
Eq. (8.12) 
+P(w)jE.	 17 
oE), where 

Nanofluidics 

(16.56) 
Nanofluidics is an emerging research field, which deals with fluid flow on the nanometer scale. 
It is being boosted by the ongoing development of nanotechnological tools and techniques, 
and it contains the potential for both basic research, e.g. an improved understanding of the 

photon is limitations and ultimate breakdown of the classical continuum description of fluid dynamics 
given that for spatially confined liquids, as well as for technology, e.g. the development of devices for 

w light, we handling of single molecules in solution. In this chapter we shall study a few selected topics 
within nanofluidics. 

(16.57)	 17.1 Investigation of the no-slip boundary condition 
Since its introduction in Eq. (3.1) we have in this book applied the no-slip boundary con­
dition v = for liquids at the boundary of a solid wall moving with velocity vwall"v wall 
This boundary condition is well tested regarding liquid flow on the macroscale, but in the 
following we shall look into some of the experimental evidence for its validity in micro­

(16.58)	 and nanofluidics. Thanks to the development of new experimental techniques within the 
past decade, the no-slip hypothesis has been questioned in a number of experimental stud­

16.29)	 ies on the micro- and nanometer scale. While minor deviations from the no-slip boundary 
conditions have only negligible effects on macroscale liquid flow behavior, they could be of 
significance in micro- and nanofluidic systems. -])	 We consider the infinite parallel-plate channel of Section 3.4.2 with stationary walls and 
a flow velocity parallel to the x axis, v = vx(z) ex' Already in the nineteenth century Navier 
discussed a more general boundary condition than no-slip vx(O) = 0 at the bottom plate

(16.59) 
situated at z = O. This so-called Navier boundary condition reads 

;0 the actual (17.1) 

where .\ is the slip length or Navier length defined as the distance behind the boundary 
where the tangent of the velocity field intersects the x axis. Note that for '\ = 0 we recover 
the usual no-slip boundary condition. A geometrical interpretation of the Navier boundary 
condition and the slip length .\ is shown in Fig. 17.1(a). In the case of a general surface at 

(16.60)	 rest with an outward pointing normal vector n, see Fig. 2.1, the Navier boundary condition 
for the normal component v n = (n·v)n and the tangential component v t = v - (n·v)n is 

v n = 0, (17.2a) 
'ritical angle 

v t = -As(n· V)vt ·	 (17.2b) 

Joseph and Tabeling (2005) have reported a careful measurement of the velocity profile (16.61) 
of deionized water flowing in a 100 pm wide and 10 pm high microchannel with a transparent 
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Fig. 17.1 (a) The Navier boundary condition vx(O) = As ozvAO), where the slip length As is 
defined as the intersect of the slope of the velocity profile at the wall and the z axis. (b) Sketch 
of the experimental setup used by Joseph and Tabeling (2005) to measure the slip length in a 
microfluidic channel of height 10 ]1Ill. The velocity profile was scanned by adjusting the position 
of the focal plane with the piezo-stage carrying the microscope objective. For each position of the 
focal plane the velocity was measured using microparticle-image velocimetry. 

glass bottom wall and the polymer PDMS for the other walls, see the sketch in Fig. 17.1(b). 
By using an objective with a large numerical aperture (NA = 1.3) they obtained a well­
defined depth of field of 700 nm, and as the objective was mounted on a piezo-stage, they 
could move the focal plane in vertical steps of 50 nm up through the microchannel. The flow 
velocity was measured by particle-image velocimetry (PIV) on fluorescent tracer particles 
of radius a = 50 nm dissolved in the water in a volumetric concentration of 10-5 , i.e. small 
enough to give a good spatial resolution and large enough to suppress their Brownian motion. 
Each PIV recording involved a volume of size 25 x 12 x 0.5 11m3. 

Some of their results are shown in Fig. 17.2. In panel (a) it is seen how well their data 
points for the velocity fall on top of a Poiseuille parabola. Deviations are seen close to the 
bottom wall situated at z = 211m, but these are explained by Debye-Iayer effects due to the 
different zeta-potentials of the tracer particles and the bottom wall. In panel (b) is seen a 
summary of several determinations of the slip length As for different values of the shear rate 
ozv at the bottom wall. Joseph and Tabeling concluded this part of their measurements byx 
stating the following slip length for water on glass: 

As = 50 nm ± 50 nm, for water on glass.	 (17.3) 

Their results do not invalidate the no-slip hypothesis, but on the other hand it is possible 
that a non-zero slip length less than 100 nm in fact does exist. 

Let us analyze how a slip length As = 50 nm would affect the hydraulic resistance 
Rhyd(As) of microchannel in comparison with the no-slip resistance Rhyd(O). We consider a 
pressure-driven flow in an infinite parallel-plate channel of height h given a Navier boundary 
condition with a non-zero slip length As on both bottom and top plates. Due to symmetry 
the problem is easier solved when placiilg the bottom plate at z = -h/2 and the top plate 
at z = h/2, instead of the usual z = a and z = h positions. We denote the length, width, 
pressure drop and viscosity by L, w, 6.p and Tf, respectively. As shown in Exercise 17.1 the 
velocity field vx(z) becomes 

