Lecture 3

Fluid Kinematics: Velocity field,

Acceleration, Reynolds Transport
Theorem and its application



e Describing fluid flow as a field

 How the flowing fluid interacts with the
environment (forces and energy)



Lecture plan

» Describing flow with the fields: Eulerian vs.
_agrangian description.

* Flow analysis: Streamlines, Streaklines, Pathlines.

 How to perform calculations in the field description:
the Material Derivative

 Reynold’s Transport Theorem

« Application of Reynolds transport theorem:
Continuity, Momentum and Energy conservation




Velocity field

« field representation of the flow: flow is represented as a
function of spatial coordinates (map)

« example: velocity field

V =u(x, Y, 2, +V(X, Y, 2,t) ] +W(X, y,z,H)k
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Velocity field: example

The calculated velocity field in a shipping channel is shown as the tide comes in
and goes out. The fluid speed is given by the length and color of the arrows. The

instantaneous flow direction is indicated by the direction that the velocity arrows
point.



Velocity field representation
Velocity field is given by:
V= (v, /D(Xi = y)

o Sketch the field in the first quadrant
e find where velocity will be equal to v,




Eulerian and Lagrangian flow description

 Eulerian method — field concept is used, flow parameters (T,
P, v etc.) are measured in every point in space vs. time

 Lagrangian method — an individual fluid particle is followed,
parameters associated with this particle are followed in time

Location O:
T =T(xg, yo, 1)~ Particle A:
|
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] x out of a chimney
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1D, 2D and 3D flow

* In most of flow situations the flow is three-dimensional, though in many
situations it's possible to reduce it to 2D or even 1D flow.

Flow visualization of the complex

three-dimensional flow past a The flow generated by an airplane is made visible

model airfoil by flying a model Airbus airplane through two
plumes of smoke. The complex, unsteady, three-
dimensional swirling motion generated at the wing
tips (called trailing vorticies) is clearly visible



Flow types

« Steady flow — the velocity at any given point in space doesn’t vary with
time. Otherwise the flow is called unsteady

« Laminar flow - fluid particles follow well defined pathlines at any moment
in time, in turbulent flow pathlines are not defined.




Streamlines

o Streamline: line everywhere tangentional to
the velocity field

dx u

ﬂ_v




Streamlines

Velocity field is given by:

V= (v, /D(Xi = y])

~

edraw the streamlines and
find there equation
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Streamlines, Streaklines, Pathlines
e Streamline — line that
evleryfvvhferledtangent to
velocity fie
« Streakline — all particles\‘
that passed through a
common point

 Pathline - line traced by
given particle as it flows

SERERR

streamlines




Micro Particle Image Velocimetry

e Particle Image Velocimetry

(PIV) : Mig::'uf::;dic“* ) 44— |[mmersion fluid
¢ flow is seeded by small Mcroscope Lens
partICIeS’ . A= 533:"‘ ;E :i' Epi-fluorescent
e consecutive photographs of | N&:YAG Laser — | Prism/Filler Cube
particles distribution are made Eroonder  §1 1y 1=560nm

. . C:':I:-“-’ Lens
e Images are sectioned into — _
- . - v tensifi
interrogation regions et | CCD Camera

e Motion of particles within
interrogation region determined
by image cross-correlation



Flow characterization on a microscale

— Particle Streak Velocimetry @)

— Particle Image Velocimetry
(PIV)

Advantages:
— Full-field technique
— high spacial resolution

— large range of velocities
covered (up to 8m/s)

— simplicity




Imaging flow in a microfluidic channel

* Flow is seeded with fluorescent particles and imaged...
(Project 5" semester Fall 2006)

Flow through a loosely packed Flow at a channel turn.
microspheres bed Flow is disturbed by a microwire



Cross-correlation of 2 images is calculated

t t+At




Example

Water flowing from an oscillating slit:

V =U, sin(w(t—y/V )i +V, ]

(e
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Material derivative

V, (1, 1) .

