
Lecture 5

Differential Analysis of Fluid Flow
Navier-Stockes equation



Differential analysis of Fluid Flow

• The aim: to produce differential equation 
describing the motion of fluid in detail



Fluid Element Kinematics

• Any fluid element motion can be represented 
as consisting of translation, linear deformation, 
rotation and angular deformation



Velocity and acceleration field

• Material derivative
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• Acceleration

• Velocity field
ˆ ˆ ˆu v w= + +V i j k



Linear motion and deformation
• Let’s consider stretching of a fluid element under velocity 

gradient in one direction
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Volumetric dilatation rate:



Angular motion and deformation

Fluid elements located in a moving fluid move with the fluid and generally 
undergo a change in shape (angular deformation).
A small rectangular fluid element is located in the space between concentric 
cylinders. The inner wall is fixed. As the outer wall moves, the fluid element 
undergoes an angular deformation. The rate at which the corner angles change 
(rate of angular deformation) is related to the shear stress causing the 
deformation



Angular motion and deformation

• Rotation is defined as the average of those velocities:
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Angular motion and deformation

• Vorticity is defined as twice the rotation vector
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• If rotation (and vorticity) is zero flow is called irrotational



Angular motion and deformation

• Rate of shearing strain (or rate of angular 
deformation) can be defined as sum of fluid element 
rotations:
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Conservation of mass
• As we found before: 0Sys
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Conservation of mass
• Incompressible flow
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• Flow in cylindrical coordinates
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• Incompressible flow in cylindrical coordinates



Stream function
• 2D incompressible flow
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• Lines along which stream is  const are stream lines:
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Stream function

• Flow between streamlines

dq udy vdx= −

dq dy dx d
y x
ψ ψ ψ∂ ∂

= + =
∂ ∂

2 1q ψ ψ= −



Description of forces

Forces

Body forces – distributed 
through the element, e.g. 
Gravity

mδ δ=F g

Surface forces – result 
of interaction with the 
surrounding elements: 
e.g. Stress

Linear forces: Surface tension

Normal stress

Shearing stresses



Stress acting on a fluidic element

• normal stress
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Stresses: double subscript notation
• normal stress: xxσ

• shearing stress: xy xzτ τ

normal to 
the plane

direction 
of stress

sign convention: positive stress is directed in positive axis 
directions if surface normal is pointing in the positive direction



Vectors and Tensors
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• To define stress at a point we need to define “stress vector”
for all 3 perpendicular planes passing through the point
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Force on a fluid element
• To find force in each direction we need to sum all  forces 

(normal and shearing) acting in the same direction
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Viscous Flow
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for viscous flow normal 
stresses are not necessary the 
same in all directions 



Navier-Stokes Equations
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• 4 equations for 4 unknowns (u,v,w,p)
• Analytical solution are known for only few cases



Steady Laminar Flow between parallel plates
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No-slip boundary condition

• Boundary conditions are needed to 
solve the differential equations 
governing fluid motion. One condition 
is that any viscous fluid sticks to any 
solid surface that it touches.

• Clearly a very viscous fluid sticks to a 
solid surface as illustrated by pulling a 
knife out of a jar of honey. The honey 
can be removed from the jar because it 
sticks to the knife. This no-slip 
boundary condition is equally valid for 
small viscosity fluids. Water flowing 
past the same knife also sticks to it. 
This is shown by the fact that the dye 
on the knife surface remains there as 
the water flows past the knife. 



Couette flow
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Boundary condition (no slip) Ubuu == )(;0)0(
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Hagen-Poiseuille flow
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Laminar flow
• The velocity distribution is 

parabolic for steady, laminar flow 
in circular tubes. A filament of dye 
is placed across a circular tube 
containing a very viscous liquid 
which is initially at rest. With the 
opening of a valve at the bottom of 
the tube the liquid starts to flow, 
and the parabolic velocity 
distribution is revealed. Although 
the flow is actually unsteady, it is 
quasi-steady since it is only slowly 
changing. Thus, at any instant in 
time the velocity distribution 
corresponds to the characteristic 
steady-flow parabolic distribution. 



Problems

• 6.2 A certain flow field is given by equation:

Determine expression for local and convective components of 
the acceleration in x and y directions

2(3 1) 6V x i xyj= + −

• 6.8 An incompressible viscous 
fluid is placed between two large 
parallel plates. The bottom plate is 
fixed and the top moves with the 
velocity U. Determine: 
– volumetric dilation rate; 
– rotation vector; 
– vorticity; 
– rate of angular deformation.  
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Problems
• 6.22 The stream function for an 

incompressible flow

sketch the streamline passing through the 
origin; determine of flow across the strait 
path AB

• 6.74 Oil SAE30 at 15.6C steadily flows between fixed horizontal 
parallel plates. The pressure drop per unit length is 20kPa/m 
and the distance between the plates is 4mm, the flow is 
laminar.
Determine the volume rate of flow per unit width; magnitude 
and direction of the shearing stress on the bottom plate; 
velocity along the centerline of the channel