_ 6.p As h -2 
V	 (z) = - 1 + 4- - 2 - z ] (17.4) 
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Fig. 17.2 Measurements of the velocity profile of deionized water in a 100 pm wide and 10 pm high 
microchannel. (a) Particle-image velocimetry measurements (open circles) of the velocity vx(z) as a 
function of the position z of the focal plane. The vertical dash-dotted line represents the position of 
the bottom glass plate of the microchannel. The dashed line, mostly covered by the data points, is 
the best fit to a parabola. The data points deviate from the parabola close to the bottom wall due 
to electrical effects stemming from the different zeta-potentials of the tracer particles and the wall, 
see Section 8.3. The inset shows the value obtained for the siip length As as a function of left cutoff 
of the data points. Data points more than 1 pm away from the bottom wall leads to the same slip 
length. (b) The slip length As measured for different values of the shear rate 8z vx (0) at the bottom 
wall. The overall result is As = 50 nm ± 50 nm. Figures reprinted by permission from P. Joseph 
and P. Tabeling, Phys. Rev. E 71, 035303(R) (2005). Copyright (2005) by the American Physical 
Society. 

from which we recover the usual no-slip solution when As = O. 
The explicit velocity field in Eq. (17.4) is easily integrated to yield the flow rate Q(A )'s 

from which the hydraulic resistance Rhyd(AJ is readily deduced, again see Exercise 17.1, 

1 12T]L Rhyd (0)
Rhyd(AJ = ,\ -3-	 (17.5) 

1+6,.;' hw 1+6~'
h 

This expression reveals that if it were possible to increase the slip length to infinity, the 
hydraulic resistance, and thus viscous dissipation of energy, would vanish, which is indeed, 
an interesting perspective. However, even the small slip length As = 50 nm influences the hy­
draulic resistance significantly for channels of small height. For h = 10 pm we get Rhyd(A ) = s 

0.97 Rhyd(O), a reduction of 3%, while for h = 1 pm we get Rhyd(AJ = 0.77 Rhyd(O), a sig­
nificant reduction of 23%. 

In the literature are found reports of As in the micrometer range, e.g. Tretheway and 
Meinhart (2002). Such extreme slip lengths, although desirable to achieve, are not very 
robust, probably because layers of gas forming between the liquid and the wall seem to be 
involved. It is fair to state that the last word has not yet been said about non-zero slip 
lengths for liquids flowing in micro- and nanofluidic systems. 
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17.2 Capillary filling of nanochannels 
Using state-of-the-art nanotechnology it is possible to fabricate fluid channels having cross­
sections of linear sizes in the nanometer range. In the literature, applications of such nanoflu­
idic channels have been reported within studies of fundamental physical properties, Kameoka 
and Craighead (2001), van del' Heyden, Stein, and Dekker (2005), Tas et ai. (2004), as well 
as bio/chemical analysis, Bakajin (1998) and Reisner et ai. (2007). 

We use the work presented by Anders Kristensen's group at MIC-DTU on capillary 
filling of nanochannels as an example of fluidics in flat, straight channels with rectangular 
cross-sections of heights less than 1 pm, see Persson et ai. (2007). In Fig. 17.3 is shown a top 
view of the channel design and the principle of the fabrication method that leads to a control 
on the nanometer scale of the channel height. The nanofluidic properties are investigated 
by using the channel as a capillary pump, see Section 7.4.1. Pure (milli-Q) water or a 0.1 M 
NaCl electrolyte is loaded into the large micrometer-sized inlet channel, from where the 
liquid is sucked into the connected nanochannels by the capillary force. The advancement 
of the position L(t) at time t of the front meniscus is recorded by a video camera attached 
to an optical microscope. The width of the channels is w = 10 pm, while the heights are less 
than 1 pm making the aspect ratio h/w less than 0.01. Neglecting the small aspect ratio 
correction, the expression Eq. (7.36) for the square L 2 (t) of the meniscus position becomes 

L2 (t) = h,cosO (17.6)31] t == up t, 

where cos 0 = Hcos 01 + cos O2 ) is the average between the cosine of the contact angle of 
the Si02 bottom wall and glass top lid, see Exercise 7.3, and where we have introduced 
the slope a for the expected linear dependence of L 2 versus time t for a Poiseuille flowp 
profile. At 25 "C the experimental parameter values are 1] = 0.89 mPas, , = 73 mJ/m3 , and 
cos 0 = 0.96, which results in the following dependence of channel height h for the expected 
slope ap ' based on Poiseuille flow, 

Up = h x 26 m/s. (17.7) 

(a) 

Fig. 17.3 (a) Top view of a chip containing seven nanochannels (dark gray) of length L = 10 mm, 
width w = 10 lun, and height h ranging from 14 to 300 nm. The nannochannels connect two 
microchannels (light gray) furbished with access ports through which liquid is introduced into the 
system. (b) The fundamental steps in the fabrication process: 1) First oxidation. 2) Wet isotropic 
BHF etch through an etch mask resulting in slightly sloped sidewalls. 3) Second oxidation, which is 
faster inside the channel region, where the oxide layer is thinner, than outside. 4) Bonding of glass 
lid. Adapted from Persson et al. (2007) courtesy of Anders Kristensen, MIC-DTU. 
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Fig. 17.4 (a) Measurements of the linear relationship L 2 = a t between the square of the meniscus 
position L and time t for channel heights h = 25, 42, 100, and 310 nm. (b) The ratio ap/aexp of 
the theoretical Poiseuille-fiow slope ap and the experimental slope aexp for the capillary filling 
L 2 (t) = a t for the nanochannel. The filling liquids are Milli-Q water and an 0.1 M NaCI aqueous 
solution. Every data point is an averaged value from between 20 and 50 measurements. The channel 
width is w = 10 11m. Adapted from Persson et ai. (2007) courtesy of Fredrik Persson, MIC-DTU. 