Part!cIeA at y |
« Particle velocity | time ¢ AN Fy 1
Particle path L ATA /
T gy, 1)
» Particle acceleration / .
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Material derivative

» is the rate of changes for a given variable with time for a
given particle of fluid.

Dt ot ox oy oz ot
/ \ Convective effect

(convective acceleration)

Unsteadiness of the flow
(local acceleration)
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Example: acceleration

Velocity field is given by: ~ V =(V, / D(Xi — Vj)
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Find the acceleration and draw it on scheme






Control volume and system representation

o System — specific identifiable quantity of matter, that might
interact with the surrounding but always contains the same
mass

 Control volume — geometrical entity, a volume in space
through which fluid may flow

Jet engine
: Balloon
Pipe
/“T\ —————— )
[ |
4 [ | l
\ J
AN —— —
(1) (2)
(a) () (c)
— — — = Control volume surface |:| System at time 7, |:| System at time 7, > 14

Governing laws of fluid motion are stated in terms of the system, but
control volume approach is essential for practical applications



Control volume: example

« Extensive property: B:m‘b\ (e.g. m (b=1), mv (b=v), mv?/2 etc)

_ intensive property
B,, = | pbd ¥

SYyS
oB O
= — pbd GU 7\ AN
| 1t=0 | ||1>0
B, _ 0 j obd 2 o o
5t 61: o : I : | 1 system
:\___-J :\-__-J —— Cor:ctrol
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oB 0 oB 0
s V=0, = V<0
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The Reynolds Transport theorem (simplified

— — — Fixed control surface and system t:SYS=CV
boundary at time 7 t+8t:SYS=(CV 1)+l

— — — System boundary at time 7 + ot

(a) (b)
Let’s consider an extensive property B:

initially, at time t: By, (1) = B, (1)
at time t+5t: B, (t+dt) =B, (t+)—B, (t+)+B, (t+4t)

Il

Bsys(t +ét)_ BS)’S (t) _ Bcv(t + ét) - Bcv(t) _ BI (t +ét) + BII (t + 61:)
St N St St St

9By, inflow  outflow
ot



DB . .
= GBCV o Bin + Bout
Dt ot

For fixed control volume with one inlet, one outlet, velocity
normal to inlet/outlet

DB, B

D;ys = atcv - pAVb + p,AV,b,

e Can be easily generalized:

V,




The Reynolds Transport theorem

for fixed nondeforming volume

8B = bp 8¥ = bp(V cos 0 &1) 6A
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DB,. 0B General Reynolds
v _Z7CV 4 j obV -ndA| transport theorem for
Dt ot & fixed control volume




Application of Reynolds Transport Theorem

DB
s Boy | j,ObV-ﬁdA
Dt ot 4

« We will apply it now to various properties:
— mass (continuity equation)
— momentum (Newton 2" [aw)
— energy



Conservation of mass

« The amount of mass in the system should be conserved:

= dvV =— [pdV + [pV-AdA=0
S ey g

sys

N\ 7
~

Continuity equation

Mass flow rate through a section of control surface having area A:

M= pQ = pAV J V- ridA
pQ‘ a Average velocity: V =2

<l

LA
Volume flow rate




For incompressible flow, the volume flowrate into a control
volume equals the volume flowrate out of it.

The overflow drain holes in a sink must be large enough to
accommodate the flowrate from the faucet if the drain hole at
the bottom of the sink is closed. Since the elevation head for
the flow through the overflow drain is not large, the velocity
there is relatively small. Thus, the area of the overflow drain
holes must be larger than the faucet outlet area



Example

Incompressible laminar flow develops in a straight pipe of radius R. At section 1
velocity profile is uniform, at section 2 profile is axisymmetric and parabolic with
maximum value u,,,. Find relation between U and u,,,, what is average velocity

at section (2)?
Section (1) Control volume

dA, = 21r dr Section (2)

