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Introduction

In Chapter 1, we dealt with microflows. Another aspect of microfluidics is the phys-
ics of microdrops. Microdrops are a common feature in biotechnology. For exam-
ple, DNA microarrays are comprised of hundreds to thousands of microwells, each
containing a drop of biologic liquid, and a drop dispenser is used to deposit the lig-
uid in each well (Figure 2.1). In such a case, it is essential to understand how the
drop relocates in a well.

Another relatively new concept in microfluidics is the use of microdrops to per-
form the same bioanalysis and biorecognition operations as classical microflows
devices do. There are some arguments about whether it is better to use microflows
or microdrops in microsystems for biotechnology. The choice is complex because it
depends on many factors.

First, microflows are more commonly used, better known, and more familiar to
the developers. Micropumps and microvalves are now available, and microchannel
etching in silicon, plastic, or glass is now a standard technique. Second, microdrop
behavior is often complex and puzzling—as we shall see in this chapter. However,
microdrops have the big advantage of minimizing the surface between the liquid
and the solid walls. In biotechnology, it is a real advantage since “nonspecific”
adsorptions—contact and adherence of the target particles on solid walls at
unwanted places in the microsystem—are a constant drawback. If these particles
are marked with a fluorescent marker, they constitute a perturbing light source that
hampers the detection of the real signal. Another advantage of microdrops in biol-
ogy is that it is possible to work with very small amounts of liquid, much smaller
than it is possible to use in classical microflows. In electrowetting devices, for exam-
ple, the volume of the drops may be as low as 0.05 ul. Finally, assuming that the
technique to move and control microdrops on a plane surface is mastered, fluidic
tracks that resemble the one used to define conducting paths on an electronic semi-
conductor device may be built (Figure 2.2). One sometimes refers this approach as
digital or flatland microfluidics.

On the other hand, microdrop technology is not adapted to all situations, such
as the continuous analysis of large volumes of liquids. Microdrops are not going to
replace continuous flow processes but rather complete the panel of existing devices
to tackle the many facets of biotechnology.

In this chapter, we deal first with the basic notions of the physics of wetting in
order to familiarize the reader with the mechanical behavior of interfaces. Then we
will focus on the physics of drops with the important notions of minimal surface
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Figure 2.1 (Left) DNA microarray made by SCIENION; and (right) the principle of microdispensing
of liquid into wells of a microplate.

Figure 2.2 Schematic view of a concept of a microdevice using microdrops. (Courtesy of CEA/LETL.)

and contact forces. Finally, we give an example of application of flatland/digital
microfluidics using the principle of electrowetting.

2.2 The Physics of Wetting

2.2.1 Capillarity: Surface Tension and Contact Angles
2.2.1.1 Interfaces and Surface Tension

Mathematically speaking, an interface is the geometrical surface that delimitates
two fluid domains. This definition implies that an interface has no thickness and is
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smooth (i.e., it has no roughness). As practical as it is, this definition is in reality a
schematic concept. The reality is more complex, and the separation of two immisci-
ble fluids (water/air, water/oil, and such) depends on molecular interactions
between the molecules of each fluid [1]. A microscopic view of the interface between
two fluids looks more like the scheme of Figure 2.3.

However, as it has been mentioned earlier, even for microdrops, we are more
interested in the macroscopic behavior of the interface, and the mathematical con-
cept regains its utility. The former picture can be viewed at a macroscopic size, as
shown in Figure 2.4.

In a condensed state, molecules attract each other. Molecules located in the bulk
of a liquid have interactions with all neighboring molecules; these interactions are
mostly Van der Waals attractive interactions for organic liquids and hydrogen
bonds for polar liquids like water. On the other side, molecules at an interface have
interactions in one half space with molecules of the same liquid and in the other half
space interactions with the molecules of the other fluid or gas (Figure 2.5).

Suppose an interface between a liquid and a gas. In the bulk of the liquid, a mol-
ecule is in contact with 4 to 12 other molecules, depending on the liquid (4 for water
and 12 for simple molecules); at the interface this number is divided by two. Of
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Figure 2.3 Schematic view of an interface at the molecular size.
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Figure 2.4 Macroscopic view of the interface of a drop.
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Table 2.

Figure 2.5 Simplified scheme of molecules near an air/water interface. In the bulk, molecules have
interaction forces with all of the neighboring molecules. At the interface, half of the interactions have
disappeared.

course, the molecule is also in contact with gas molecules, but, due to the low densi-
ties of gases, there are less interactions and less interaction energy than in the liquid
side. The result is that there is locally a dissymmetry in the interactions, which
results in a defect of surface energy.

The same reasoning applies to the interface between two liquids, except that the
interactions with the other liquid will usually be more energetic than a gas and the
resulting dissymmetry will be less. For example, we will see in Table 2.1 that the
contact energy (surface tension) between water and air is 72 mN/m, whereas it is
only 50 mN/m between water and oil.

It is also the same for a solid and a liquid. The interface is just the physical con-
tact surface. Molecules in the liquid are attracted toward the interface by Van der
Waals forces. But usually these molecules do not “stick” at the wall because of
Brownian motion. However, impurities contained in the fluid, like particles of dust
or biological polymers like proteins, may well adhere permanently to the solid sur-
face because, at the contact with the solid interface, they experience more attractive
interactions. This is because the size of polymers is much larger than that of water
molecules, and Van der Waals forces are proportional to the number of contacts.

1 Typical Values of Surface Tensions at Room Temperature

Type of Components ‘Water/Air Water/Oil Glycerol/Air Ethanol/Air Cyclobexan/Air Mercury/Air

Surface

Source: [2].

tension [mN/m|| 72 50 63 23 25 485
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At the macroscopic scale, a physical quantity called surface tension has been
introduced in order to take into account this molecular effect. The surface tension
has the dimension of energy per unit surface, and in the International System it is
expressed in J/m’ or N/m (sometimes it is more practical to use mN/m as a unit for
surface tension): it is the local defect of energy at the interface divided by the area
occupied by a molecule.

In the literature or on the Internet there exist tables for surface tension values
[3, 4]. Typical values of surface tensions are given in Table 2.1.

Usually surface tension is denoted by the Greek letter y, with subscripts refer-
ring to the two components on each side of the interface (e.g., ¥, at a liquid/gas
interface). Most of the time, if the contact is with air, the subscripts are omitted.

Just because of the definition of the surface tension, for a homogeneous inter-
face (same molecules at the interface all along the interface), the total energy of the
surface is

E=yS (2.1)

2.2.1.2 Capillary Forces

Surface tension can be looked at as a force per unit length. This can be directly seen
from its unit since surface tension is expressed in N/m, which is indeed a force per
unit length. But it may be interesting to give a more physical feeling by doing a very
simple experiment (Figure 2.6) [2]. Take a solid frame and a solid tube that can roll
on this frame. If we form a liquid film of soap between the frame and the tube by
plunging one side of the structure in a water-soap solution, the tube starts to move
toward the region where there is the liquid film. The surface tension of the liquid
film exerts a force on its free boundary.