In Fig. 17.4 are shown some of the experimental results. Panel (a) is a scanning electron 
microscope picture of an actual nanochannel of height h = 75 nm and width w = 10 11m, 
while panel (b) contains graphs of L(t)2 for four small channel heights h, as well as a plot 
of the ratio a / a p as a function of channel height h between experimentally measured exp

and theoretically expected slopes aexp and a p , respectively. The data exhibits two very clear 
features: First, the square L 2 of the meniscus position depends indeed linearly on time t, 
and secondly, while the measured slopes aexp of the obtained straight lines agree well with 
the theoretically expected slope a p for large channel heights, a significant and systematically 
increasing deviation is observed as the channel heights are decreased below approximately 
100 nm. 

Traditionally, the deviation of the measured slope from the slope expected from Poiseuille 
flow is expressed as the ratio a over a ' This emphasizes the observation of a relative p exp 

increase in the resistance against capillary flow. As ap ex 1/", this increase can be summarized 
by introducing either a phenomenological effective viscosity "'eff' the hydraulic resistance 
ratio R~~~/R~Yd' or the flow rate ratio Qp/Qexp, where the indices "exp" and "p" refer 
quantities measured for the actual flow or expected for a pure Poiseuille flow, respectively, 
in the same nanochannel with a given Young-Laplace pressure drop ~Psurf' 

R
exp 

a p "'eff hyd Qp (17.8)
aexp - ry = R~Yd - Qexp' 

If the experimental flow is a pure Poiseuille How we expect a height-independent ratio 
ap/aexp = 1, but clearly the ratio is not constant so we must look for additional contributions 
to the flow. In the following, we first investigate the possible influence from electro-osmosis 
and then from a non-zero slip length. 

Both pure water and 0.1 M NaCl are electrolytes, so as described in Section 8.3, the 
introduction of these liquids into the nanochannels leads to the formation of Debye-layers 
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of thickness AD in the liquid adjacent to the channel walls. It follows from Eq. (8.26) that 
the Debye lengths for the two electrolytes in question are 

AD (NaCI, 10- 1 M) = 1 nm« h, (17.9a) 

AD (water, 10-7 M) = 1 ]lm > h. (17.9b) 

This, of course, just shows that the two electrolytes were carefully chosen to obtain the two 
extreme cases of Debye lengths either much smaller or much bigger than the channel heights. 
For simplicity, we apply the Debye-Hiickel approximation in the analysis. 

Even though no electrodes with applied voltages are attached in the capillary-filling 
experiments, ·electro-osmosis might come into play due to the charge convection currents 
I~gnv and I~onv, introduced and analyzed in Section 9.2. As the position L(t) of the meniscus 
propagate into the nanochannel driven by the Young-Laplace pressure ~Psurf' the Poiseuille­
like flow sets up a non-zero charge convection current, I~onv =I- 0, given by Eq. (9.33). 
However, unless opposed by countercurrents, such a convection current would result in a 
gradual charging of the nanochannel, which in the long run would lead to unrealistic charging 
energies. Consequently, in a lowest-order approximation the total electric current I through 
a given cross-section situated at x « L(t) must vanish, 

= I conv + I conv + I condI = 0 (17.10)p eo eo-' 

The counterflowing electro-osmotic current can be established through a small charging of 
the region near the meniscus, which leads to the existence of an electric field E that drives 
the EO flow. The magnitude of E is found by combining Eq. (17.10) with the explicit 
expressions for the conduction and convection currents given by Eqs. (9.22) and (9.33), 

+ _ E( ~P[1 + a g(80 )] wh(aion + aion)E = f(8 0 ) wh--:;; L' (17.11) 

where 

h 
(17.12a)

8 0 ==: 2A ' 
D 

E2 (2 
a==: 2 + _ , (17.12b)

2AD (aion + aion)T) 

1 
f(8 0 ) ==: [1- 8 tanh(So)], (17.12c) 

0 

1 2
g(8

0
) ==: - tanh(so) - sech (So), (17.12d) 

8 0 

These expressions lead to a determination of the magnitude v of the EO flow necessary to eo 
guarantee a zero electric current . 

v = E( E = af(so) 2Ab ~P (17.13) 
eo - T) 1 + ag( 8 ) T) L' 

0 

Finally, by subtracting the counterflowing EO flow rate Qeo = wh veo f(8 0 )' given by 
Eq. (9.16), from the advancing Poiseuille flow Qp = wh3~Psurd(12T)L), given by Eq. (7.34), 
we obtain an estimate of the total flow rate Q, 
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Fig. 17.5 (a) Calculated slope ratio apia = Qp/Q as a function of channel height h obtained 
from Eq. (17.15) for 10- 7 M water (dashed line) using (= 100 mV and for 0.1 M NaCI (full line) 
using ( = 250 mV and a downshift of the base line with a factor of 0.97. The data from Fig. 17.4(b) 
are also shown: NaCI (light gray diamonds) and water (dark gray triangles). 

(17.14) 

Returning to Eq. (17.8), we can now use Eq. (17.14) to derive an expression for the expected 
deviation of the slope a from pure Poiseuille flow slope ap ' 

(17.15) 

Let us first focus on the NaCI electrolyte with a Debye length AD = 1 nm much smaller 
than the channel height h. Since 30 nm < h < 300 nm the variable So lies in the range 
15 < So < 150, and the slope ratio apia = Qp/Q from Eq. (17.15) is approximately given 
by 

ap = Qp ~ [1- 6a] -1 for so» 1. (17.16) 
a Q s;' 

It is clearly seen that the theory predicts an increase in the deviation of the expected slope 
from unity. In Fig. 17.5 is shown a theoretical fit based on the full equation (17.15) with 
parameters corresponding to 0.1 M NaCI to the data. The agreement is fair, but actually 
the theory outlined here cannot explain the observed phenomena. This becomes clear when 
turning to the case of 10-7 M water, where the large Debye length AD = 1pm is larger than 
the channel height h. The variable So now lies in the range 0.01 < So < 0.15, and in this 
limit a Taylor expansion of apla yields 

a Q 2 
---.!: = ----!: ~ 1 + - a s2 for s // 1	 (17.17)a Q 3 0' 0" . 

