
Pressure in stationary andPressure in stationary and 
moving fluidg
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Lecture plan

• what is pressure and how it’s distributed in a s p essu e a d o s d s bu ed
static fluid

ater press re in engineering problems• water pressure in engineering problems
• buoyancy and archimedes law; stability of y y y

floating bodies
• fluid kinematics 2nd Newton law for fluid• fluid kinematics. 2nd Newton law for fluid 

particles. 
• Bernoulli equation and its application



Fluid Statics

• No shearing stressg
• No relative movement between 
adjacent fluid particles, i.e. static or j p
moving as a single block
• Main question: How pressure is q p
distributed through the fluid



Pressure at a point

δ δ δ
Newton’s second law:

Question: How pressure depends on the orientation of a plane in fluid?
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• Pascal’s law: pressure doesn’t depend on the orientation of

y s z sf y p p p p

Pascal s law: pressure doesn t depend on the orientation of 
plate (i.e. a scalar number) as long as there are no shearing 
stresses 



Basic equation for pressure field
Question: What is the pressure distribution in liquid in 
absence shearing stress variation from point to point

• Forces acting on a fluid 
element:

– Surface forces (due to 
pressure)

– Body forces (due to weight)

Surface forces:
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Basic equation for pressure field
( )p p pF i j k y x z
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Resulting surface force in vector form:
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If we define a gradient as:

The weight of element is: Wk g y x z kδ ρ δ δ δ− = −

Newton’s second law: F Wk maδ δ δ− =

p y x z g y x z k g y x z aδ δ δ ρ δ δ δ ρ δ δ δ−∇ − = −

p gk gaρ ρ−∇ − = −
General equation of 
motion for a fluid without 
shearing stressesshearing stresses



Pressure variation in a fluid at rest

• At rest a=0 0p gkρ−∇ − =

0 0p p p g
x y z

ρ∂ ∂ ∂
= = = −

∂ ∂ ∂

• Incompressible fluid

1 2p p ghρ= +



Fluid statics
Same pressure –
much higher force!

Fluid equilibrium Transmission of fluid pressure, 
e g in hydraulic lifts

• Pressure depends on the depth in the solution

e.g. in hydraulic lifts

• Pressure depends on the depth in the solution 
not on the lateral coordinate



Compressible fluid
• Example: let’s check pressure variation in the air (in 

atmosphere) due to compressibility:

– Much lighter than water, 1.225 kg/m3 against 1000kg/m3 for 
water

– Pressure variation for small height variation are negligible
– For large height variation compressibility should be taken 

i t tinto account:
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Measurement of pressure
• Pressures can be designated as absolute or gage (gauge) pressures

p h pγ +atm vaporp h pγ= +
very small!



Hydrostatic force on a plane surface
• For fluid in rest, there are no shearing stresses present and 

the force must be perpendicular to the surface. 
Ai t b th id f th ll d ill l• Air pressure acts on both sides of the wall and will cancel.

h
2R av
hF p A g bhρ= =Force acting on a side wall in rectangular container:



Example: Pressure force and moment acting on 
aquarium walls

• Force acting on the wall
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Centroid (first moment of the area)

• Generally: sin sinR c
A
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Centroid (first moment of the area)

• Momentum of force acting on the o e u o o ce ac g o e
wall

( )
3H HF y gh ydA g H y y bdy g bρ ρ ρ= = − ⋅ =∫ ∫ ( )

0 6
3

R R
A

R

F y gh ydA g H y y bdy g b

y H

ρ ρ ρ

=

∫ ∫

2dA∫• Generally,
2

A
R

c

y dA
y

y A
=
∫



Pressure force on a curved surface



Buoyant force: Archimedes principle
h b d i t t ll ti ll b d fl id• when a body is totally or partially submerged a fluid 

force acting on a body is called buoyant force
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Stability of immersed bodies

• Totally immersed bodyo a y e sed body



Stability of immersed bodies
• Floating body



Elementary fluid dynamics:Elementary fluid dynamics: 
Bernoulli equationq



Bernuolli equation – ”the most used and most abused 
equation in fluid mechanics”