On the other hand, we can increase the film surface by exerting a force on the
tube. The work of this force is given by the relation

OW = Fdx =2yLdx

The coefficient 2 stems from the fact that there are two interfaces between the
liquid and the air. This relation shows that the surface tension y is a force per unit
length, perpendicular to the tube, in the plane of the liquid and directed toward the
liquid.

Figure 2.6 A tube placed on a rigid frame where the left part is occupied by a film of glycerin
displaced toward the left.
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Capillary forces are extremely important at a microscale. For example, it is very
difficult to separate two parallel plates separated by a fiquid film.

2.2.2 Wetting: Young's Law

The behavior of microdrops on a solid surface is of utmost importance for the con-
ception of microsystems in biology. This solid surface may be the tip of a
microneedle or a micropipette; it may be the surface of a microplate with thousands
of cusps or that of a Teflon-coated electrowetting device. In any case, we need know
the behavior of the drop. The microdrop must detach easily from the tip of the
pipette or the needle, stay in the microcusps without flowing by capillarity inside the
other neighboring cusps 1o avoid biological contamination, or follow the electrodes
line of the electrowetting device.

Wetting characterizes the contact of a liquid with a solid surface. Generally
speaking, there are two types of wetting: total and partial. Total wetting corre-
sponds to the case where a liquid film spreads out on the solid surface, and partial
wetting occurs when the liquid stays in drops, as shown in Figure 2.7.

A criterion for total wetting is given by the spreading coefficient S given by

S = Y — (,}/.\1 + yl,({ )

If S is positive, the drop spreads on the solid surface as a liquid film. If S 1s
negative, it is a situation of partial wetting. In the case of partial wetting, there is a
line where all three phases come together. This line is called the contact line or
sometimes the triple line. The contact of a water droplet on a solid 1s said to be
hydrophilic or hydrophobic, depending on the contact angle (Figure 2.8).

We have seen that surface tensions are not exactly forces; their unit is N/m; how-
ever, they represent a force that is exerted tangentially to the interface. We can then
draw the different forces that are exerted by the presence of a fluid on the triple line
(Figure 2.9).

Note that we have noted the wall characteristics by the terms hydrophilic or
hydrophobic with reference to water. In general, we should say that a liquid is “wet-
ting” or “not wetting” a specific surface based on the contact angle of a drop with
the surface.

A criterion of wetting may be derived from surface tension considerations: At
cquilibrium, the resultant of the forces must be zero. We use a coordinate system

Partial wetting ‘ Total wetting

7N
SIS ST S S S S SS 7

Figure 2.7 Partial wetting and total wetting.
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Hydrophilic contact, ¢ < 90°

Figure 2.8 Hydrophilic and hydrophobic contact.

0

Hydrophilic contact, 6 < 90° Hydrophobic contact, 6> 90°

Figure 2.9 Schematic view of the forces at the triple line.

where the x-axis is the tangent to the solid surface at the contact line (in the Figure
2.9 it is horizontal) and the y-axis is the direction perpendicular (vertical). Then the
projection of the resultant on the x-axis is zero, and we obtain the relation

Y,ocosl=vy. -y, (2.2)

This relation is called Young’s law and is very useful to understand the behavior
of a drop. In particular, it shows that the contact angle is determined by the surface
tensions of the three constituents. For a microdrop on a solid, the contact angle is
given by the relation

Vse =Vsi

yl(}

6 = arccos

Sometimes in real experimental situations, when we deal with real biological
liquids, one observes an unexpected change in the contact angle with time. This is
just because biological liquids are inhomogeneous and can deposit a layer of
chemical molecules on the solid wall, thus progressively changing the value of the
tension y,,, and consequently the value of 6, as it is stated by Young’s law.

One may note that Young’s law was obtained by a projection of the forces on
the x-axis, but what about the projection on the y-axis? As a matter of fact, there is a
vertical force acting on the solid surface and directed away from the solid. It is bal-
anced by the reaction of the solid. If the solid is replaced by a liquid L2 nonmiscible
with the liquid L1 (e.g., oil and water), as shown in Figure 2.10, then the surface is
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Figure 2.10 Schematic view of a microdrop of oil on top of a water layer. Because of its small
dimension, the shape of the drop in the air is spherical. At the triple line, Young's law applies and the
resultant of the forces is zero.

distorted so that the resultant of the forces at the triple line is zero. The resultants of
the projections of the forces are zero as well on the x-axis and y-axis.

If the dimension of the drop is larger, the contact would be similar, but the shape
of the interfaces would be somewhat nonspherical due to the gravitational forces, as
shown in Figure 2.11.

Note that there is a singular point at the triple line: the vectorsy, ,, andy,,  are
not collinear, because if they were, the resultant of the forces would not be zero.

Another very interesting derivation of Young’s law was done by Shapiro and
coworkers [5]. Instead of considering forces at the triple line, Shapiro uses the
principle of minimal energy for a drop at equilibrium. Take the example of a sessile
drop placed on a horizontal plane (Figure 2.12) and suppose that the dimensions of
the drop are small enough so that gravitational forces can be neglected (we will later
give a justification for neglecting gravity effect on microdrops), the shape of the drop
is then spherical. Due to this spherical shape, the drop volume is a function of R and
0. According to the notations of Figure 2.12, the drop characteristic dimensions b
(drop height) and a (drop contact radius) are

b= R(l — COS 8)
and

a=Rsin6

L2

Figure 2.11 Schematic view of a drop of liquid L1 (oil) deposited on liquid L2 (water).

r
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Figure 2.12 Schematic view of a microdrop sitting on a horizontal plane.

The drop volume is then [6]

\ (2~3c059+cos; 9)
4

V="TR"(2-3cosf+cos ) =" —
3 3 sin” 6

The volume V can be cast into the form

v :J‘[K“(Z—:%COS() . 00539)
3 4 12

Using the principle of minimal energy at equilibrium, and noting that the energy
is a function of the two parameters R and 6,

E = E(R,6)
one obtains the following relation

dE aE
dE = " (R,0)dR + —(R,6)df = 0 2.4
aR( -0) +ae( »0) (24)

Since the volume of the drop is constant, its variation must be zero, hence

4V =37[R1(2— 3C050+i)539]d1{+n1{';(3sm0— sm39Jd€ _0
3 4 12 4

This later relation can be cast under the form

2 cos’ (H)cot(e)
2 2

dR=R|——— =2 27140 =R g(0)dO 2.5
2 +cosb q( )( (2.3)

Equation (2.5) can be substituted in (2.4) and we find
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g—E(R, 6)Rq(6) + %(R,G) =0 (2.6)

We show now that (2.6) is the Young equation (2.2) written in another form. In
this case, where the energy of the drop is only due to solid/liquid, solid/gas, and
liquid/gas interfaces, the total energy is

E=(71s ~7es )Sis ¥7165 16 (2.7)

n (2.7), S denotes the surface. Note that the solid/gas coefficient is negative
because if S, is increased by some amount, then S_, must be decreased by the same
amount. Because the drop has a spherical shape, the surfaces appearing in (2.7) are
functions of R and 6. Using the expression of the volume of the spherical cap (2.3)
and the expression for the contact radius a, we find the following expressions for the
contact and free surfaces

S, =aR*sin® 0

(2.8)
S, =27aR*(1-cosh)
In consequence, the interfacial energy is
E=aR*[(7 —7es )sin® 0+2y o (1~ cos6)] (2.9)

If we differentiate E relative to R and to 6, and plug the result into (2.6), we
obtain exactly, after some trigonometric algebra, Young’s law.