This behavior of the slope ratio is completely wrong, since it is decreasing from values above 
unity towards unity, as the channel height is decreased. Inserting the parameter values for 
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pure water we obtain Qp/Q::::o 1 + 0.27 s~, which increases from 1.000 at So = 0.01 to 1.006 
at So = 0.15. 

17.3 Squeeze flow in nanoimprint lithography 
To fabricate nanofluidic channels one may choose to use the so-called nanoimprint lithog­
raphy (NIL) process. Since this process itself utilizes nanofluidics, namely squeeze flow in 
liquid films with thicknesses of the order 100 nm, we will briefly study NIL in this sec­
tion. NIL is a nanopatterning method, which combines nanometer-scale resolution with 
high throughput fabrication. A hard stamp containing the nanopattern is pressed into a 
thin polymer film deposited on a hard substrate. At sufficiently high temperature (above 
the glass-transition temperature Tg ) the polymer melts and becomes a viscous liquid. Upon 
imprinting, as sketched in Fig. 17.6, the polymer therefore flows away from the regions be­
neath the protrusions of the stamp and into the cavities of the stamp. This flow process can 
be characterized as a nanofluidic squeeze flow in the polymer film, and in the following we 
analyze it assuming a simple model of the system. 

We model the region below a given protrusion in the stamp as a parallel-plate system 
similar to the Couette flow system of Fig. 3.3, but now, as sketched in Fig. 17.7, moving the 
top plate downward antiparallel to the vertical z axis instead of parallel to the horizontal 
x axis. In squeeze flow, contrary to Couette flow, the height h of the liquid film between 
the bottom and top plates becomes a function h(t) of time. We shall calculate how long it 
takes to squeeze the liquid film from some initial thickness ho to some final thickness hf' 
This time is important as it sets the time scale for the NIL fabrication process. The stamp 
has the length 2L in the x direction and the width w in the y direction, so the polymer film 
fills the region -L < x < Land 0 < Y < w. 

To facilitate the calculation we make the following simplifying assumptions. The given, 
applied imprinting force Fimp on the stamp is constant in time, and for a sufficiently thin 
film the squeeze flow is so slow that in analogy with the capillary pump flow in Section 7.4.1 
it can be regarded as quasi-steady. The validity of this fundamental assumption will be 

(b) (c) (d). u,(a) 

T>Tg T >Tg T> Tg 

Fig. 17.6 The basic principle of nanoimprint lithography (NIL). (a) Initial phase: under the action 
of a constant force F imp , the hard stamp is pressed into the soft, thin polymer film, which is deposited 
on a hard substrate and heated to above its g;Iass-transition temperature Tg . (b) Intermediate phase: 
by the imprinting force Fimp the polymer film is slowly squeezed away from the regions beneath 
the protrusions of the stamp into the cavities or to the sides of the stamp. (c) Final phase: After 
complete filling of the cavities the polymer can only flow towards the sides of the stamp. (d) 
Demolding phase: the temperature is decreased below Tg , the polymer solidifies and the stamp is 
removed leaving behind the nanopattern from the stamp in the polymer film. Functional devices 
can be fabricated by further processing of the film. 
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Fig. 17,7 Squeeze flow between parallel plates. (a) Conservation of mass for the slab of length 
Dox, width w (in the y direction), and height h(t) leads to Q(x+Dox) = Q(x) + 8th wDox. (b) The 
velocity field Eq. (17.24), where it should be noted how the vertical component V x increases as a 
function of horizontal distance x to the center of the channel at x = O. 

checked at the end of the calculation. If we, furthermore, consider w » h(t) we can safely 
neglect edge effects from the edges at y = 0 and y = w, so at any given instant in time, 
where the film thickness is h(t) and the speed of the stamp is Oth == uo, the velocity field v 
must fulfill 

v = vx(x, z) ex + vz(x, z) e z , (quasi-steady 2D), (17.18a) 

v(x,O) = 0, (no-slip at fixed bottom plate), (17.18b) 

v(x, h(t)) = Oth e z == -uoez , (no-slip at moving top plate). (17.18c) 

The rheological properties of polymers are complex, but we shall nevertheless assume that 
the polymer film can be described adequately as an incompressible liquid with a constant 
viscosity T/. This assumption can be justified given the very low Reynolds number and the 
constant temperature in the squeeze nanoflow. Finally, given the large imprinting pressure 
Fimp that typically is applied in NIL processes we neglect the influence of gravity. The 
governing equations for the squeeze nanoflow are thus the Stokes equation and the continuity 
equation, 

T/(O; + oz2)vx(x, z) = oxp(x, :), (17.19a) 

T/(o; + oz2)vz (X, z) = ozp(x, z), (17.19b) 

oxvx + ozvz = O. (17.19c) 

Given the quasi-steady flow we expect a Poiseuille-like flow profile along the x direction. 
The flow rate Q(x) at a specific cross-section x can be determined hy using the continuity 
equation on the slab of length .6.x, width w, and height h(t) as sketched in Fig. 17.7(a). 
The outflow to the right is given by the sum of the inflow from the left and from the top 
(denoting 0t h == - uo) as 

Q(x+.6.x) = Q(x) + uow .6.x, or oxQ(x) = uow. (17.20) 

By symmetry, the flow rate must be zero at the center plane x = 0 of the channel, so the 
position-dependent flow rate is therefore found to be 

