Pressure In stationary and
moving fluid




Lecture plan

what Is pressure and how it’s distributed In
static fluid

water pressure in engineering problems

buoyancy and archimedes law; stability of
floating bodies

particles.
Bernoulli equation and its application



Fluid Statics

* No shearing stress

* No relative movement between
adjacent fluid particles, I.e. static or
moving as a single block

e Main gquestion: How pressure Is
distributed through the fluid



Pressure at a point

Question: How pressure depends on the orientation of a plane in fluid?

Newton’s second law:
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 Pascal’s law: pressure doesn’t depend on the orientation of

plate (i.e. a scalar number) as long as there are no shearing
stresses



Basic equation for pressure field

Question: What is the pressure distribution in liquid in

absence shearing stress variation from point to point
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Basic equation for pressure field

Resulting surface force in vector form:  SF = _(6p P P T+@E)5y§x5z
ox oy 0z
If we define a gradient as: V:ETJFETJFEE oF =_
ox oy oz OYoXoz
The weight of element is: —OWk = —pg oYyoxoz k

Newton's second law:  $F _ sWk = Sma
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Pressure variation in a fluid at rest

e Atresta=0 -Vp—-pgk =0

Free surface
(pressure = pg)

e |Incompressible fluid \V4

p1: 02+pgq Po
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Fluid statics

Same pressure —
much higher force!

Fy=pA, Fy=pA,

Liquid surface
(P =pg) \ \ l
/ / \ == é—'

—

Fluid equilibrium Transmission of fluid pressure,
e.g. in hydraulic lifts

* Pressure depends on the depth in the solution
not on the lateral coordinate



Compressible fluid

« Example: let's check pressure variation in the air (in
atmosphere) due to compressibility:

— Much lighter than water, 1.225 kg/m? against 1000kg/ms3 for
water

— Pressure variation for small height variation are negligible

— For large height variation compressibility should be taken
Into account:

NRT
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0



Measurement of pressure

* Pressures can be designated as absolute or gage (gauge) pressures
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@1
Absolute pressure
@ 2 Il)atm
W
B
Absolute zero reference
Mercury

patm =7 h+ pvapor

very small!



Hydrostatic force on a plane surface

 For fluid in rest, there are no shearing stresses present and
the force must be perpendicular to the surface.

« Air pressure acts on both sides of the wall and will cancel.

Free surface
__ — Patm Patm
p=0 > [
" N v | 4
B / ] )
Specific weight =y // > I <
h / > Do A “Pom A
= vh > atm atm
h | Fo P=7 y . | D—
Fy q_k’ !
/ e
\ YYY VY Y VY VY V¥ Y | / |
/ \ p=0 A_ | vh }

Force acting on a side wall in rectangular container: F;, = p,,A= pg Ebh



Example: Pressure force and moment acting on

aguarium walls

e Force acting on the wall _

H Hz
F. = pahdA=] pg(H -y)-bdy = pg—b
A 0

« Generally: F.=pgsind| ydA=pgsindy,A
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Centroid (first moment of the area)

« Momentum of force acting on the

wall
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Pressure force on a curved surface




Buoyant force: Archimedes principle
* when a body Is totally or partially submerged a fluid
force acting on a body IS caIIed buoyantffgce\

\ Centroid
1 of displaced
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Stability of immersed bodies

o Totally immersed body

Unstable



Stability of iImmersed bodies

T oG ECE cGe Sk =
1 1
§ n ) - m
¢ = centroid of original ¢’ = centroid of new Restoring
displaced volume displaced volume couple
Stable
&C‘W &C‘W
CG CG
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F B

¢ = centroid of original ¢’ = centroid of new Overturning
displaced volume displaced volume couple

Unstable



Elementary fluid dynamics:

Bernoulli equation




Bernuolli equation — "the most used and most abused

eguation in fluild mechanics”
Assumptions:

o steady flow: each fluid particle that passes through a given
point will follow the same path

« inviscid liquid (no viscosity, therefore no thermal

conductivity
V (2
i (2)
1‘—Fluid particle
F= ma b -

Net pressure force + Net gravity force



Streamlines

Streamlines: the lines that are tangent to velocity
vector through the flow field

' Streamlines

\
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Pressure variation along the streamline

« Consider inviscid, incompressible, steady flow along the
horizontal streamline A-B in front of a sphere of radius a.