This energy approach may seem more complicated than the direct approach
using the force balance at the triple line, but it is very powerful because it is more
generic, as we shall see in Section 2.2.8.

2.2.3 Wenzel's Law

Let’s come back to a contact between a liquid drop and a solid. Roughness of the
solid walls modifies the contact between the liquid and the solid. But the effect of
roughness on the contact angle is not intuitive. It is a surprising but very useful
observation that roughness amplifies the character hydrophilic or hydrophobic of
the contact.

Suppose that 6 is the angle with the surface with roughness and 6* is the angle
with the smooth surface (in both cases, the solid, liquid, and gas are the same). One
very important point here is that we have made the implicit assumption that the size
of the roughness is very small, so that the molecules of the liquid are interacting
macroscopically with a plane surface but microscopically with a rough surface. This
explains why we can use the unique angle of contact 6. As a general rule, the size of
the roughness should be smaller than the mean interaction distance between liquid
molecules and the solid wall.

Suppose a very small displacement of the contact line (Figure 2.13). Then the
work of the different forces acting on the contact line is given by
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Solid surface (microscopic view)

Figure 2.13 Contact of a liquid drop on a rough surface.

dW =Y F-dl =Y F.dx =(yg —7s )rdx +y  cosfdx (2.10)

where 7 is the roughness (r dx is the real distance on the solid surface when the
contact line is displaced of dx). Note that by definition, > 1. Thus, the change in
energy is

dE =dW =(y, -7 )rdx +y,, cosBdx (2.11)

In fact, if we imagine that the drop finds its equilibrium state after the small
perturbation dx, it finally stops at a position where its energy is minimum, so that

dE
o 0
and we obtain the relation
Ve €080 =(Yso Vs )T (2.12)
If we recall that Young’s law is for a smooth surface
Vie €SO =y —Vg
then we obtain Wenzel’s law
cosf@ =rcosO¥ (2.13)
Taking into account that » > 1, this relation implies that

|cos 6] > |cos 6| (2.14)

We can deduce that if 67 is larger than 90° (hydrophobic contact), then 6 > 6%,
and the contact is still more hydrophobic due to the roughness. If 6 is smaller than
90° (hydrophilic contact), then 6 < 6, and the contact is still more hydrophilic due
to the roughness.
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An important remark at this stage is that the scale of the roughness on the solid
surface is very small compared to that of the drop [7]. Indeed, if not, it would not be
possible to define a unique contact angle anymore; the drop would no longer be
axisymmetrical, and the contact could be sketched as in Figure 2.14 (the position of
the drop might not be stable).

2.2.4 Superhydrophobicity and Superhydrophilicity

Wenzel’s law is in part only the explanation to the so-called superhydrophilic or
superhydrophobic contact. According to Wenzel’s law, hydrophobicity or
hydrophilicity is enhanced by an increase of the surface roughness. However, to
obtain superhydrophobicity, the roughness must be increased in such a way that air
is trapped in the porosities or rugosities underneath the droplet.

In nature, some plants living in a very wet environment have leaves with such
roughness that raindrops just roll along their surface without any adhesion,
preventing rotting of the leaves. A microscopic view shows that the leaves have high
roughness, trapping air bubbles in the rugosities (Figure 2.15) [8].

In biotechnology, there are cases where it is important to obtain super-
hydrophobic contact. It reduces the hydrodynamic drag at the wall, and it prevents
cross contamination of one drop by another one moving on the same surface. It is
possible to obtain artificially superhydrophobic contact by increasing the surface
roughness and mimicking the natural surface of Figure 2.15. It has been shown that
a hydrophobic substrate may be rendered super-hydrophobic by etching
microgrooves or micropillars [9], as shown in Figure 2.16.

Superhydrophobic surfaces are commonly microfabricated by etching
micropillars in a silicon substrate. The shape of a droplet deposited on such pillars
has been calculated [10] using the Evolver code [11] (see Section 2.2.7).

There are also cases where a very hydrophilic surface is suitable (e.g., to increase
the wetted surface). Uelzen and Miiller have shown that most solid smooth surfaces
can be roughened by crystallization of pyramidal crystal of tin (Sn) of 1 to 2 um in
size [12]. Then a hydrophilic or hydrophobic layer may be deposited on top,
resulting in a substantial increase in hydrophilicity or hydrophobicity. For example,
the contact angle of water on gold is 80° but it drops to 60° with this technique. For

>
N

Figure 2.14 Large-scale roughness: schematic view of a drop located on an angle of the solid
surface. The position of the drop might not be stable.
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Figure 2.15 Mercury droplet on the papillose adaxial epidermal surface of Colocasia esculenta
(From: [8]. © 1997 Planta. Reprinted with permission.)

Microfabricated grooves

Figure 2.16 (Left) Superhydrophobic surface fabricated by etching microgrooves in a hydrophobic
substrate, and (right) superhydrophobic surface constituted of micropillars.

water on hexamethyldisiloxane (HMDSO), it drops from 30° to 5°, which is a very
hydrophilic contact.

2.2.5 Cassie-Baxter Law

The same analysis of Wenzel was done by Cassie for chemically inhomogeneous
solid surfaces. As for Wenzel’s law, the same requirement of small-size
heterogeneities compared to interactions distance between liquid molecules and
solid wall applies. For simplicity, we analyze the case of a solid wall constituted by
microscopic inclusions of two different materials; if 6, and 6, are the contact angles
for each material at a macroscopic size, and f, and £, are the surface fractions of the
two materials (Figure 2.17), then the energy to move the interface of dx is
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Solid surface
chemically heterogeneous

Figure 2.17 Displacement of the contact line of a drop on an inhomogeneous solid surface.

dE=dW =(ys =V ), fidx + (Vg Vs ), [,dx +7,; cosOdx (2.15)
The equilibrium is obtained by taking the minimum of E
Yic 080=Vso —vs ) fi +(Vse —vs), [
and by comparing it with Young’s law, we obtain the Cassie-Baxter relation

cosO =f cosO, +f, cosO, (2.16)

This relation may be generalized to a more inhomogeneous material
cos =) f, cost,

Note that |

fi+f, =1 or Zfl =1

The Cassie-Baxter relation shows that the cosine of the contact angle on a
microscopically inhomogeneous solid surface is the barycenter of the cosine of the
contact angles on the different chemical components of the surface.