Q(x) = uow x. (17.21) 
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Combining this with the assumption of a local Poiseuille flow (to be checked by the end 
of the calculation) between parallel plates of length ~x, leads to the following form of the 
pressure gradient along the x direction, 

a -xp ­
~p

lim ~ Ll.x->o ~x 
lim 121]~xQ(x) 

Ll.x->o wh3 ~x 

= _ 121]uo x. 
h3 

(17.22) 

The x component of the Stokes equation (17.19a) becomes 

( 2 2) 121]uo1] Ox + Oz V x = oxP = -~ x, (17.23) 

with the following solution that sa.tisfies the boundary conditions, 

vx(x, z) = 
6uo----,;3 z(h ­ z) x. (17.24a) 

From this expression for vx(x,z) and the continuity equation ozvz = -oxvx' Eq. (17.19c), 
the z-component of the velocity is easily found by integration to be 

Uo 2vz(x, z) = h z (2z - 3h). (17.24b)
3 

We see that in agreement first-order perturbation theory, Eq. (14.6), the velocity in the z 
direction is smaller than the velocity in the x direction by a factor of z / x ;::::: h(t) / L. 

Given the two velocity components we can calculate the streamlines of the flow by 
following the procedure outlined in Eq. (14.24). Each streamline of the form (x(z), z)) obeys 
the differential equa.tion 

dz _ vJx, z) z(2z - 3h) 
(17.25)

dx - vx(x, z) 6x(h - z) . 

By separation of the variables, see Exercise 17.5, we find the following explicit expression 
for the streamline through the point (xo, h), 

r{"o,hl(r) ~ ( z2(3h - 2z) (17.26) 
xOh3 

)z 

A collection of streamlines is plotted in Fig. 17.8. 
The non-trivial z-component of the velocity field implies a z-dependence in the pressure 

given by 
2 2 61]uo )ozp = 1] ( Ox + Oz )vz = h3 (z - h), (17.27 

which together with oxP in Eq. (17.22) leads to the following pressure fulfilling the boundary 
condition p(L, 0) = p*, 

) = 61]uo [(2L x 2) z ( 1) + P*] (17.28)p(x, z h3 - - h -"2z . 

We now have the solution for the velocity field v(x, z) and the pressure p(x, z), which 
will allow us to calculate the imprinting time. However, before doing so we check if the 
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Fig. 17.8 The streamlines for squeeze flow between parallel plates, see Eq. (17.26) and Exer­
cise 17.5. The downward velocity Oth of the top plate fulfills the criterion phlothllrJ « 1 for 
quasi-steady motion. 

solution in fact is in accordance with the assumptions. Most importantly, we have neglected 
the explicit time dependence Pat v as well as the non-linear inertia p(v· V)v, so we now seek 
to explicitly state the criterion for this approximation to be valid, i.e. when these two terms 
are small compared to the only velocity-dependent term left in the equation, namely 17\J2v . 

The solutions for V x and V z are simple polynomials in x and z, so it is easy to obtain 
the following orders of magnitude estimates: Vx ;:::::: uoL/h, Vz ;:::::: uo, ax ;:::::: 1/L, and Oz ;:::::: l/h, 
which for the inertial terms leads to p(v· V)vi ;:::::: (puo/h)vi, where i = x, Z, while the 
viscous terms become 17\J2vi ;:::::: (17/h 2)vi . Since the time dependence in the solution only 
appears through h(t) we can estimate the order of magnitude of the acceleration term as 
POtVi = p(Oth)Ohvi ;:::::: (puo/h)vi, i.e. the same as the inertial term. The criterion for the 
validity of the approximative solution is that the Reynolds number-like quantity phuo/17 is 
much smaller than unity, 

2!pOtVil Ip(v· V)vil ;:::::: (puo/h)vi = phuo = phlothl = plot(h )1 « 1 (17.29)
117\J2vi I' 117\J2Vi I (17 / h2)vi 17 17 217 . 

The slower the motion of the stamp the better is the approximative solution. 
The imprinting time Timp is defined as the time it takes to squeeze the polymer film from 

a given initial thickness h(O) = ho to a given final thickness h(Timp) = hf' It is calculated by 
considering the average imprinting pressure Pimp = (p(x,z) - pO) derived from Eq. (17.28). 
If we disregard the small contribution from the z-dependent part of the pressure, which is 
suppressed by a factor of h2 / L 2 we obtain 

2 
1 JL [ ] 417u L (17.30)Pimp = 2L -Ldx p(X,O) - p* = h~ 

The imprinting pressure can be expressed in terms of the constant imprinting force acting 
on the area (2L)w of the top plate as, Pimp = Fimp/ (2Lw), and upon separation of the 
variables t and h in Eq. (17.30) we find 

(17.31) 

In the literature, this expression is known as the Stefan equation. 
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From the Stefan equation also follows the explicit expression for the time dependence of 
the thickness h(t) of the polymer film during squeeze flow, 

Pimpt 1 
(17.32)h(t) = 2TfL2 + h6 ~( ) 

-~ 

With this expression at hand, we can check if the criterion Eq. (17.29) is fulfilled. By squaring 
and differentiating Eq. (17.32) we find after elimination of t by h that 

dh2 Pimp h4 

(17.33)
dt 2TfP . 