Determine pressure variation along the streamline from point
A to point B. Assume: ( a3]
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Raindrop shape

The actual shape of a raindrop is a result of
balance between the surface tension and the air
pressure




Bernoulli equation

: op oV
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Integrating £9 1() P, pas
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_ 1
We find dp +5'Od (V)+p9dz=0| Along a streamline

Assuming
incompressible
flow:

I _
P +5'OV + pgz = const| Along a streamline

Bernoulli equation




Example: Bicycle

« Let’s consider coordinate system fixed to the bike.
Now Bernoulli equation can be applied to
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Example: pressure variation normal to streamline

 Let's consider 2 types of vortices with the velocity
distribution as below:
y
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[
p+§pv + pgz = const

Energy Type
Kinetic Potential Pressure
Point pV?:/2 vz p
1 Small Zero Large
2 Large Small Zero
3 Zero Large Zero



Static, Stagnation, Dynamic and TotalPressure

e each term in Bernoulli equation has dimensions of pressure
and can be interpreted as some sort of pressure

[
P+— V" + pgz = const

hydrostatic pressure, I

Open
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dynamic pressure,

static pressure, e i
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Velocity can be determined from stagnation pressure: ) P =P +5 e

2

Stagnation pressure



Stagnation point Stagnation streamline

<L

4

Stagnation point
(a) (b)

On any body in a flowing fluid there is a stagnation
point. Some of the fluid flows "over" and some
"under" the body. The dividing line (the stagnation
streamline) terminates at the stagnation point on
the body.

As indicated by the dye filaments in the water
flowing past a streamlined object, the velocity
decreases as the fluid approaches the stagnation
point. The pressure at the stagnation point (the
stagnation pressure) is that pressure obtained
when a flowing fluid is decelerated to zero speed
by a frictionless process




Pitot-static tube

American Blower company
14

I > — | oo

National Physical laboratory (England)

—— [ 888

(1) American Society of Heating & Ventilating Engineers

— ° l< 000

(2) B FIGURE 3.7 Typical Pitot-static tube designs.

Pitot-static tube



Steady flow into and out of a tank.

[«— V) 6t —~ Fluid parcel at r=0
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Determine the flow rate to keep the height constant
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Venturi channel

(Absolute

1
I
P |
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Large O Incipient cavitation




Measuring flow rate in pipes

e — Orifice

FRIET S
P, zpvl—pz zpvz

Q:A1V1:A2V2 e




Restriction on use of Bernoulli equation

e Incompressible flow
o Steady flow

« Application of Bernoulli equation across the
stream line Is possible only in irrotational flow

* Energy should be conserved along the

'aA\WiVaVYaYe



o 2.24 Pipe A contains gasoline (SG=0.7), pipe B contains oll
(SG=0.9). Determine new differential reading of pressure in A
decreased by 25 kPa. The Initial differential reading is 30cm
as shown.

e 2.39 An open tank contains gasoline p=700kg/cm at a depth
of 4m. The gate is 4m high and 2m wide. Water is slowly
added to the empty side of the tank. At what depth h the gate

will open.
15
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03m B ,
Gasoline l —Mercury Water h lm Gasoline




e 3.29 The circular stream of water from a
faucet is observed to taper from a
diameter 20 mm (at the faucet) down to
10 mm In a distance of 50 cm. :
Determine the flow rate. e

« Water flows through a pipe contraction as shown
below. Calculate flowrate as a function of smaller pipe
diameter for both manometer configuration
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