The Cassie-Baxter law explains some unexpected experimental results:
Sometimes, if not enough care was taken during microfabrication, a micro-
fabricated surface may present chemical inhomogeneity and the wetting properties
are not what they were initially expected. For example, if a uniform layer of Teflon
is deposited on a rough substrate, the surface should become hydrophobic.
However, if the layer is too thin, the Teflon layer may be porous and the coating
inhomogeneous; the wetting properties are then modified according to the
Cassie-Baxter law and the gain in hydrophobicity may not be as important as
expected.

As for Wenzel’s law, an important remark at this stage is that the scale of change
of the different chemical materials of the solid surface is very small compared to that
of the drop |7]. Indeed, if not, it would not be possible to define a unique contact
angle anymore, and the contact could be sketched as in Figure 2.18 (in such a case,
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Direction of motion

\

Figure 2.18 Schematic view of the contact on two different solids: the drop is not stable and
migrates to the more hydrophilic surface.

we shall show later that the drop is not at equilibrium and migrates to the more
hydrophilic region).

2.2.6 Simultaneous Water and Oil Superrepellent Surfaces

It is known that solid surfaces covered by fluoromethyl groups (CF,) have very low
surface energy. The contact angle with oil is 110° and with water is 95°. It is tempt-
ing to use the principles of Wenzel’s and Cassie-Baxter laws to increase these con-
tact angles and to obtain a water and oil superrepellent surface [13]. By using fractal
shape surfaces, Hsieh and coworkers have obtained a rough inhomogeneous surface
having contact angles larger than 150° with oil and larger than 160° with water.
Note that both the Wenzel and the Cassie-Baxter laws predict the increase of con-
tact angle values. When the roughness parameter r is increased, very small air bub-
bles are trapped, and the liquid droplet is partly in contact with the fluoromethyl (f,)
and partly with air (). According to Wenzel’s law, the contact angle increase with
7, and according to the Cassie-Baxter law, it also increases because the contact angle
with air is 180°. We can rewrite (2.16) under the form

cos@ =f, cosO, —f,

This latter relation shows an increase in contact angle as soon as air bubbles are
trapped in rugosities. This shows that the problem of air trapped by very rough
surfaces is still a subject of investigation.

2.2.7 The Effect of Surfactants

Surfactant is the short form for surface active agent. They are long molecules
characterized by a hydrophilic head and a hydrophobic tail, and for this reason they
are called amphiphilic molecules. More details about the chemical structure of
surfactants are given in Chapter 6. Very often surfactants are added to biological
samples in order to prevent the formation of aggregates and to prevent target
molecules to stick to the solid walls of the microsystem (remember that micro-
systems have extremely large ratios between the wall surface and the liquid
volume). Due to their amphiphilic nature, surfactants gather on the interface
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between the liquid and the surrounding gas, as sketched in Figure 2.19(a), lowering
the surface tension of the liquid [14]. Above a critical concentration, the interface is
saturated with surfacatants and surfactants molecules in the bulk of the fluid group;
together they form micelles.

Surface tension is reduced by the presence of surfactants at the interface, as shown
in Figure 2.19(b). For example, pure water has a surface tension 72 mN/m, and water
at the critical micelle concentration (CMC) has a surface tension 30 mN/m.

How is this effect of surfactants on surface tension measured? Usually one uses
the pendant-drop method on small but not microscopic drops, so that the shape of
the drop is a balance between surface tension and gravity forces [15]. The
pendant-drop method consists of forming a drop pending from the tip of a vertical
capillary tube, taking a picture of the drop, and analyzing the shape of the contour
of the drop (Figure 2.20).

It can be shown that the contour is linked to the value of the surface tension. The
calculation of the interfacial tension is achieved using the two following equations.

First, the Laplace equation (see Section 2.3.2):

Surfactant

c
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45t the g .
interface g N
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/// / / / / // // / // / / / / / | Surfactantconceqtration
/ / ./ i / / / 7 // // // / // / // / CM C v

Critical micellar concentration

(@) )

Figure 2.19 (a) Schematic view of surfactants in a liquid drop; and (b) relation between surface
tension and surfactant concentration.

droplet

X

0

Figure 2.20 Typical drop contour in the pendant-drop method.
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Second, the equilibrium equation of the drop between the interfacial tension,
gravity, and pressure:

27Rysinf = V(p, —p,)g + 7R*P

where AP is the pressure difference through the interface, resulting from the curva-
ture of the interface, R and R’ are the main curvature radii of the interface, x and z
are the coordinates of M on the contour of the image of the drop, 0 is the angle of the
tangent at M to the contour of the image of the drop, V is the volume of the fluid
under the plane of altitude z, p, and p, are the volumic masses of the two fluids, and g
is the gravitational acceleration. Substitution of the force equilibrium equation into
the Laplace equation yields a relation between y, R, R’, V, and 0. The analysis of the
image provides the values of R, R’, V, and 6. A more precise value of the surface ten-
sion is obtained by averaging the results for many different values of z.

In the case of a liquid containing surfactants, successive pictures of the drop
show an evolution of the contour related to the adsorption of surfactants on the
interface [16], as shown in Figure 2.21. When CMC is reached, the shape of the
drop does not change anymore.

2.2.8 Shape of a Drop on Solid Surface

We have seen in the preceding section that, in absence of other forces, the shape of a
liquid drop is determined by a balance between gravitational force and surface
tension. It is the same when the drop is deposited on a solid surface. It is a common
observation that large drops are not spherical, but small drops are. Take a drop of
water of 0.05 cm’ volume placed on a horizontal hydrophilic plate. The real shape
of the drop is shown in Figure 2.22(a); if gravitational forces are not taken into
account, the shape of the drop would be spherical, as shown in Figure 2.22(b). As
can be expected, the effect of gravity is to flatten the drop.