Inserting appropriate parameter values for NIL by hot embossing in the polymer PMMA, 
for which Pimp ~ 106 Pa, Tf ~ 105 Pa s, p ~ 2 X 103 kg m-3 , and taking the typical length 
scales h ~ 10-6 m and L ~ 10-5 m we find 

2
plot(h )1 ~ 10-15 « 1. (17.34)

2Tf 

One can safely conclude that the solution is accurate. For the same parameters, as studied 
in Exercise 17.6 the Stefan equation leads to imprinting times of the order 

Timp ~ 102 s, (lllm thick PMMA film at 106 Pa). (17.35) 

17.4 Nanofluidics and molecular dynamics 
In Section 1.3.2 the continuum description was introduced by applying the concept of av­
eraging over molecular quantities in mesoscopic volumes. It is therefore of importance to 
verify and study the applicability of this fundamental description by direct simulation of 
liquids on the molecular level. One such method is the widely used molecular dynamics (MD) 
method. This method is well suited for simulating liquids in volumes of linear size less than 
100 nm and for short time intervals less than 5 ns. Although severely restricted to this small 
space-time domain, the MD method nevertheless allows for first-principles calculations of 
liquid properties and behavior, and it might also provide important insight under conditions, 
where the continuum description fails, e.g. due to very strong spatial confinements or very 
high shear stresses. 

The typical MD simulation comprises three main steps: (i) Setup of the geometry and the 
initial conditions, (ii) specification of the intermolecular interaction potential, and (iii) time 
integration of the molecular equation of motion. 

In step (i) a calculational grid is defined to match the geometry of the given problem. A 
set of molecules i is introduced with positions r i on randomly selected grid points, and each 
molecule is assigned with a random energy E i in accordance with the Maxwell distribution 
!(E i ) ex exp( -EdkBT). In step (ii) a pair~interaction potential V(r ij ) is introduced for a pair 
of molecules positioned at r i and r j and with T ij == Iri -rjl. Often, the pair-potential is some 
variant of the Lennard-Jones potential VLJ introduced in Section 1.3.1 and Exercise 1.2, 

VLJ(Tij ) =4E[CTf2 - CT)6]. (17.36) 
tJ tJ 

Finally, in step (iii) a time integration is performed of the molecular equation of motion, 
which typically is simply Newton's second law. For molecules of mass m moving in contact 
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Fig. 17.9 Molecular dynamics calculation of the slip length for water flowing past a carbon 
nanotube of diameter 2.5 nm. (a) The azimuthal velocity component v</>(r) normalized by the 
inflow value as a function of the distance r from the surface of the carbon nanotube. The slip length 
is found to be As(V</» = 0.40 nm. (b) The axial velocity component Vz (1') normalized by the inflow 
value as a function of the distance r from the surface of the carbon nanotube. The slip length is 
found to be As(Vz ) = 88 nm. Figures reprinted by permission from J. H. Walther et al., Phys. Rev. 
E 69, 062201 (2004). Copyright (2004) by the American Physical Society. 

with a dissipative thermal reservoir having the equilibration time T the equation of motion 
could be of the form 

d2 r "'" m dr. 
m dt2' =	 Lf\V(Tij )---:;: dt'. (17.37) 

j#.i 

With modern computers it is possible to compute the behavior of up to 106 molecules 
in the previously mentioned small space-time domain. Using advanced time integration 
methods and allowing for suitable equilibration time period, typically 10 to 100 T, averages 
of the molecular properties can be obtained. The calculation domain is divided into a number 
of bins 0: each situated around a position x Q ' and, e.g. the Eulerian velocity v(xQ ) is obtained 
as the time average of the velocity of the molecules of mass mi inside the bin, 

\ I:iEQ m i	 ~ ) t 
V(XQ ) ==	 (17.38) 

\ I:iEQ m i ) t 

The field of molecular dynamics is highly developed and many tricks and methods have 
been introduced over the years. The above introduction is very rudimentary and the reader 
interested in the MD method is referred to textbook by Allen and Tildesley (1994) or the 
review paper by Koplik and Banavar (1995). 

We end this short section on molecular dynamics by a brief presf'ntation of the results 
obtained by the group of Koumoutsakos at ETH Zurich, see Walther et at. (2004) regarding 
calculations of the slip length .\ introduced in Section 17.1. In the center of a flat paral­
lelepiped of size Lx = 16.4 nm, L = 16.4 nm, and L z = 2.1 nm, a carbon nanotube ofy 
diameter 2.5 nm was placed parallel to the z axes. The nanotube consisting of 640 atoms 
was surrounded by 1.8 x 104 water molecules. To ensure that the average velocity is much 
larger than the statistical spread, the flow speed was set to be of the order 100 m/s < 0.15 ca' 
Although this value is much higher than the typical flow speed in microfluidics, it is not 
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so high as to introduce either non-linear or acoustic effects, so the obtained results can be 
down-scaled. 

The flow direction was chosen to have a non-trivial angle of 17° with respect to the 
carbon nanotube axis, and thereby there was both an azimuthal component vq, and an axial 
component V of the velocity. These two velocity components were sampled statisticallyz 
by dividing the computational domain into 6 azimuthal bins and 200 radial bins, while 
the density was sampled using 1600 radial bins. The result of the calculation is shown in 
Fig. 17.9, where it is seen that the calculated slip length for the strongly curved azimuthal 
velocity component is very short, while it is much longer for the axial velocity component, 

.\(Vq,) = 0.40 nm, (17.3930) 

,\(vz ) = 88 nm. (17.39b) 

Walther et at. conjecture that the slip length is related to the presence of a stagnation 
point of the flow, and hence to the particular geometry. It is interesting to note that the 
long slip length calculated for the water-carbon interface along the flat axial direction is 
comparable to the experimental result 50 nm ± 50 nm measured on the flat water-glass 
interface discussed in Section 17.1. The question about the value of the slip length remains 
open both experimentally as well as theoretically. It is one of the exciting research topics in 
nanofludics. 

