
Lecture 3

Fluid Kinematics: Velocity field, 
Acceleration, Reynolds Transport 

Theorem and its application



Aims 

• Describing fluid flow as a field
• How the flowing fluid interacts with the 

environment (forces and energy)



Lecture plan

• Describing flow with the fields: Eulerian vs. 
Lagrangian description.

• Flow analysis: Streamlines, Streaklines, Pathlines.
• How to perform calculations in the field description: 

the Material Derivative
• Reynold’s Transport Theorem
• Application of Reynolds transport theorem: 

Continuity, Momentum and Energy conservation



Velocity field
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Velocity field: example

The calculated velocity field in a shipping channel is shown as the tide comes in 
and goes out. The fluid speed is given by the length and color of the arrows. The 
instantaneous flow direction is indicated by the direction that the velocity arrows 
point. 



Velocity field is given by:

))(/( 0 jyixlvv −=
• Sketch the field in the first quadrant
• find where velocity will be equal to v0

Velocity field representation



Eulerian and Lagrangian flow description

• Eulerian method – field concept is used, flow parameters (T, 
P, v etc.) are measured in every point in space vs. time

• Lagrangian method – an individual fluid particle is followed, 
parameters associated with this particle are followed in time

Example: Smoke coming 
out of a chimney



1D, 2D and 3D flow

Flow visualization of the complex 
three-dimensional flow past a 
model airfoil

The flow generated by an airplane is made visible 
by flying a model Airbus airplane through two 
plumes of smoke. The complex, unsteady, three-
dimensional swirling motion generated at the wing 
tips (called trailing vorticies) is clearly visible 



Flow types
• Steady flow – the velocity at any given point in space doesn’t vary with 

time. Otherwise the flow is called unsteady
• Laminar flow – fluid particles follow well defined pathlines at any moment 

in time, in turbulent flow pathlines are not defined.



Constxy =

Streamlines
Velocity field is given by:
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•draw the streamlines and 
find there equation
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Streamlines, Streaklines, Pathlines
• Streamline – line that 

everywhere tangent to 
velocity field

• Streakline – all particles 
that passed through a 
common point

• Pathline – line traced by a 
given particle as it flows

streamlines



Imaging flow in a microfluidic channel
• Flow is seeded with fluorescent particles and imaged…

(Project 5th semester Fall 2006)

Flow through a loosely packed 
microspheres bed

Flow at a channel turn. 
Flow is disturbed by a microwire



Example

Water flowing from an oscillating slit:

jvivytuv 000 ))/(sin( +−= ω





Material derivative

• Particle velocity
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• Particle acceleration
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Material derivative

• is the rate of changes for a given variable with time for a 
given particle of fluid. 
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Unsteadiness of the flow
(local acceleration)

Convective effect
(convective acceleration)



Example: acceleration

Velocity field is given by: ))(/( 0 jyixlvv −=

Find the acceleration and draw it on scheme



Example: acceleration



Control volume and system representation

• System – specific identifiable quantity of matter, that might 
interact with the surrounding but always contains the same 
mass

• Control volume – geometrical entity, a volume in space 
through which fluid may flow

Governing laws of fluid motion are stated in terms in system, but 
control volume approach is essential for practical applications



Control volume and system representation

• Extensive property: B=mb (e.g. m (b=1), mv (b=v), mv2/2 etc) 
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Control volume: example



The Reynolds Transport theorem (simplified)
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Let’s consider an extensive property B:



• For fixed control volume with one inlet, one outlet, velocity 
normal to inlet/outlet
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• Can be easily generalized:



The Reynolds Transport theorem
(for fixed nondeforming volume)
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General Reynolds 
transport theorem for 
fixed control volume



Application of Reynolds Transport Theorem

• We will apply it now to various properties:
– mass (continuity equation)
– momentum (Newton 2nd law)
– energy
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Conservation of mass

• The amount of mass in the system should be conserved:
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Continuity equation
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Mass flow rate through a section of control surface having area A:

Volume flow rate
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• For incompressible flow, the volume flowrate into a control 
volume equals the volume flowrate out of it.

• The overflow drain holes in a sink must be large enough to 
accommodate the flowrate from the faucet if the drain hole at 
the bottom of the sink is closed. Since the elevation head for 
the flow through the overflow drain is not large, the velocity 
there is relatively small. Thus, the area of the overflow drain 
holes must be larger than the faucet outlet area



Example
Incompressible laminar flow develops in a straight pipe of radius R. At section 1 
velocity profile is uniform, at section 2 profile is axisymmetric and parabolic with 
maximum value umax. Find relation between U and umax, what is average velocity 
at section (2)? 
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A jet of fluid deflected by an 
object puts a force on the object. 
This force is the result of the 
change of momentum of the fluid 
and can happen even though the 
speed (magnitude of velocity) 
remains constant. 

Newton second law and conservation of 
momentum & momentum-of-momentum



Newton second law and conservation of 
momentum & momentum-of-momentum
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A=0.06 m2

V1=10 m/s

Example: Linear momentum
Determine anchoring forces required to keep the vane stationary vs angle Q. 
Neglect gravity and viscosity.
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Linear momentum: comments

• Linear momentum is a vector
• As normal vector points outwards, momentum flow inside a 

CV involves negative Vn product and moment flow outside 
of a CV involves a positive Vn product.

• The time rate of change of the linear momentum of the 
contents of a nondeforming CV is zero for steady flow

• Forces due to atmospheric pressure on the CV may need 
to be considered





Moment-of-Momentum Equation

The net rate of flow of moment-of-momentum through a control surface equals the net 
torque acting on the contents of the control volume.
Water enters the rotating arm of a lawn sprinkler along the axis of rotation with no 
angular momentum about the axis. Thus, with negligible frictional torque on the rotating 
arm, the absolute velocity of the water exiting at the end of the arm must be in the radial 
direction (i.e., with zero angular momentum also). Since the sprinkler arms are angled 
"backwards", the arms must therefore rotate so that the circumferential velocity of the 
exit nozzle (radius times angular velocity) equals the oppositely directed circumferential 
water velocity.



The Energy Equation

Rate of 
increase of the 
total stored 
energy of the 
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Application of energy equation
• Product V·n is non-zero only where liquid crosses the CS; if 

we have only one stream entering and leaving control volume:
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Energy transfer

Work must be done on the device shown to turn it over because the system gains 
potential energy as the heavy (dark) liquid is raised above the light (clear) liquid. This 
potential energy is converted into kinetic energy which is either dissipated due to friction 
as the fluid flows down the ramp or is converted into power by the turbine and then 
dissipated by friction. The fluid finally becomes stationary again. The initial work done in 
turning it over eventually results in a very slight increase in the system temperature 



Second law of thermodynamics

• Let’s apply “stream line energy equation” to an infinitesimally thin volume
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Application of energy equation
• We can make the energy equation more concrete by noting:

– Work is usually transferred into liquid by rotating shaft:

shaft shaftT ωW =
– Or by normal stress acting on a free surface
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Example: Efficiency of a fan



Problem 4.20

• Determine local acceleration at points 1 and 2. Is the 
average convective acceleration between these 
points negative, zero or positive?



Problems

• 5.102 Water flows steadily down 
the inclined pump. Determine: 
– The pressure difference, p1-p2;
– The loss between sections 1 and 2
– The axial force exerted on the pipe 

by water

• 4.20. Determine local 
acceleration at points 1 and 2. 
Is the average convective 
acceleration between these 
points negative, zero or 
positive?