Assumptions:
• steady flow: each fluid particle that passes through a given 

point will follow the same pathpoint will follow the same path 
• inviscid liquid (no viscosity, therefore no thermal 

conductivity

F= ma

Net pressure force + Net gravity forceNet pressure force + Net gravity force



Streamlines
Streamlines: the lines that are tangent to velocity 
vector through the flow fieldvector through the flow field
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Along the streamline
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Balancing ball



Pressure variation along the streamline
C id i i id i ibl t d fl l th• Consider inviscid, incompressible, steady flow along the 
horizontal streamline A-B in front of a sphere of radius a. 
Determine pressure variation along the streamline from point 
A t i t B AA to point B. Assume: 3

0 31 aV V
x

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p vv
s s

ρ∂ ∂
= −

∂ ∂

Equation of motion:

s s∂ ∂

3 3
23 1v a av v
⎛ ⎞∂

= − +⎜ ⎟0 3 4

3 2 3
0

3 1

3 1

v v
s x x

a vp aρ

= − +⎜ ⎟∂ ⎝ ⎠
⎛ ⎞∂

= +⎜ ⎟4 3

63 2 3 3
20

1

3 11
a

x x x

a v a a ap dx vρ ρ
−

= +⎜ ⎟∂ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞Δ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∫ 0

04 3 31
2

p dx v
x x x x
ρ ρ

−∞

Δ = + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∫



Raindrop shape

The actual shape of a raindrop is a result of 
balance between the surface tension and the airbalance between the surface tension and the air 
pressure



Bernoulli equation
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Example: Bicycle
• Let’s consider coordinate system fixed to the bike.

Now Bernoulli equation can be applied to 
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Pressure variation normal to streamlinePressure variation normal to streamline
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Free vortex



Example: pressure variation normal to streamline
L t’ id 2 t f ti ith th l it• Let’s consider 2 types of vortices with the velocity 
distribution as below:
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rotation
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Static, Stagnation, Dynamic and TotalPressure

• each term in Bernoulli equation has dimensions of pressure 
and can be interpreted as some sort of pressure

constgzvp =++ ρρ 21 gp ρρ
2

d i

hydrostatic pressure,

static pressure,
point (3)

dynamic pressure,

point (3)

21 vpp ρ+12 2
vpp ρ+=

Stagnation pressure
Velocity can be determined from stagnation pressure:



On any body in a flowing fluid there is a stagnation 
point. Some of the fluid flows "over" and some p
"under" the body. The dividing line (the stagnation 
streamline) terminates at the stagnation point on 
the body.
As indicated by the dye filaments in the waterAs indicated by the dye filaments in the water 
flowing past a streamlined object, the velocity 
decreases as the fluid approaches the stagnation 
point. The pressure at the stagnation point (the p p g p (
stagnation pressure) is that pressure obtained 
when a flowing fluid is decelerated to zero speed 
by a frictionless process



Pitot-static tube



Steady flow into and out of a tank.

222111 vAvA ρρ = 222111 ρρ



Determine the flow rate to keep the height constant
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Venturi channel



Measuring flow rate in pipes
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Restriction on use of Bernoulli equation

• Incompressible flowco p ess b e o
• Steady flow
• Application of Bernoulli equation across the 

stream line is possible only in irrotational flowp y
• Energy should be conserved along the 

streamline (inviscid flow + no active devices)streamline (inviscid flow + no active devices).



Probelms
• 2.24 Pipe A contains gasoline (SG=0.7), pipe B contains oil 

(SG=0.9). Determine new differential reading of pressure in A 
decreased by 25 kPa. The initial differential reading is 30cm y g
as shown.

• 2.39 An open tank contains gasoline ρ=700kg/cm at a depth 
of 4m The gate is 4m high and 2m wide Water is slowlyof 4m. The gate is 4m high and 2m wide. Water is slowly 
added to the empty side of the tank. At what depth h the gate 
will open.



Problems
• 3.29 The circular stream of water from a 

faucet is observed to taper from a 
( f )diameter 20 mm (at the faucet) down to 

10 mm in a distance of 50 cm. 
Determine the flow rateDetermine the flow rate. 

• Water flows through a pipe contraction as shown g p p
below. Calculate flowrate as a function of smaller pipe 
diameter for both manometer configuration


