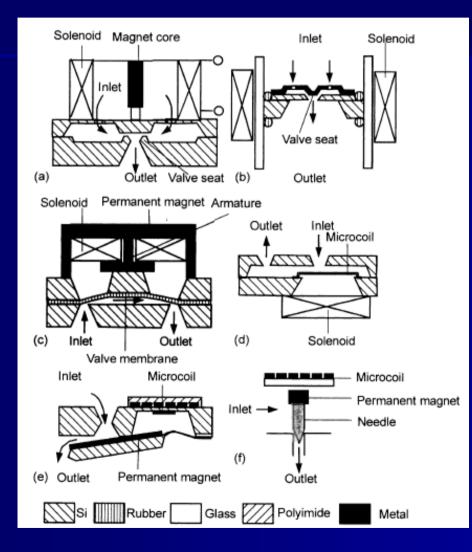



Electrostatic valve

Based on attractive force between two oppositely charged plates $E = \frac{1}{2} \frac{V}{E} \frac{V}{E} = 8.854 * 10^{-12} F / m$

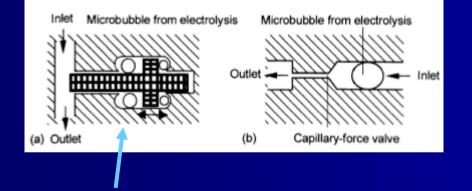
$$\Gamma = \frac{1}{2} \varepsilon_r \varepsilon_0 A(\frac{1}{d}), \varepsilon_0 = 8.834 \cdot 10 \quad \Gamma$$

- Advantages: fast responce
- Disadvantages: high voltage and small discplacement



Electromagnetic valves

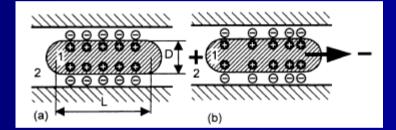
- Uses solenoid actuator with a magnetic core and a coil
- Advantage: large deflection
- Disadvantage: low efficiency


Material	Magnetization M _m (A/m)	Note
Nickel	3,000	Electroplated, annealed
Iron	320	
Fe-Ni78	<80	Electroplated, annealed
Fe-Ta-Ni	46	Sputtered
Fe-Al-Si	40	Sputtered

$$F = M_{\rm m} \int \frac{dB}{dz} dV \; .$$

Electrochemical valves

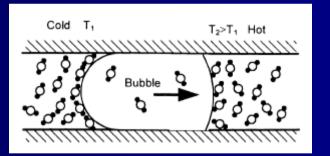
Actuated by a bubble created by water electrolysis


Consumes 4.3uW (10000 smaller that thermopneumatic !!!) 2.5 V operational voltage

Capillary force valves

Electrocapillary

Capacity of double layer.


$$\sigma = \sigma_0 - \frac{C}{2} (V - V_0)^2$$

Maximum value of surface tension at V_0 .

Thermocapillary effect

Caused by temperature dependence of surface tension: viscosity and surface tension both drop with the temperature increase

Passive capillary effect

Example: a bubble valve is designed with a vapour bubble between channel sections 50um and 200um sections. What pressure can it withstand? $\sigma_w = 72*10^{-3} \text{ N/m}$

$$\Delta p = 2\sigma \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = 2 \times 72 \times 10^{-3} \left(\frac{1}{50 \times 10^{-6}} - \frac{1}{200 \times 10^{-6}}\right) = 2,160 \text{ Pa} = 21.6 \text{ mbar}$$

Micropumps

micropumps <</p>

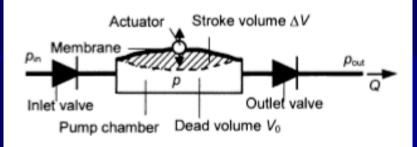
mechanical

Non-mechanical

Dis	splacement Pumps	Dyr	namic Pumps
•	Check-valve pumps	•	Ultrasonic pumps
•	Peristaltic pumps	•	Centrifugal pumps
•	Valve-less rectification pumps		
•	Rotary pumps		