It is worth remarking that the contact angle of the liquid with the solid surface is
macroscopically not the same if gravitational forces have an effect on the drop

t=0mn t=1mn t=2mn t=3mn

Figure 2.21 Different shapes of pendant-drop during surfactant concentration adsorption on the
interface. The drop is in equilibrium between the interfacial tension and the gravity. These forces are
opposed. The interfacial tension gives the drop a spherical shape, whereas the gravity elongates it.
Then the drop seems to be pear shaped. The influence of the interfacial tension on the shape of the
drop can be observed during the adsorption of surfactant. The drop becomes more and more
elongated and the area of the interface increases when the interfacial tension decreases with time.
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Figure 2.22 (a) The real shape, and (b) with g =0 m/s’.

shape. To this point we come back to Shapiro’s energy approach [5]. Suppose a drop
sufficiently small to be close to spherical, but showing a small deformation due to
gravitational forces. It can be shown that the total energy of the drop (the surface
energy plus the potential energy) is given by

E=(y.,5 —V¢s )R msin’ 9+ym?_n(l—cos@)+R"pg2?n(3+cos(9)sin6(§) (2.17)

The two first terms in (2.17) are the surface energy (2.9), and Shapiro has shown
that the third term is the potential energy. The interfacial term is at minimum when 6
is equal to the nongravity contact angle, and the gravity term is at minimum when 8
=0, so it tends to flatten the drop. Using the same derivation principle as before, a
modified Young’s equation is obtained:

_ 2
cosh [ysc Vs J N (pgR ][cose cos20 1] o o8
Vi Y 3 12 4

The two first terms of this equation are just the Young’s equation; the third term
is a correction due to gravity. In this third term, a nondimensional number appears;
that is usually called the Bond number

2
Bo :B‘_g.R_.
Yo

(2.19)

The Bond number represents the ratio of the gravitational forces to the surface
tension. For a low Bond number, the gravity has no effect on the drop, the shape is
spherical, and the contact angle is given by Young’s equation. For increasing Bond
numbers, the shape is less and less spherical.

Typically, for water drops used in microsystems, p = 1,000 kg/m®, y = 72 mN/m,
and R = 1 mm at the most. This leads to a maximum Bond number of 0.15, so that
gravitational force may usually be neglected.

2.3 The Physics of Drops

2.3.1 Minimization of Surface Energy

As a general rule, the equilibrium state of a physical system corresponds to a
minimum of energy of the system. This rule may be applied to liquid drops. The
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equilibrium shape of a drop minimizes its surface energy, taking into account all the
other forces that act on the drop. This is why a drop tends to the spherical
shape—when it is possible.

To show the effect of the minimization of surface energy, we give examples
obtained with the public domain Surface Evolver software by Ken Brakke [11], well
adapted for drops at equilibrium or near equilibrium.

Take the example of a thin liquid film on a horizontal plane, and assume that
the Young’s contact angle of the liquid with the solid is 80°. The results of the
Evolver code are shown in Figure 2.23. The drop wants to minimize the surface
energy, and it takes a spherical cap shape.

Another example is the case of a drop forming on a spherical solid sphere
(Figure 2.24). We will show a very striking application of this very simple principle
in Chapter 7 (dedicated to the study of magnetic beads). Actually, the liquid
behavior is exactly the same as in the case of the flat plane (for sizes less than 1 gm,
the gravity force does not modify the shape of the drop); just the geometry is now
spherical.

2.3.2 laplace Law

Minimization of energy also has theoretical consequences, as we are going to see
with the Laplace law. The Laplace law is a relation between the pressure difference
across an interface and the radius of curvature of the interface. First, for simplicity,
consider a spherical drop (Figure 2.25). Assume an infinitesimal change in the
radius R. The energy variation is then [3]

dE = -P,dV, - P,dV, +ydA (2.20)
taking into account the values of the volumes and surface

dVl = _dV() = 4.77:R2dR (221)

and applying the minimization theory

dE
St —47(P, - P,)R* +87yR =0

Figure 2.23 A liquid layer initially deposited on a flat solid surface is not at equilibrium; it evolves
until it reaches a minimum for the surface energy. The shape of the drop is then a spherical cap. The
first (left) view is not physical; the final (evolved) shape is the equilibrium shape.
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g: Gravity acceleration
Figure 2.24 A liquid layer initially covers nearly entirely a solid sphere (far left), but due to the

constraint of a 120° contact angle, the layer “peels off” and forms a spherical cap attached to the
solid sphere.

and we find the Laplace equation for spherical drops

P, -P, =2

¢

(2.22)

==

Note that in the general case, there are two radiuses of curvature at the drop
surface R and R’. In this case, the derivation of the Laplace law requires more
algebra. We just indicate the result

1 1
P —P; = V(E +F) (2.23)

Laplace law signifies that there is a discontinuity in pressure when crossing an
interface. The result may seem simple, but it hides some complications: first note
that the pressure inside a microdrop equilibrates very quickly because of the size of
the drop. So what to think of drops for which curvature radius is not constant? Take
the example of Figure 2.25 (right part). There is a change of curvature radius when
the bubbles are facing each other. Because the inner pressure is uniform, Laplace law
indicates that the pressure in the liquid film between the two bubbles P, is larger than
the pressure P,

The use of Laplace law is often a very elegant way to solve drop deformation
[17, 18], and it has been thought to apply this law to in-vivo situations, like for the
lung alveoli or vesicles. But in these two latter cases, it has been shown that incorrect
use of Laplace law can be made, mostly because these objects are deformed by
external unknown pressure [19, 20].

2.3.3 Motion of Drops Under the Action of Hydrophilic/Hydrophobic Forces

It is well established that microdrops can be put into motion by hydrophilic and
hydrophobic forces. Let’s suppose for an instant that a water droplet is placed on a
perfectly smooth horizontal plane (Figure 2.26) at the boundary between two
different chemical coatings: hydrophilic on one side and hydrophobic on the other
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PO

Figure 2.25 Scheme of a spherical drop and an elementary change in radius (left), and schematic
view of two bubbles in a foam (right).

Region of
hydrophobic contact

Region of
hydrophilic contact

T

I
Figure 2.26 Schematic view of a water droplet standing above a hydrophilic/hydrophobic contact.
There is a resuiting force directed toward the hydrophilic region.

one. In such a case, this scheme can be used for the contact forces (as we do not
know the exact shape of the drop at the very instant it is placed on the surface, we
have drawn an approximate shape, close to—but not exactly—a circle; however,
the reasoning will stand, whatever the shape).

From this scheme, it results that the droplet is displaced toward the hydrophilic
surface. If L, and L, are the contact lines, respectively, in the hydrophilic and hydro-
phobic plane, and 6, and 6, are the contact angles, the force acting on the drop is

F, J.z (Vsc ‘Vu),(?di) + J.(ys(; —ys,‘)z(i_'-di) = J.yLG cos@l(;’-dZ)
) " & (2.

+LJ;VLG cos@z(;-df)<0

24)

So the resulting force is directed toward the left in the scheme of Figure 2.26,
and the drop moves to the left (assuming a perfectly smooth surface). The motion
stops when the resultant of the contact forces is zero (i.e., when the drop is entirely
on the hydrophilic region, as shown in Figure 2.27). It would be the same if there
were wettability gradient [21].
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Figure 2.27 The drop is at equilibrium when it is entirely located on the hydrophilic region.

Experimental evidence confirms the preceding analysis: In Figure 2.28, a drop is
deposited with a micropipette on a flat horizontal surface at the boundary of two
regions with different contact angles.

The preceding analysis is also confirmed by a calculation with the Evolver code
(Figure 2.29). We can start with any unphysical volume of liquid spread over a
hydrophilic/hydrophobic boundary. After a few iterations, the drop is formed, but it
is not at equilibrium because of the global force directed toward the hydrophilic
region. The drop evolves to find its equilibrium location, which is located just at the
boundary of the transition line but on the hydrophilic side.

