Similitude and Modeling



Simultitude and Dimensional Analysis

e Although many problems in fluid mechanics can be
solved analytically, still in most of the situations
require combination of analysis and experiment

o Similitude — how define similarity between different
system and how data obtained on a model system
can be transferred to other systems



Dimensional Analysis

* Let’s consider experiment involving flow through a pipe
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Dimensional Analysis

(1) (2) Dimensionless groups approach
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Buckingham Pi1 Theorem

 If an equation involving k variables is dimensionally
homogeneous, it can be reduced to a relationship among k-r
iIndependent dimensionless products, where r is the minimum
number of reference dimensions required to describe the

variables

X, = f(X,, Xape X,) |:> I, = &(I1,,I1,,...I1, )

* reference dimensions will be usually 3 basic
dimensions M, L, Tor F, L, T, some times only two
of them or even one might be required.



Method of repeating variables

Step 1: List all variables involved in the problem

Step 2: Express each variable in terms of basic
dimensions. For a typical problem M, L, Tor F, L, T
(F=ma => F=MLT?)

Step 3: Determine the required number of Pi terms

Step 4. Select the number of repeating variables (equal
to the number of basic dimensions)

Step 5: Form a Pi term by multiplying one of the
nonrepeating variables by the product of the repeating
variables, each raised to an exponent that will make the
combination dimensionless

Step 6: Repeat Step 5 for each remaining nonrepeating
variable

Step 7: Check all resulting Pi terms to ensure they are
dimensionless

Step 8: Express the final form as a relationship among Pi
terms and think about what it means
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e 5 variables

e 3 reference dimensions

e therefore 2 Pi terms required

» dependent variable (here, Ap, ) is never

chosen as a repeating.
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Selection of variables

o Geometry: sufficient number of geometric variables should be
Included to describe the system e.g. length, angles,
roughness scale etc.

« Material properties: viscosity, density

« External effects: variables that produce change in a system,
e.g. pressure, velocity, gravity etc.



Uniqueness of Pi terms

o Set of Piterms are not unigue. However the required number
of Pi terms is fixed and all other possible sets can be
developed by combinations of products (with some powers) of
Pi terms from a single set.



Common dimensionless groups In fluid mechanics

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, €; Density, p:
Frequency of oscillating flow, w; Pressure, p (or Ap); Speed of sound, ¢; Surface tension, o

Velocity, V; Viscosity,

Dimensionless Interpretation (Index of  Types of
Groups Name Force Ratio Indicated) Applications
pVE Reynolds number, Re inertia force Generally of importance in
M viscous force all types of fluid dynamics
problems
\% Froude number, Fr inertia force Flow with a free surface
Vel gravitational force
p Euler number, Eu pressure force Problems in which pressure,
pV? inertia force or pressure differences, are
of interest
pV? Cauchy number,” Ca inertia force Flows in which the
E, compressibility force gor_npresmbﬂﬁy of the fluid
1s 1mportant
| Mach number,* Ma inertia force Flows in which the
c compressibility force gor_npresmbﬂﬁy of the fluid
1s 1mportant
wl Strouhal number, St inertia (local) force Unsteady flow with a
inertia (convective) force characteristic frequency of
oscillation
pV3ie Weber number, We inertia force Problems in which surface
o surface tension force tension 1s important

|
“The Cauchy number and the Mach number are related and either can be used as an index of the relative effects of inertia and com-

pressibility. See accompanying discussion.



Reynolds number

« [For arotating tank containing a very viscous fluid, which gives a small
Reynolds number, viscous forces are dominant. Thus, when the tank is
suddenly stopped fluid particles also suddenly stop due to the dominance
of viscous forces over inertia forces. Correspondingly, when a low
viscosity fluid is in the tank, which gives a much higher Reynolds number,
Inertia forces are dominant. When the tank suddenly stops the fluid
particles continue to move



Correlation of experimental data

 Dimensional analysis doesn’t provide the
coefficients but can elucidate the important
dependencies



Problems with One Pi term

IT,=C

« How drag D on a spherical particle that fall slowly through a

viscous fluid will depend on particle diameter d, velocity V and
fluid viscosity /7

D=F
D= f(d,V, d=L
( ﬂ) V=LT™
p=FLT
oD
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Stokes law (for spherical bodies):

D =3zuVd

Valid for laminar flow as we didn’t include inertial effects (fluid density) in our variables



Problem with Two of more PI terms

[, =O(T1,)

For the problem involving 3 Pi
terms one can still plot family of
curves
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Example: Blasius’ equation

* Viscous flow was studied
for a range of flow velocities
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Modeling and Simultitude

Suppose, a system can be described with a given set of Pi terms
I, = d(I1,,11,,...,11,)

if we can construct a model governed by the same variables:

1_IZm =H2
Hlm — (D(HZm!Hgm;-"’Hnm) and H3m =H3
Than e
1_Inm :Hn
1_Ilm :Hl

Prediction equation — indicates how to relate measured model data to the real system

Similarity between a model and a prototype is achieved by equating
the Pi terms




Environmental models

e e b

* Plume dispersion in a building complex is studied using scale models
located in a large environmental wind tunnel. Spires at the tunnel entrance
and roughness elements on the floor of the tunnel are used to create the
necessary flow similarity in the test section. The effect of wind speed and
direction on the dispersion of a plume can be determined for the
geometrically scaled model. (Video courtesy of Cermak Peterka Petersen,

Inc.)



Example: Prediction of prototype performance from

Model Data (or Takoma Narrow Bridge effect)

Long structural component of bridge has
cross section D=0.1m by H=0.3m and
representative wind velocity is 50 km/h.
Model with D=20mm was tested in water
tunnel. What should be H_,? If shedding
frequency for model was 49.9 Hz, what
shell we expect from the prototype?
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Practical Aspects of using Models

« Validation of model design: although the
number of assumptions is smaller than in
mathematical models, the assumptions
might introduce uncertainty

o Scale: ratio of geometrical dimensions
should be maintained

« Distorted Models: models for which one or
more similarities requirements are not
satisfied. Distorted models can be used but
the Interpretation of the results is more
complicated that in case of true models



Wind Engineering models

Model of National Bank of commerce in San Antonio, Texas
located in large meteorological wind tunnel



Simulitude based on Governing Differential equations

« If the governing differential equations are known the similarity can be established from there
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Let’s introduce dimensionless (normalized) variables
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e 7.19. One type of viscosimeter is designed as
shown in the figure. The reservoir is filled with
liguid and the time required for the liquid to

drop from H, to H; determined. Obtain
relationship between viscosity /.« and draining

time 7. Assume the variables involved H;,H;,
D and specific weight .

e 7.50 The drag =f(d,D,V,p). What i
dimensional parameters will be used? If in -
experiment d=5mm, D=12.5mm and

V=0.6m/s, the drag is 6.7x103N. Estimate
drag on a sphere in 0.6 m diam tube where |-————————— _—

water flowing with a velocity of 1.8 m/s. . J
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