
Lecture 8

Flow and Diffusion. Computational
flow analysis. Introduction to 

COMSOL. Multiphysics modelling
with COMSOL



Brownian motion

• discovered by R. Brown and J.Ingenhous by 
observation of pollen grains floating on water 

• macroscopic (concentration) and microscopic 
approach to diffusion  



Macroscopic approach to diffusion

• First Fick’s law
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• Second Fick’s law
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Spreading from a point source in 1D

• solution:
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Ilkovic’s solution

• Problem: consider a half-space with an initial 
concentration c0. Concentration on the wall is zero at 
any time. Find the concentration profile vs time.
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Example: diffusion between two plates
• A liquid drop contains nanoparticles that are 

immobilized upon contact with the walls. Find 
the concentration dependence vs time

• For times less than  / 2
4
e

D
τ =
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Diffusion inside a microchamber

• Problem: a PCR reaction on chip is designed such 
that DNA strand are brought inside a microchamber
(e.g. with magnetic beads) and let them diffuse to 
hybridize on labeled surface



Example: Simultaneous PCRs in a capillary



Example: Simultaneous PCRs in a capillary
• The system has two characteristic times: diffusion across the 

capillary and axial diffusion
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• After time t uniform concentration across the capillary is 
achieved. 2
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Diffusion vs Sedimentation
Does the gravity force affects the diffusion?

• Let’s compare diffusion and sedimentation time across a 
microfluidic chamber

• sedimentation time:
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• if b<<1 sedimentation dominates



Random walk

• Diffusion can be modeled as a random walk 
using Monte-Carlo simulation 



Diffusion in confined volumes
• For example, delivery of drugs relies on a diffusion in 

ECS of cellular clusters

cell arrangement in the human skin

• tortuosity: ration between the distance in liquid and 
the straight distance between the points



Diffusion in confined volumes
It can be shown that:
• for any 2D regular isotropic lattice tortuosity is equal to 

• for 3D:
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• The situation is more 
complicated for irregular 
cells and in the presence 
of intercleft volumes



How to treat anisotropic media
• to treat a media with a preferential direction we have to 

introduce a diffusion tensor:
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• by rotating and scaling the coordinates it’s possible to return 
to a isotropic (scalar) D:
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Computational Fluid Dynamics

• Though the Navier-Stokes equations provide 
an exact solution for Newtonian fluid, there are 
only few situation when analytical solution 
possible

• CFD separates liquid into small volumes 
where partial differential equations can be 
approximated with algebraic equations. 



Discretization
• finite element/finite volume method: flow field is broken into 

set of elements, conservation equations are (mass, 
momentum and energy) are written for every element

• boundary element method (panel method) : the boundary is 
broken into discrete elements and singularities like sinks, 
sources, doublets and vortices are inserted on these elements

• finite difference method: flow field is dissected into set of 
grid points, velocity, pressure etc. fields are approximated by 
the discrete values at the grid points, derivatives by the 
differences of values etc. 



Discretization: finite difference

• algebraic approximation for the 
1st derivative would be:
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truncation of the Taylor series

• central difference makes use of the both left and right 
points as j-1,j and j+1,j and is second order accurate
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Finite element method: the idea
• The region is divided into triangular elements
• A basis function Y is defined for each node that is 

equal 1 at the node and drops linearly to zero at all 
adjacent nodes and is zero anywhere else

• The approximate solution of an equation is than:
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• This solution is searched that satisfy a condition 
(Galerkin method):
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Grids

• arrangement of the 
discrete points in finite 
difference method is 
called grid or mesh;

• grid must have sufficient 
resolution to catch details 
of flow

• grids could be structured 
(regular pattern) or 
unstructured. Other types 
could be hybrid (several 
structured elements), 
moving (time dependent)



Boundary conditions

• Boundary conditions are essential part of the problem 
as they characterize the geometry of the problem

• proper definition of the boundary condition are 
important for accurate representation of the physical 
problem. 



Methodology of CFD



Process flow in CFD

1. Defining governing equations. Formulating the problem.
2. Defining geometry.
3. Setting boundary conditions.
4. Defining the mesh (grid): flow field is broken into set of 

elements
5. Solving: conservation equations are (mass, momentum and 

energy) are written for every element and solved.
6. Postprocessing: solution is visualized and hopefully 

understood



Application of CFD

• Computational fluid dynamics applications:
– Aerodynamics of aircraft and vehicles
– Hydrodynamics of ships
– Microfluidics and biosensors
– Chemical process engineering
– Combustion engines and turbines
– Construction: External and internal environment
– Electric and electronic engineering: heating and cooling of 

circuits



Advantages of CFD
• Advantages of CFD

– Reduction of time and costs
– Ability to do controlled experiment under difficult and 

hazardous condition 
– Unlimited level of detail
– simulate real flow conditions
– conduct large parametric tests on new designs
– enhance visualization of complex phenomena

• Difficulties in CFD:
– dealing with non-linear terms in Navier-Stokes
– difficulties modeling turbulent flow
– convergence issues
– difficulties obtaining quality grid



Verification and Validation

• grid convergence testing
• comparison with existing data (e,g, limiting cases)

flow visualizationflow visualization

flow modelingflow modeling



H-cell model

• H-cell perform 
separation via 
diffusion during 
controlled time

• Small species from A 
can diffuse into B

• Modelling 
parameters:
– P0=2 Pa; D=1e-11



Problem: 2D Viscous flow between the plates

Parameters
flow velocity V=0.001m/s; 
height of the channel h=0.4m; length of the channel L=2m
dynamic viscosity (water) m=10-3 Pa*s; density (water) r=103 kg/m3

Questions:
• What is the Reynolds number?
• What is the calculated pressure drop in the channel? What is the entrance pressure 
drop?
• Is laminar flow fully developed in the channel?

Water is injected between two infinite parallel plates. Solve analytically 
(in the case of fully developed laminar flow) and numerically (general 
case) and compare the results. Plot velocity profile across the channel 
and pressure drop along the channel.