R 2
AU +u,, [|1-| & | [ardr=0 “
0 R | Pipe

u =2U

max



Newton second law and conservation of

momentum & momentum-of-momentum

A jet of fluid deflected by an
object puts a force on the object.
This force is the result of the
change of momentum of the fluid
and can happen even though the
speed (magnitude of velocity)

ramainc rnnckant
IT\GTHTIWUATT IO GVUVITTODUWUUDT T L




Newton second law and conservation of

momentum & momentum-of-momentum

In an inertial coordinate system:

D
= [Vpdv =3 F,

sys

Rate of change of the Sum of all external
momentum of the forces acting on the
system system

At a moment when system coincide with control volume:

Z |:sys = Z |:contentsof

the control volume

D 9,
- — [V == [ Vpdv +[VpV-ndA
On the other hand: Dtj Jo ot C_[/ o, 5‘; o,

sys

C[Vpt +[VpV-AdA=3 Fp e
ot & Ss

the control volume




Example: Linear momentum

Determine anchoring forces required to keep the vane stationary vs angle q.

Neglect gravity and viscosity.
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L Inear momentum: comments

Linear momentum IS a vector

As normal vector points outwards, momentum flow inside a
CV involves negative V:-n product and moment flow outside
of a CV involves a positive V-n product.

The time rate of change of the linear momentum of the
contents of a nondeforming CV is zero for steady flow

Forces due to atmospheric pressure on the CV may need
to be considered



Example: Linear momentum — taking into account weight,

pressure and change in speed

Determine the anchoring force required to holid in piace a conical nozzie
attached to the end of the laboratorial sink facet. The water flow rate is 0.6
I/s, nozzle mass 0.1kg. The pressure at the section (1; Is 464 kPa.
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F, =anchoring force that holds
nozzle in place

W, = weight of nozzle

W, = weight of water contained in

the nozzle

P = gage pressure at section (1)

A; =cross section area at
section (1)

p, = gage pressure at section (2)

A, =cross section area at
section (2)

wy =z direction velocity at
control volume entrance

w, =z direction velocity at
control volume exit



Example: Linear momentum — taking into account weight,

QJ-W,OCV +ijV-ﬁdA:
at CcVv CS

= FA _Wn - p1A| _Ww + pzAz

pressure and change in speed

-

Wy

e L,

I
|
|
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|
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Section (2)

volume of a truncated cone;

\ﬁvziﬂh
12

pressure distribution:

(D +D; +D,D, )

Control volume

]

5
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-, = anchoring force that holds
nozzle in place
", = weight of nozzle

weight of water contained
the nozzle
P, = gage pressure at section (1)
Aq ross section area at
section (1)
p» = gage pressure at section (2)
Ay = cross section area at
section (2)
Wy direction velocity at
control volume ent

wy = 7 direction velocity at

control volume exit



Moment-of-Momentum Equation

The net rate of flow of moment-of-momentum through a control surface equals the net
torque acting on the contents of the control volume.

Water enters the rotating arm of a lawn sprinkler along the axis of rotation with no
angular momentum about the axis. Thus, with negligible frictional torque on the rotating
arm, the absolute velocity of the water exiting at the end of the arm must be in the radial
direction (i.e., with zero angular momentum also). Since the sprinkler arms are angled
"backwards", the arms must therefore rotate so that the circumferential velocity of the
exit nozzle (radius times angular velocity) equals the oppositely directed circumferential
water velocity.



The Energy Equation

 The First Law of thermodynamics

jepdv o (Q +W)sys

[/)' - RN
Rate of Net rate of Net rate of
increase of the energy energy
total stored addition by addition by
energy of the heat transfer work transfer
system into the system into the system

V 2
Total stored energy per unit mass: €=U + 7 + (7



D
o J epdV

sys

f

Rate of
increase of the
total stored
energy of the
system

:aijepdv JepV ndA

CS

Y

rate of increase
of the total
stored energy
of the control
volume

\

Net rate of
energy flow
out of the
control volume

% j epCV + j e,OV -NdA = (Qnet +Wnet)cv
\V/ CS " n



Power transfer due to normal and tangential stress

 Work transfer rate (i.e. power) can be transferred
through a rotating shaft (e.qg. turbines, propellers etc)