Nonmechanical Pumping Principles				
	Pressure Gradient	Concentration Gradient	Electrical Potential Gradient	Magnetic Potential
Fluid flow	Surface tension driven flow (electrowetting,	Osmosis (semipermeable	Electro-osmosis (electrolyte)	Ferrofluidic
	Marangoni-effect, surface modification)	membrane, surfactants)	Electrohydrodynamic (dielectric fluid)	
Solute flux	Ultrafiltration	Diffusion	Electrophoresis Dielectrophoresis	Magneto- hydrodynamic flow

Mechanical pumps


- Require an electromechanical actuator, either external or integrated
- External actuators: drawback: large size, advantages: large force and displacement.
- Integrated actuators: fast responce and reliability

Parameters of micropumps

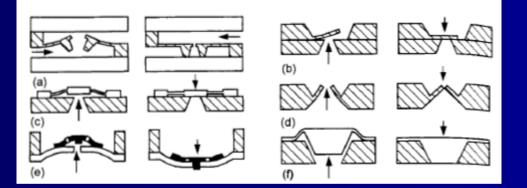
Maximum flow rate (determined at 0 back pressure)
 Maximum back pressure (at which flow becomes 0), also described as pump head

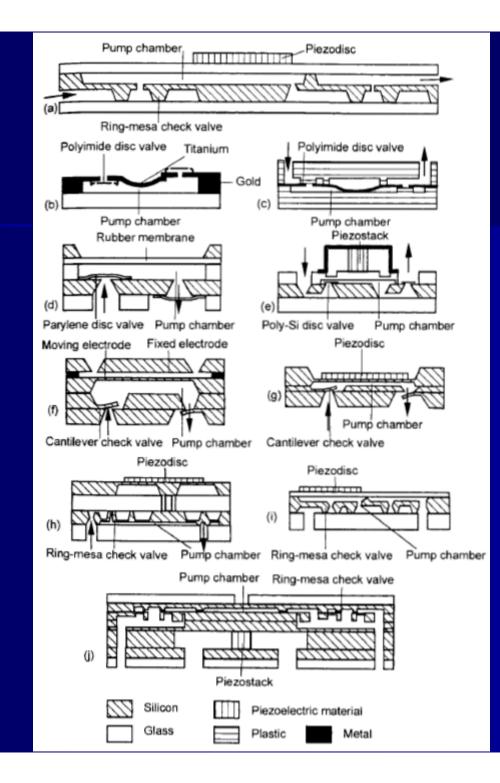
Pump efficiency

Check-valve pump

- Function under conditions of small compression ration and high pump pressure
 - Compression ratio

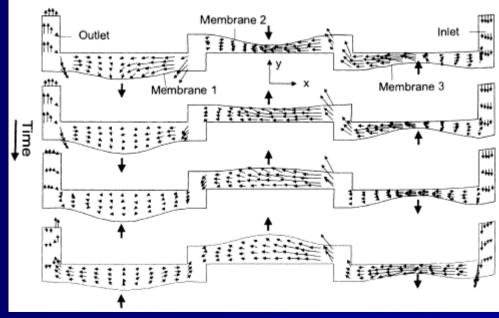
$$\Psi = \frac{\Delta V}{V_0}$$


– High pump pressure


$$\begin{cases} \left| p - p_{out} \right| > \Delta p_{crit} \\ \left| p - p_{in} \right| > \Delta p_{crit} \end{cases}$$

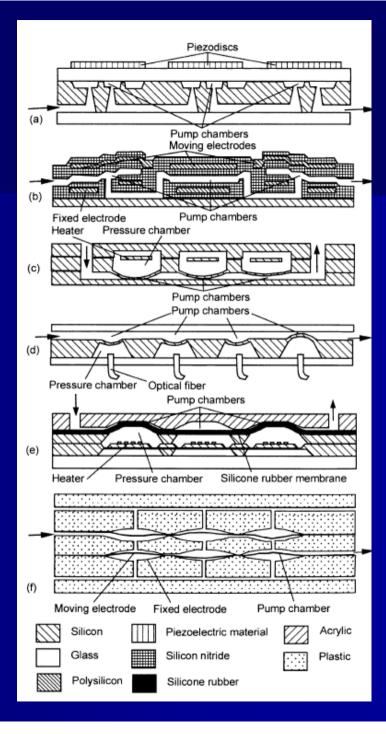
Design rules

- Minimize critical pressure
- Maximize stroke volume
- Minimize the dead volume
- Maximize the pump pressure using large force actuators