Note that the direction of the motion of a water drop is toward the hydrophilic
region, whereas the motion of an oil droplet would be toward the hydrophobic
region in the same geometrical conditions.

Another striking example of capillary forces is that they can be sufficient to
make drops move upward. Chaudhury and coworkers [22] have shown that a drop

can go up a slightly inclined plate, presenting a wettability gradient as shown in
Figure 2.30.

Micropipette

A ......
a 1ul drop

Hydrophilic contact
Hydrophobic contact : ycrop

4
——

Figure 2.28 Experimental view of the relocation of a microdrop (1 ul) deposited on a hydrophilic/
hydrophobic boundary.
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Figure 2.29 Motion of a drop toward the hydrophilic plane (simulation with Surface Evolver). The
microdrop is initially deposited over the hydrophilic/hydrophobic transition line, and it is not an
equilibrium state. Drop moves to find an equilibrium state on the hydrophilic plate, just at the
boundary between the two regions.

Hydrophobic region
Oil droplet .

Hydrophilic region

Figure 2.30 An oil drop may run uphill toward the more hydrophobic region.

Another interesting demonstration of the power of capillary forces—occurring
in microsystems—may be shown by making a drop move up a step: in such a case, a
microdrop is initially located on a step at the boundary of a hydrophilic region (on
top of the step) and a hydrophobic region (at the base of the step). The calculation
with the Evolver code shows that the drop progressively moves toward the
hydrophilic region, even if this region is located at a higher level (Figure 2.31).
Capillary forces dominating gravity is this example.

Note that in this section, we have considered the surface perfectly smooth, and
we have neglected the effect of hysteresis. In reality, a drop does not move as soon as
there is a gradient of wettability. The drop moves as soon as the gradient of
wettability is sufficient for the capillary forces to dominate the hysteresis reaction
force.

2.3.4 Marangoni Effect

As a general rule, surface tension is not constant; it depends on temperature and
concentration of chemical species at the surface. The classical relation between
surface tension and temperature is [23]:

y=v,(1-KT-T,)) (2.25)

This is a first-order relation, but it is sufficient to describe the variation
of surface tension with temperature. For an interface water/air, v, = 72 mN/m and (8
v, ) ~ 0.1 mN/m. This change of surface tension with temperature has important
consequences in microphysics of drops. The most common example is that of



74

Microdrops

© | o

Figure 2.31 Motion of a drop up a step toward the hydrophilic plane (simulation made with Surface
Evolver): (a) the drop is deposed on the step; (b) as (a) is not an equilibrium state, the drop moves up
the step pulled by the hydrophobic forces of the upper plate and pushed by the hydrophobic forces
of the lower plate; (c) motion continues; and (d) equilibrium state is reached when the drop is entirely
on the upper plate.

Marangoni convection—also called thermocapillarity or surface tension-induced
convection [23]. Each time a drop is not isothermal, there is a gradient of
temperature at the interface and subsequently, due to (2.25), a gradient of surface
tension. Reminding that surface tension can be looked at as a force, the surface
tension distribution at the liquid/gas interface induces a tangential force distribution
on the interface. These tangential forces act as a motor at the fluid interface and may
lead to a convective motion inside the drop (Figure 2.32). This phenomenon is very
common in microfluidics and is called Marangoni convection.

A classical example is that of a drop maintained between a solid surface and the
tip of a needle. If the solid surface is maintained at a temperature T, and the tip of
the needle is at a temperature T,, then a convective motion appears in the drop, as
schematized in Figure 2.33.

The intensity of the Marangoni convection is linked to a nondimensional
number, the Marangoni number Ma defined by

_ AyR
pva

Ma (2.26)

where Ay is the variation of the surface tension, R is the radius of the drop, p is the
density of the liquid, v is the kinematic viscosity, and « is the thermal diffusivity.
Another example of the Marangoni effect is found in microwells of DNA arrays.
DNA arrays are designed for the recognition of DNA segments. The principle is
quite simple: it is based on the matching between a target DNA and its
complementary sequence. When the target DNA finds its complementary sequence,
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Tangential constraint
and interface motion

T~

Motion induced in the drop

Figure 2.32 Surface tension gradient exerts a tangential constraint on the interface, resulting in a
tangential motion. Viscosity diffuses the motion inside the droplet. This phenomenon is called
Marangoni convection.

T

Figure 2.33  Schematic view of a Marangoni-driven convection inside a droplet. Here T, < T, and the
surface tension y,¢, is larger than y,,, so that the convective motion on the surface is directed from
the needle tip to the solid plate.

there is a binding between the two segments due to hydrogen bonds. Because we
don’t know the target—suppose it is the DNA of some virus that we want to
identify—we use a microplate with many microwells or cusps. Each well is grafted
with a predetermined DNA sequence so that each well aims at a specific target. The
target can be identified by fluorescence when it binds in a well. Grafting of
complementary sequences in the bottom of a cusp requires successive operations of
deposition of liquid drops and heating for evaporation. As the heating of the drop is
not uniform, surface tension is lower at the walls, and the liquid rises along the walls
due to increased capillarity (Figure 2.34). Cusps should then be designed in a way
that the liquid cannot exit by capillarity and overflow in the neighboring cusps.
Another type of Marangoni convection may occur in biological microsystems
due to surfactants concentration. Figure 2.35 shows the well-known picture of a
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of liquid
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Figure 2.34 The Marangoni effect in a microwell of a DNA array. Note that in the case of a uniform
temperature, the surface tension is constant, and the interface is a spherical cap with the usual
contact angles, whereas in the case where the drop is heated, the interface is deformed by the
Marangoni effect.

Figure 2.35 The soap boat: A floating body contains a small volume of soap; the soap exits the rear
of the boat, decreasing locally the surface tension. The resulting gradient of surface tension at the
surface of the liquid makes the water move toward the high surface tension region, and this motion of
the water propels the boat [24]. (Courtesy of John Bush, David Hu, and Brian Chan, Department of
Mathematics, MIT.)

soap boat: a floating body releases soap at the surface of water, creating a gradient
of surface tension; water moves from low surface tension regions to high surface
tension regions to equilibrate the surface tension; consequently the boat moves
forward, toward the high surface tension region.

We have already seen that the surface tension changes with surface
concentration of surfactants [25]. When surfactants are added to the biofluid, they
migrate to the interface, and a gradient of interface concentration may occur,
leading to a convective motion of the interface (Figure 2.36).

In the case of concentration-induced Marangoni convection, it is possible to
define a nondimensional Marangoni number by
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T¥~surfactants

Figure 2.36 Surfactants migrate on the surface in order to homogenize their surface concentration.

Ma = A7R (2.27)
pvD

where D is the diffusion coefficient.

