Pressure In stationary and

moving fluid

Lab-On-Chip: Lecture 2



Fluid Statics

 No shearing stress

*.N0 relative movement between
adjacent fluid particles, I.e. static or
moving as a single block



Pressure at a point

Question: How pressure depends on the orientation of the plane ?

Newton’s second law:
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 Pascal’s law: pressure doesn’t depend on the orientation of
plate (i.e. a scalar number) as long as there are no shearing
stresses



Basic equation for pressure field

Question: What is the pressure distribution in liquid in

absence shearinqg stress variation from point to point
dap
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Basic equation for pressure field

Resulting surface force in vector form: ~ OF = _(8p i+ P f+@ K)SySxoz
ox oy 0z

If we define a gradient as: V=£T+if+ﬁﬁ oF
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The weight of element is: —OWk = —pgoYyoxoz k

Newton's second law:  5E _ sWk = Sma
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General equation of — _
motion for a fluid w/o —Vp - pgk =—pda

shearing stresses




Pressure variation in a fluid at rest

o Atresta=0 —-Vp-pgk =0
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Fluid statics

Same pressure —
much higher force!

Liq(uid sur;‘ace F
P ="ro
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Fluid equilibrium Transmission of fluid pressure,
e.g. in hydraulic lifts

* Pressure depends on the depth in the solution
not on the lateral coordinate



Compressible fluid

 Example: let's check pressure variation in the air (in
atmosphere) due to compressibility:

— Much lighter than water, 1.225 kg/m?3 against 1000kg/m?3 for
water

— Pressure variation for small height variation are negligible

— For large height variation compressibility should be taken
Into account:
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Measurement of pressure

* Pressures can be designated as absolute or gage (gauge) pressures

p TN
A ! vapor \\x
/ 8 A A
O~ —1—
Gage pressure @ 1
© Local atmospheric
5 pressure reference
[72]
o 2
o o Gage pressure @ 2 h
Absolute pressure 4 (suction or vacuum)
@1
Absolute pressure
@ 2 l)atm
W
B
Absolute zero reference
Mercury

patm =7 h+ pvapor

very small!



Hydrostatic force on a plane surface

 For fluid in rest, there are no shearing stresses present and
the force must be perpendicular to the surface.

e Air pressure acts on both sides of the wall and will cancel.
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Force acting on a side wall in rectangular container: F, = p,,A= o0 Ebh



Example: Pressure force and moment acting on

aguarium walls

e Force acting on the wall _

H H2
F. = pahdA=] pg(H -y)-bdy = pg—b
A 0

« Generally: F.=pgsind|[ ydA=pgsin6y A
A

!

Centroid (first moment of the area)

 Momentum of force acting on the

wall
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Pressure force on a curved surface




Buoyant force: Archimedes principle

 when a body is totally or partially submerged a fluid
force acting on a body is called buoyan%
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Stability of iImmersed bodies

o Totally immersed body

Unstable



Stability of iImmersed bodies

== ca = cge ==
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S a ) O)
¢ = centroid of original ¢' = centroid of new Restoring
displaced volume displaced volume couple
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Elementary fluid dynamics:

Bernoulli equation




Bernuolli equation — "the most used and most abused

eguation in fluid mechanics”

Assumptions:

« steady flow: each fluid particle that passes through a given
point will follow a the same path

e inviscid liquid (no viscosity, therefore no thermal

conductivity
V (2
: (2)
1‘—Fluid particle
F= ma b -

Net pressure force + Net gravity force



Streamlines

Streamlines: the lines that are tangent to velocity
vector through the flow field
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Balancing ball

T A
'.-*J "If.




Pressure variation along the streamline

« Consider inviscid, incompressible, steady flow along the
horizontal streamline A-B in front of a sphere of radius a.
Determine pressure variation along the streamline from point

A to point B. Assume: 33
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Raindrop shape

The actual shape of a raindrop is a result of
balance between the surface tension and the air
pressure




Bernoulli equation
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Assuming
incompressible
flow:
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Bernoulli equation




Example: Bicycle

« Let’s consider coordinate system fixed to the bike.
Now Bernoulli equation can be applied to




Pressure variation normal to streamline
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Example: pressure variation normal to streamline

 Let's consider 2 types of vortices with the velocity
distribution as below:
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1
p+§pv + pgz = const

Energy Type
Kinetic Potential Pressure
Point pV3/2 L P
1 Small Zero Large
2 Large Small Zero
3 Zero Large Zero



Static, Stagnation, Dynamic and TotalPressure

e each term in Bernoulli equation has dimensions of pressure
and can be interpreted as some sort of pressure

1 5,
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\ hydrostatic pressure, W

dynamic pressure,
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Velocity can be determined from stagnation pressure: IE=> P2 =B 2 N

Stagnation pressure



Stagnation point

Stagnation streamline

(a) (b)

On any body in a flowing fluid there is a stagnation  m———
point. Some of the fluid flows "over" and some '
"under" the body. The dividing line (the stagnation
streamline) terminates at the stagnation point on
the body.

As indicated by the dye filaments in the water
flowing past a streamlined object, the velocity
decreases as the fluid approaches the stagnation
point. The pressure at the stagnation point (the
stagnation pressure) is that pressure obtained
when a flowing fluid is decelerated to zero speed
by a frictionless process




Pitot-static tube
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(2) B FIGURE 3.7 Typical Pitot-static tube designs.

Pitot-static tube



Steady flow into and out of a tank.

Volume =V 6r A4

Fluid parcel at r=0
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Determine the flow rate to keep the height constant
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Venturi channel
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Measuring flow rate in pipes

—— Orifice




will open.

@:

Gasoline

« 2.43 Pipe A contains gasoline (SG=0.7), pipe B contains oll
(SG=0.9). Determine new differential reading of pressure in A
decreased by 25 kPa.

2.61 An open tank contains gasoline p=700kg/cm at a depth
of 4m. The gate is 4m high and 2m wide. Water is slowly
added to the empty side of the tank. At what depth h the gate
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« 3.71 calculate h. Assume water inviscid and
Incompressible.

] | L Air
h
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