Wshaft = TshaftW where T, — torque and w — angular velocity
Section (1) Control volume  Section (2) Pipe
 or through the work of BN L / /

normal stress ( . I ’52“““75\ O
(> \\\z_______i;/ )

on a single particle: é\NmrmaI = §Fnormal V =ochoA-V =—pV -NoA
stress stress

integrating: Wnormal — j —pV -AdA
stress CS

tangential stress: é\Ntangential = 5 tangential V = O

stress stress



Power transfer due to normal and tangential stress

e The first law of themrodynamics can be
expressed now as:

j epd/ + j epV -AdA = Qnet s — | PV -TIdA
CS

net in

e SO, We can obtain the energy equation

2
- I e,Od\/ + J' (U + ,[Ij +V2 + gszv ndA Qnet shaft
in net in




Application of energy equation

e Let’s consider a steady (in the
mean, still can be cyclical) flow
and take a one stream

e Product V-n is non-zero only
where liquid crosses the CS; if
we have only one stream

entering and leaving control

5 Y |
volume: —jepd/ +jKU+p+7+92JpV N0A = Qu + W

2 2
m ku+ +—+g2J m..

. ~ ~ V 2 _V 2 .
m (uout —U,, + (% — [%j +( ol 5 £ j +J (Zout — 4 )J Qnet +Wshaft
out in in net in




¥

Energy transfer

Work must be done on the device shown to turn it over because the system gains
potential energy as the heavy (dark) liquid is raised above the light (clear) liquid. This
potential energy is converted into kinetic energy which is either dissipated due to friction
as the fluid flows down the ramp or is converted into power by the turbine and then
dissipated by friction. The fluid finally becomes stationary again. The initial work done in
turning it over eventually results in a very slight increase in the system temperature



Example: Temperature change at a water fall

Section (1)
] _____-ﬁ Control ‘
 find the temperature o
change after a water !
fall, c,e=4.19 kJ/kg-k -
! 150m
i —a+ Pl [P Vour —Vin' N | section (2)
m(uom Uin +(p)out [Iojin +[ 2 ]—'_ g (ZOUt Zm )J QinnEt s\ : :j’/z,\q }‘r -———.—_—2/\
\ N J \ v J X ~
=0



Energy equation vs Bernoulli equation

e Let’s return to our one-stream volume, steady flow (also no
shaft powen

V. -V 2 -
m (Gout — Uin + [Ej — (BJ +[ = = j +J (Zout — 4, )J = Qnet
P out P in 2 n

s 2 1 D anf
pout Voutu pin Vinu 1 1 'nv
+ + gzout — + + gzin - (uout - uin o qnet)> qnet —

Jo, 2 o 2 in in
N J N J
Y Y
available energy loss

« Comparing with Bernoulli equation: Yot =Uin = Gpee =0

in

l.e. steady incompressible flow should be also frictionless



o 4.4, A velocity field is given by:
V =xi +X(X=1)(y+1]

where u and v are in m/s and x,y are in m. Plot the stream
lines that passes through x,y=0. Compare this streamline with

the streakline through the origin.

e 4.10 Determine local
acceleration at points 1 and 2. , _ v, -
Is the average convective 0.501 m/s 1.07 m/s
acceleration between these = -

points negative, zero or ____— 0

positive? D



e 5.19 A converging elbow turns water

by 135°. The elbow flow volume is
0.2m3 between sections 1 and 2,
water flow rate is 0.4 m3/s, pressures
at inlet and outlet 150kPa and 90 kPa,
elbow mass 12 kg.

o 5.71 Water flows steadily down
the inclined pump. Determine:
— The pressure difference, p;-p,;
— The loss between sections 1 and 2

— The axial force exerted on the pipe
by water

I

|
Section |
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