In a more general approach, it can be shown that Marangoni convection can
have three different causes: thermal gradient, concentration gradient, and electrical
gradient [26]. If we write the surface tension under the form

y =y(T,c, V)

where T is the temperature, ¢ is the concentration, and V is the electric potential,
then

Vy =y Wy gy
oT dc oV

2.3.5 Microdrops Evaporation

Microdrops have surface-to-volume ratios much larger than usual macroscopic
drops. For a spherical drop, the surface-to-volume ratio is

(2.28)

<lw
= | w

and, for a spherical drop placed on a solid horizontal surface, using relation (2.3)
and (2.8)

2

3
== 2.29
R(Z—cos@—cos2 9) ( )
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It can be easily shown that for any contact angle 6, the ratio S/V is larger than

5.8

> (2.30)
3R
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Figure 2.37 Marangoni convective motion due to evaporation in a water droplet. (From: [27]. ©
1996 American Physical Society. Reprinted with permission.)

This relation shows that microdrops have a large surface-to-volume ratio, and
they rapidly tend to evaporate in an open environment. It is important when
working with droplets to estimate the lifetime of a droplet. The classical Maxwell
model for a drop lifetime assumes that the evaporation process is controlled by a
mass diffusion process exterior to the droplet and leads to a total lifetime

;= Rop (2.31)
2DAc

where R, is the initial radius, p is the density of the evaporating media, and Ac is the
concentration change from droplet surface to ambient concentration (far from
droplet).

However, it was shown [27] that this lifetime is largely overestimated, because it
does not take into account convective motion inside the droplet. It is established that
this convective motion is due to a Marangoni effect. The evaporation process
induces a heat flux at the drop surface and consequently a temperature gradient
inside the drop. This conductive state usually becomes unstable: Imagine a very
small area at the surface where the evaporation rate is stronger than the average; the
local temperature is then smaller than average surface temperature, resulting in a
surface tension gradient. This surface tension gradient leads to a Marangoni-type
convection (Figure 2.37). This convective motion may be very strong (velocities of 1
mm/sec in a 2-mm diameter drop for AT = 1°C) and has a random behavior because
the location of the “cold spot” on the surface changes randomly.

Finally the convection inside the drop causes a much stronger evaporation rate
than that predicted by the conductive Maxwell model. A water drop with an initial
radius of 200 um and a AT = 1°C will evaporate in 5 minutes (instead of a value of
more than 10 hours predicted by the conductive theory). An approximated lifetime
was derived by Hegseth and coworkers based on the Marangoni number and the
Jacob number

R} 1

T = a—]am (2.32)
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where a 1s the thermal diffusivity of the liquid, and Ja is the Jacob number given by

_C,AT

p (2.33)

Ja

LG

Ja is nondimensional; it is the ratio between the conducted heat and the latent
heat of vaporization (per unit mass). The lifetime of a droplet is largely overesti-
mated by the formula in (2.31), based on a diffusion-only process. In reality, the
Marangoni convection, due to spatial instabilities of evaporation rates, leads to a
much shorter lifetime of the droplet, as expressed by (2.32).

The preceding paragraph dealt with spherical or nearly spherical drops (wetting
angle sufficiently important). For drops having a small contact angle on a solid
surface, evaporation takes another aspect. Very often, one observes a ring when the
drop has completely dried, as shown in Figure 2.38 [28]. The reason is that
evaporation is stronger at the boundary of the drop, and a convective motion carries
particles from the center to the periphery; these particles are then deposited as a ring
on the initial periphery of the drop.

In conclusion, evaporation is always a concern when working with microdrops.
Most of the time in biotechnology, biologic liquids have a water base, and there are
some means to limit evaporation. One of them is to maintain a controlled
environment with a partial pressure of vapor; another is to include the microdrops
in an organic nonmiscible layer, like oil, or to add glycerol to the solution when it is
chemically acceptable. Finally, as we will see in the next section, drops may be
maintained between two parallel plates, and their contact surface with air is largely
reduced (Figure 2.39).

.4 The Example of Electrowetting

We have so far analyzed the behavior of drops; in this section, we give an example
of microsystems using drop microfluidics.

Figure 2.38 Circular ring left by an evaporating droplet. (From: [28]. © 2000 American Physical
Society. Reprinted with permission.)
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Figure 2.39 Drop confined between two parallel plates (calculation by Surface Evolver); the upper
plate has been dematerialized for visualization.

In the preceding paragraphs we saw that the shape of a liquid drop on a surface
is determined by the nature of the liquid, by the nature and morphology of the
underlying solid, and by the surrounding fluid. It has been observed that when an
electrical potential is applied, ions and dipoles redistribute in the liquid and to a
lesser extent in the solid. This redistribution can cause a change in the wetting
properties of the drop, according to Lippmann’s law [29]. A hydrophobic surface
(like Teflon) can behave like a hydrophilic surface when an electric potential is
actuated: this phenomenon is called electrowetting. It is then possible to use
time-regulated electric potential to displace, merge, and divide drops to perform
biologic operations {30-34].

2.4.1 Principle and Theory

Lippmann’s law states that the surface tension y,, of an electrically conductive liquid
(surface tension between the liquid and the substrate) changes when the drop is placed
in an electric field. Electric charges migrate to the liquid/substrate interface and conse-
quently toward the contact angle. Lippmann’s law can be expressed by the relation

1
Yo =Vt ECVZ (2.34)

where C is the capacitance of the material layers in the substrate, V is the electric
potential, and the index 0 refers to the nonactuated state. Combining Lippmann’s
law with Young’s law, we obtain the well-known Lippmann-Young relation estab-
lished first by Berge [35]

cosf = cos @ +l ¢ v? (2.35)

296

showing that the contact angle of a drop on a substrate can be changed by applying
an electric field. Relation (2.35) has been experimentally verified on a device of the
type sketched in Figure 2.40. Experimental observations of electrowetting effect are
shown in the Figure 2.41.

With this in mind, drop displacement can be achieved by a difference in
the electric field between two opposite sides of a drop, produced by actuated
and nonactuated electrodes embedded in a solid, hydrophobic, and electrically
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Figure 2.40 Principle of electrowetting on dielectric (EWOD): The wetting angle decreases when
the drop is placed in an electrical field (dc or ac). Electric charges appear in the liquid at the contact of
the substrate, and the contact angle changes.

Figure 2.41 Microdrop on a hydrophobic substrate (left), and change of contact angle after
actuation of an electric field (right).

insulating substrate (Figure 2.42). The contact angle is then different on the two
opposite sides of the drop. A gradient of wettability is then created between two
opposite sides of the droplet. Assuming there is no hysteresis (i.e., the surface is
perfectly smooth) the drop moves in the direction of the smaller contact angle.