Typical micro check valves

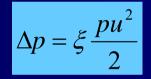
Peristalstic pumps

- Do not require passive valves to set flow direction
- Require 3 or more chambers (actually just valves connected in seria)
- Drawbacks: leakage and small pressure difference, require a one check valve to prevent back flow
- Design rules: large stroke and large compression ratio.



Example

A peristaltic pump has 3 chambers and 3 circular unimorph piezodiscs, membrane diameter 4mm, frequency 100Hz, maximum deflection 40um.

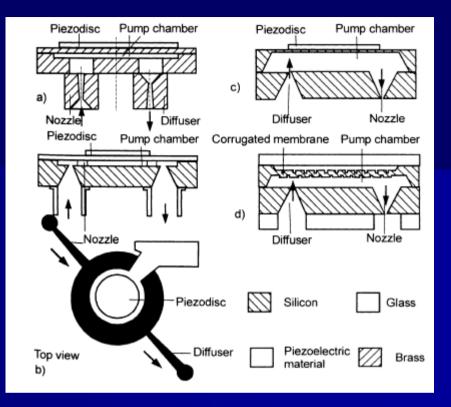

$$d(r) = d_{max} \left[1 - \left(\frac{r}{R}\right)^2 \right]^2$$

$$\Delta V = 2 \times \int_{0}^{2\pi R} d_{max} \left[1 - \left(\frac{r}{R}\right)^2 \right]^2 r dr d\varphi = \frac{2\pi}{3} d_{max} R^2 = \frac{2\pi}{3} 4 \times 10^{-5} \times (2 \times 10^{-3})^2 = 3.35 \times 10^{-10} \text{ m}$$
$$Q = \Delta V f = 3.35 \times 10^{-10} \times 100 = 3.35 \times 10^{-8} \frac{\text{m}^3}{\text{sec}} = 2 \text{ m}/\text{min}$$

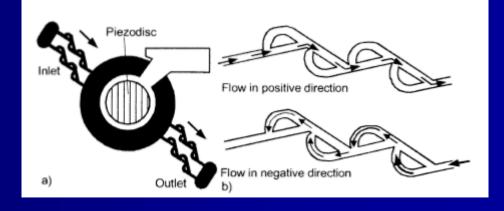
Valvless rectification pumps

 Diffusers/nozzles used instead of check valves for flow rectification

 ξ - pressure loss coefficient

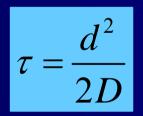

Fluidic diodicity:

$$\gamma_F = \frac{\xi_{negative}}{\xi_{positive}}$$


Flow rate:

$$\dot{Q} = 2\Delta V f \, \frac{\sqrt{\eta_F} - 1}{\sqrt{\eta_F} + 1}$$

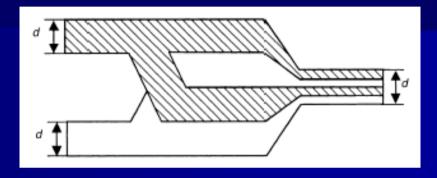
χ - rectification efficiency



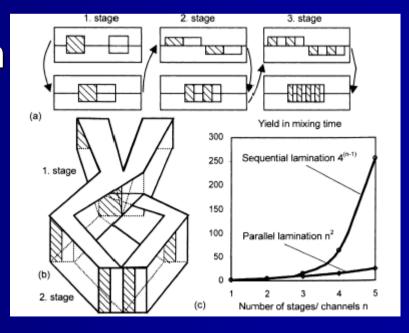
Tesla pump: χ=0.045, η=1.2

Micromixers

mixing in microscale relies mainly on diffusion due to laminar flow at low Reynolds numbers