17.5 Exercises 
Exercise 17.1 
Hydraulic resistance for a non-zero slip length in a flat channel 
Consider a pressure-driven flow in an infinite parallel-plate channel of height h given a Navier 
boundary condition with a non-zero slip length As on both bottom and top plates. 

(a) Derive the expression for the velocity profile vx(z). Hint: due to symmetry the prob­
lem is easier solved when placing the bottom plate at z = -h/2 and the top plate at 
z = h/2. 

(b) Derive the expression for the hydraulic resistance R hyd (As) based on the velocity 
profile derived above. Express the result as Rhyd(As) = f(A s) Rhyd(O). 

(c) The experimental results in Fig. 17.2(b) points toward a slip length As = 50 nm. 
Calculate the relative change in the hydraulic resistance when changing As from 0 nm to 
50 nm in the case of microchannels with height h = 10 11m and 111m. 

Exercise 17.2 
Hydraulic resistance for a non-zero slip length in a circular channel 
Consider a pressure-driven flow in a straight channel of length L with a circular cross-section 
of radius a given the Navier boundary condition with a non-zero slip length As at the channel 
wall. . 

(a) Derive the expressions for the slip length dependent velocity profile vx(z) and for 
the hydraulic resistance R hyd (AJ. 

(b) Calculate the relative change in the hydraulic resistance when changing As from 
onm to 50 nm for the two values of the radius a = 5 11m and 0.5 11m. 
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Exercise 17.3 
Brownian motion of tracer particles 
In the PlV measurements of the slip length tracer particles of radius a = 50 nm were 
employed. 

(a) Calculate the diffusion constant D of the tracer particles in deionized water at room 
temperature. 

(b) The PlV measurements involved a recording region of height 6.z = 500 nm and a 
time interval T = 20 ms between each pair of pictures on which the PlV analysis is based. 
Discuss the likelihood of tracer particles blurring the PlV signal by diffusing in or out of the 
recording region in the time interval T between the two pictures in a pair of PIV pictures. 

Exercise 17.4 
The Debye length of pure water and 0.1 M NaCI 
The pH value of pure water is 7, which by definition means that the proton concentration 
is c = 10-7 M. Calculate the Debye length AD for pure water and for 0.1 M aCl used in 
the experiments of the capillary filling of nanochannels, see Section 17.2. 

Exercise 17.5 
Streamlines of the quasi-steady squeeze flow 
Calculate the streamlines for the squeeze flow in the quasi-steady limit given by the velocity 
field (vx(x, z), vjx, z)) in Eq. (17.24). Hint: separate the variables in the defining differential 
equation dx/vx = dz/v z and find x as a function of z. 

Exercise 17.6 
Nanoimprint lithography time 
Consider a nanoimprint stamp covering the area 1 mm x 1 mm consisting of a number of 
parallel rectangular cavities of length L = 30 ]lm in the x direction, width w = 1 mm ine 

the y direction, and height he = 200 nm in the z direction, and separated by protrusions of 
length 2L = 20 ]lm in the x direction, see Fig. 17.6. The incompressible polymer film has a 
viscosity of 'f} = 105 Pa s and an initial thickness of ho = 300 nm. The nanoimprint pressure 
is constant and given by Pimp = 5 MPa. 

(a) Calculate the final film thickness hf defined as the thickness underneath the protru­
sions exactly at the moment where the cavities are filled with polymer. Hint: use the fact 
that the polymer can be treated as an incompressible liquid. 

(b) Use the Stefan equation to estimate the time T imp it takes to squeeze the polymer 
film from the initial thickness ho to the final thickness hf' 

(c) Estimate the ratio f between the imprint speed 8t h just after and just before the final 
film thickness has been reached 1. Hint: although denoted the final thickness, the polymer 
film continues to be squeezed after the cavities are filled at the thickness h f , however, now 
the polymer has to flow all the way to the edges of the stamp. 

17.6 Solutions 
Solution 17.1 
Hydraulic resistance for a non-zero slip length in a flat channel 
The starting point is the Navier-Stokes equation (3.20a). 

1 Here, at the end of the book there is a shortage of latin and greek letters for naming the variables, hence 
this use of the first letter f (fehu) in the futhark runic alphabet of my ancestors, the vikings. 
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(a) With the Navier boundary condition applied at z ±h/2, the solution to the 
Navier-Stokes equation has the symmetric form 

(-) 6.p (2 -2) (17.40)V x Z = 2TJL Zo - Z . 

Application of the Navier boundary condition ozvx = AsVx at z -h/2 leads to the 
condition Ash = Z5 - (h/2)2 or 

h~ 
Zo = ±2 VI + 4h , (17.41) 

which upon insertion into Eq. (17.40) yields Eq. (17.4). 
(b) The flow rate is found by integration of Eq. (17.40), 

h 3 

Q = 26.p w (2 dz(z2 _ z2) = 6.pw [Z2~ _ ~ (~)3] = 6.pwh [1 6As]. (17.42)
2TJL Jo 0 TJL 0 2 3 2 12TJL + h 

Since Rhyd = 6.p/Q we find the hydraulic resistance to be given by Eq. (17.5). 
(c) For h = 10 pm we find R hyd (As) = Rhyd (0) /(1 +6 x 0.05/10) = 0.97Rhyd (0). Similarly, 

for h = 1 pm we find Rhyd(As) = Rhyd (O)/(l + 6 x 0.05/1) = 0.77 Rhyd(O). 

Solution 17.2
 
Hydraulic resistance for a non-zero slip length in a circular channel
 
The starting point is the usual Poiseuille flow in a channel with circular cross-section pre­

sented in Section 3.4.4.
 