The Lippmann-Young equation can be derived by an energy minimization
approach [5]. The total energy of the drop submitted to an electrical field is the sum
of the surface energy and the electric potential energy

2

E=R? [(y s —Vos — Jn sin® 6 +y,.2x(1- cos 9):} (2.36)

In (2.36), the right-hand side is the sum of the interfacial energy from (2.9) and
a term corresponding to the electric energy. It can be shown [5] that minimization of
the total energy E leads to

_ 2
cosf — (V“ Yes , CV } -0 (2.37)
Yic 2y
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Figure 2.42 Top: “closed” or “covered” EWOD system; the drop is squashed between two
horizontal parallel plates. The upper plate is at zero potential, whereas the potential of the lower plate
may be adjusted. Bottom: “open” EWOD system. A catena is used to fix the zero potential. (From:
[39]. © 2005 NSTI. Reprinted with permission.)

This equation is identical to Lippmann-Young equation (2.35), showing that the
drop shape is again obtained by energy minimization.

Figure 2.43 shows a comparison between the theoretical Lippmann-Young
equation and measurements. The results agree at first, for small values of the
potential, but show a saturation limit not predicted by the theory (Figure 2.44). This
saturation limit is currently the object of many investigations, and different
explanations have been proposed [36-38]. For the rest of this section, it is worth
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Figure 2.43 Contact angle versus electric potential: continuous line corresponding to the
Lippmann-Young equation, and dotted line corresponding to the experimental results. Saturation
occurs above a value of the electric potential, and the contact angle cannot be reduced further by
increasing the difference of potential.
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Figure 2.44 Saturation of the electrowetting effect: according to Lippmann’s law (2.34) a plot of ¥

c0s 6 —y cos , versus V', the plot should be a linear curve. This is the case for low potentials but not
for large potentials.

remembering that above a certain value of the potential, the contact angle does not
decrease any more.

EWOD microdevices are aimed at performing manipulations on microdrops.
Figure 2.45 shows an electrode cross where a microdrop can be moved anywhere on
the cross.

Among the different EWOD systems, the “covered” system appears to be more
workable. In such systems, the drop is confined between two parallel horizontal
plates, as shown in Figures 2.42 (top) and 2.46.

It can be shown that this is the solution requiring the less energy and for which

the different operations of dispensing, dividing, and merging drops are the easiest
[39].

2.4.2 Modeling Electrowetting

Different approaches to the modeling of electrowetting are found in the literature,
most of which involve the dynamic approach using the Navier-Stokes equations,
incorporating Young’s constraint, and a volume of fluid (VOF) numerical
formulation [40, 41]. However, inertia and viscous forces can often be neglected in
front of surface tension.

Suppose a sessile drop of water placed on an electrode row. The surface energy
of the drop is given by

E; =yS =y2aR*(1- cos 0)

where R is the radius of the sphere (curvature), and 6 is the contact angle. On the
other hand, the kinetic energy is given by
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Figure 2.45 The electrode cross is constituted of nine electrodes. By switching on one electrode at a
time, the drop moves and can be addressed anywhere in the cross. (Courtesy of CEA/LETI.)
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Figure 2.46 (Top) Side view of a covered EWOD device; and (bottom) top view of an electrodes
alignment.

L1 7[R3(2—3c056?+cos3 0)1/2

pVvs =—p 3 (2.38)

where v is the velocity of displacement of the drop between two electrodes. The ratio
between these two energies is
E pR(Z ~3cos 0 + cos’ 6)1/2

Rv?
W o= L _P 0 2.39
MR 12y(1- cos 0) y 2(0) ( )

S
where

(2—3c036+cos30) 2 cosO—cos’ 6
g(0) = =
12(1- cos 9) 12

We note immediately that the nondimensional W,,, number is very similar to the
nondimensional Weber number for a spherical drop of diameter D, given by
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2
we = PPV (2.40)

14

We can look at W,, as a “modified” Weber number. Note that the Weber
number is used to describe the behavior of a jet of drops (like ink jet printers); it
characterizes the ratio between inertia and surface tension and—together with the
Reynolds number—governs the “splash™ of the drop on the solid surface.
pRv*

Suppose now that 8 = 90°, then W, = . Typical displacement velocities

in EWOD electrowetting are approximately of the order of 1,000 #m in 0.1 second
R

4.3
Thus, a 1-mm radius drop has Weber number of about 1/4,000. This shows that in
most cases, the surface tension is what governs the physics of the displacement of
drops in EWOD processes.

It can be shown that viscosity effects can also be negated by calculating the ratio
between viscous forces and capillary forces given by the nondimensional Ohnesorge
number

(i.e., 0.01 m/s). For a water drop in contact with air, a typical value is W,,, =

On = M (2.41)
ply

where [ is a typical length for the drop; usually / = R.

Typically the Ohnesorge number is less than 0.025, which is lower than the
critical value of 0.1 [42].

These results have an important consequence. It leads us to understand that the
behavior of drops in electrowetting devices is mostly a morphological problem. The
behavior of drops in EWOD microsystems is dominated by surface tension forces
and Young’s constraints at the apparent contact of the solid walls. The problem is
mostly topological with the drop shape and behavior adapting to the morphology of
the electrodes. Minimization of drop surface energy is a well-adapted method to
solve such problems. With this approach, a quasi-steady state model using the
Evolver numerical software [11] is adequate to predict drop behavior [39].

Figures 2.47 and 2.48 show the results of the modeling of drop division
(splitting in two) and drop dispense (extraction from a reservoir) compared to
experimental results.

2.5 Conclusion

Microdrops are an unavoidable feature in biotechnology, and it seems that
microarrays using microdrops fluidics are gaining importance, especially for DNA
analysis and cells manipulation. In this chapter, we analyzed the physics of
liquid/solid contact and exposed some of the behaviors of microdrops.
Understanding the mechanical behavior of drops is not an easy task, and we dealt
with only some elements of the problem—our concern was mostly static or
quasi-static aspects occurring when using microplates and electrowetting.
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Figure 2.47 Drop division: a comparison between experimental results (top) and numerical results
(bottom). Drop division is obtained by a combined effect of stretching by hydrophilic forces acting
on two opposite sides of the drop (electrode actuated) and pinching in the center by hydrophobic
forces (electrode not actuated). (Courtesy of D. Jary, CEA/LETL.)

Reservoir Separation wall Extracted drop

’ 1

-

N
v

Electrodes

Figure 2.48 Formation of microdrops by electrowetting (drop dispense from a reservoir):
experimental view (top), and numerical results (bottom). Note that the microdrop tends to mimic
the form of the square electrode. Extraction is a difficult operation [17] and requires at the same time
stretching by hydrophilic forces applied on the right side of the drop, pinching by hydrophilic forces
at the “pinching” electrode, and back pumping from the reservoir (reservoir electrode actuated).
(From: [39]. © 2005 NSTI. Reprinted and revised with permission.)

The first two chapters dealt with microfluidics in its two forms—microflows
and microdrops—in order to predict the behavior of the carrier fluid; in the next two
chapters, we present the microparticles that are convected by—or diffusing in—the
carrier biofluid.
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