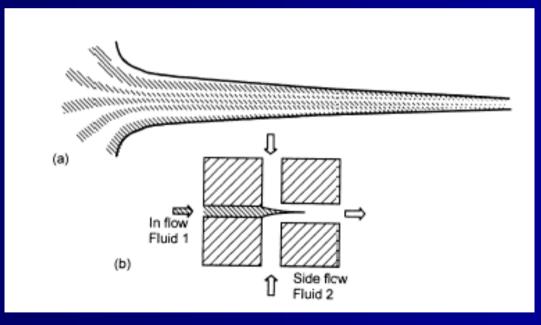


Solute	$D(\times 10^{-5} \text{ cm}^2/\text{s})$	Solute	D (×10 ⁻⁵ cm ² /s)
Air	2.00	Ammonia	1.64
CO ₂	1.92	Benzene	1.02
Chlorine	1.25	Sulfuric acid	1.73
Ethane	1.20	Nitric acid	2.60
Ethylene	1.87	Acetylene	0.88
Hydrogen	4.50	Methanol	0.84
Methane	1.49	Ethanol	0.84
Nitrogen	1.88	Formic acid	1.50
Oxygen	2.10	Acetic acid	1.21
Propane	0.97	Propionic acid	1.06
Glycine	1.06	Benzoic acid	1.00
Valine	0.83	Acetone	1.16
Ovalbumin	0.078	Urease	0.035
Hemoglobin	0.069	Fibrinogen	0.020

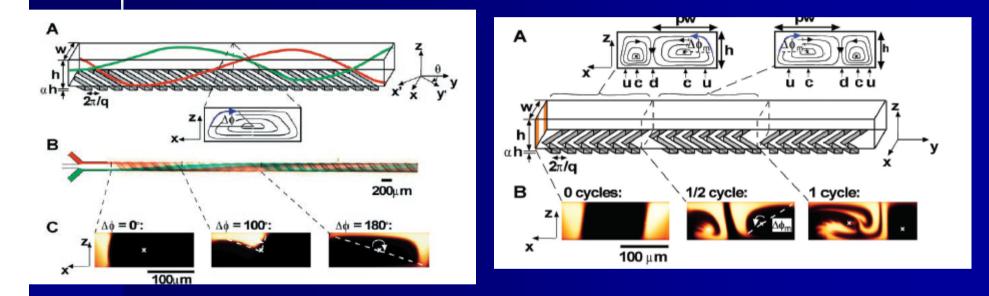

Diffusion Coefficients in Water at 25°C [31]

Lamination in mixer

parallel lamination

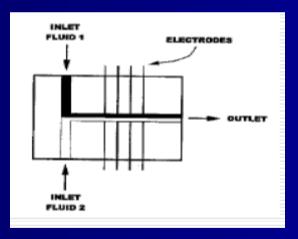


sequential lamination

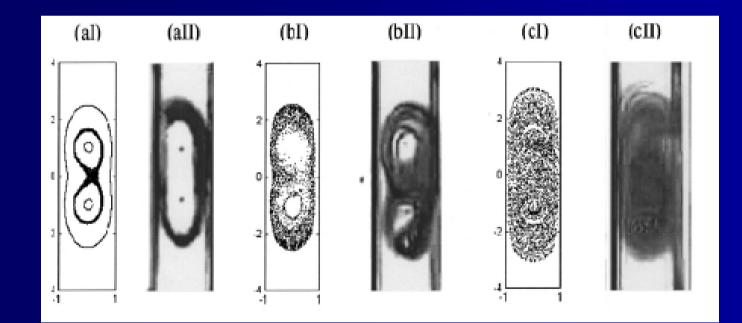


Focusing in mixer

geometric and hydrodynamic focusing


Mixing by twisting the flow

StroockA. D., DertingerS. K. W., AjdariA., MezicI., Stone H. A., Whitesides G. M. "Chaotic Mixer for Microchannels" Science 295, 647-651 (2002)


Electrohydrodynamic mixing

 Difference in liquids conductivities and permittivities created transversal flows across the interface and destabilized it, promoting mixing.

Magnetoelectrodynamic mixing

 Alternating electric fields were applied to the chamber with two independent center electrodes in the presence of a magnetic field

Mechanical mixing

Stirring
Oscillating walls
Magnetic particles etc.