(a) Since only the boundary condition has changed, the velocity field as a form similar 
to Eq. (3.42a) 

vx(r) = 6.p (r6 _r2), (17.43) 
. 4TJL 

where the radius a has been substituted with an unknown constant ro to be determined. We 
note that the Navier boundary condition Eq. (17.2b) becomes vx(o,) ex = -As [orvx(o,)] ex, 
which leads to the condition 

~ 
ro = a V1+ 2-;, (17.44) 

which upon insertion into Eq. (17.43) yields 

ux(r) = 4~~ [(1+2~S)o,2-r2l (17.45) 

The flow rate is found as Q = 2r. faa drrvx(r), which straightforwardly leads to the hydraulic 
resistance, 

4 
R d(>\J = Q(As ) c= 7ro, 6.p 1 - Rhyd(O). (17.46)

h 
y 6.p 8TJL 1 + 4~ 1 + 4~ 

a a 

(b) For a = 5 pm we find Rhyd(As ) = Rhyd (O)/(l +4 x 0.05/5) = 0.96Rhyd (0). Similarly, 
for a = 0.5 11m we find Rhyd(As ) = Rhyd (O)/(l +4 x 0.05/0.5) = 0.71 Rhyd(O). We note that 
whell introducing a slip length As, the hydraulic resistance decreases relatively more for a 
circular channel compared to a flat channel of height h = 20,. This is expected, since the 
lack of side walls in the flat channel implies no lowering of the resistance at the side regions 
of the channel upon introducing a non-zero slip length. 
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Solution 17.3 
Brownian motion of tracer particles 
The diffusion constant D is found from the Einstein relation Eq. (6.49). 

ion to the 

(17.40)	 (a) For room temperature T = 300 K, particle radius a = 50 nm, and viscosity T/ = 
1 mPa s we find 

k T
ads to the	 D = _8- = 4.4 x 1O- 12 m2 Is. (17.47)

67raT/ 

(b) Tracer particles willleave/enter the recording volume if the distance £ they diffuse 
(17.41) in the time interval T = 20 ms is larger than the thickness 6.z = 500 nm of the recording 

volume. Basic diffusion theory, see Eq. (5.8), gives £ ~ ..JIj; = 300 nm. This distance is 
smaller than but comparable to 6.z, so these tracer particles are the smallest possible to 
use given the PIV requirements. The majority of tracer particles are likely to stay in the 
recording region, during the recording of one pair of PIV pictures. Smaller tracer particles 

(17.42) would diffuse in and out of the recording region thus being a source of significant noise in 
the measurements. 

Solution 17.4l. Similarly, 
The Debye length of pure water and 0.1 M NaCI
 
In Eq. (8.27) we found AD (1 mM) = 10 nm. Since, according to Eq. (8.26) we have
 
AD ex: 1/.jC, we readily obtain AD(10-7 M) = 100 AD(l mM) = 1 pm and AD(100 mM) =
 
O.lAD (l mM) = 1 nm.
 

3ection pre-
Solution 17.5 
Streamlines of the quasi-steady squeeze floworm similar 
From the definition of streamlines, dxlv = dzlv", and the velocity field in Eq. (17.24), wex 
easily establish the differential equation given in Eq. (17.25). By separation of the variables 

(17.43) it is transformed into 
6(h - z) dz = ~ dx. (17.48)nnined. We z(2z - 3h) x 

a,.vx(a)] ex' 
We note that 6(h - z)/[z(2z - 3h)] = 2/(3h - 2z) - 21z, and integration leads to the 
logarithms -10g(3h - 2z) - 2 log z = log x - log A, where A is an integration constant. 

(17.44)	 Taking the exponential of both sides gives the result 

x h3 

(17.49)x(z) = z2(3~ _ 2z)' 

(17.45) 
where the integration constant has be chosen so that the streamline passes through the point 
(xo,h) on the top plate. This expression is the basis for Fig. 17.8. 

e hydraulic
 
Solution 17.6
 
Nanoimprint lithography time
 

(17.46) When the stamp has sunk the vertical distance 6.h each protrusion has displaced the volume 
6.h(2L )w, while each cavity has received this amount of polymer as well as the volume 

. Similarly, 6.hLew of the polymer residing underneath the sinking cavity.
 
e note that
 (a) The final film thickness is reached when the cavity volume equals the sum of these 
more for a two polymer volumes, heLew = 6.h(Le + 2L)w. Since 6.h = ho - h f we get
 
, since the
 
ide regions	 Le

h f = ho - L L he = 180 nm.	 (17.50)
e+ 2 
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(b) Given the result above we can now apply the Stefan equation with the parameter 
values 'r/ = 105 Pa s, L = 10 pm, Pimp = 5 MPa, ho = 300 nm, and h f = 180 nm, 

l
Timp 

2'r/L2 [ 1 1 ] 
T imp = dt = -.- h2 - h2 = 80 s. (17.51) 

o PImp f 0 

(c) The imprint speed 8t h can be found by differentiating Eq. (17.32) with respect to 
time, or more easily in this case, directly from Eq. (17.30) 

h3 
Pimp

Dth\t) = - 4'r/L2 . (17.52) 

The difference between the situation just hefore and just after the cavities have been filled 
lies solely in the interpretation of the length L. Before the complete filling L is to be taken 
as half the length of the protrusions, here L = 10 pm, since the polymer only has to 
flow from underneath one protrusion to the neighboring cavity. After complete filling the 
polymer has to flow all the way to the edges, i.e. L is now half the size of the stamp, 
here L = 500 pm. The imprint speed thus decreases abruptly by a factor of the order of 
f = (10 pm/500 pm)2 = 4 x 10-4 once the stamp cavities has been filled with polymer. 
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