
Lecture 4

Equation of motions for a liquidEquation of motions for a liquid. 
Inviscid and Viscous flow
N i St k tiNavier-Stockes equation



Differential analysis of Fluid Flow

• The aim: to produce differential equation e a o p oduce d e e a equa o
describing the motion of fluid in detail



Fluid Element Kinematics

• Any fluid element motion can be represented y p
as consisting of translation, linear deformation, 
rotation and angular deformationg



Velocity and acceleration field

• Velocity fieldy
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• Acceleration
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Linear motion and deformation
• Let’s consider stretching of a fluid element under velocity 

gradient in one direction

u⎡ ∂ ⎤⎛ ⎞
Volumetric dilatation rate:
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Angular motion and deformation

Fluid elements located in a moving fluid move with the fluid and generally 
undergo a change in shape (angular deformation)undergo a change in shape (angular deformation).
A small rectangular fluid element is located in the space between concentric 
cylinders. The inner wall is fixed. As the outer wall moves, the fluid element 
undergoes an angular deformation. The rate at which the corner angles changeundergoes an angular deformation. The rate at which the corner angles change 
(rate of angular deformation) is related to the shear stress causing the 
deformation



Angular motion and deformation
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Angular motion and deformation
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• Vorticity is defined as twice the rotation vector

2ζ ω= = ∇×V2ζ ω ∇ V
• If rotation (and vorticity) is zero flow is called irrotational



Angular motion and deformation

• Rate of shearing strain (or rate of angular 
deformation) can be defined as sum of fluid element 
rotations:
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Conservation of mass
• As we found before: 0Sys
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Conservation of mass
• Incompressible flow

∂ ∂ ∂0 0u v w
x y z
∂ ∂ ∂

∇ ⋅ = + + =
∂ ∂ ∂

V

• Flow in cylindrical coordinates
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• Incompressible flow in cylindrical coordinates
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Stream function
• 2D incompressible flow
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• We can define a scalar function such that
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Stream function

• Flow between streamlines
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Description of forces

Body forces – distributed 
through the element, e.g. b mδ δ=F gthrough the element, e.g. 
Gravity

b

Normal stress

S face fo ces es lt

Normal stress

Forces

Surface forces – result 
of interaction with the 
surrounding elements: 
e g Stresse.g. Stress

Sh i t

Linear forces: Surface tension

Shearing stresses



Stress acting on a fluidic element

• normal stress
0
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Stresses: double subscript notation
• normal stress: xxσ

• shearing stress: xy xzτ τ

normal to 
the plane

direction 
of stress

sign convention: positive stress is directed in positive axis 
directions if surface normal is pointing in the positive direction



Stress tensor
• To define stress at a point we need to define “stress vector” 

for all 3 perpendicular planes passing through the point
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Force on a fluid element
• To find force in each direction we need to sum all  forces 

(normal and shearing) acting in the same direction( g) g
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Differential equation of motion
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Acceleration (“material derivative”)
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Inviscid flow

• no shearing stress in inviscid flow, so 
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• equation of motion is reduced to Euler equations
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Bernoulli equation
• let’s write Euler equation for a steady flow along a streamline
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Irrotational Flow
• Analysis of inviscide flow can be further simplified if we 

assume if the flow is irrotational:
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• Example: uniform flow in x-direction:• Example: uniform flow in x-direction:



Bernoulli equation for irrotational flow
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always =0, not only along a stream line

• Thus, Bernoulli equation can be applied between any two 
points in the flow fieldpoints in the flow field
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Velocity potential
• equations for irrotational flow will be satisfied automatically if 

we introduce a scalar function called velocity potential such 
that:that:
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• This type of flow is called potential flow

• As for incompressible flow conservation of mass leads to:
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Some basic potential flows

• As Laplace equation is a linear one, 
the solutions can be added to eachthe solutions can be added to each 
other producing another solution;

• stream lines (ψ=const) and 
i t ti l li ( t)equipotential lines (φ=const) are 

mutually perpendicular
d

along streanline

dy v
dx u

dy uφ φ

=

∂ ∂

along const

dy ud dx dy udx vdy
x y dx vφ

φ φφ
=

∂ ∂
= + = + ⇒ = −
∂ ∂

Both φ and ψ satisfy Laplace’s equation 

u v ψ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞u v
y x y y x x

ψ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= ⇒ = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠



Uniform flow
• constant velocity, all stream lines are straight and 

parallel
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Source and Sink

• Let’s consider fluid flowing radially outward from a line through 
th i i di l t lthe origin perpendicular to x-y plane
from mass conservation:
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Vortex
• now we consider situation when the 

stream lines are concentric circles i.e. 
we interchange potential and streamwe interchange potential and stream 
functions:
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• circulation for potential flow
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Shape of a free vortex
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Doublet
• let’s consider the equal strength, source-sink pair:
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Summary



Superposition of basic flows
• basic potential flows can be combined to form new 

potentials and stream functions. This technique is 
called the method of superposition

• superposition of source and uniform flow

sin cos ln
2 2
m mUr Ur rψ θ θ φ θ
π π

= + = +



Superposition of basic flows

• Streamlines created by injecting 
dye in steadily flowing water show 
a uniform flow. Source flow is 
created by injecting water through created by injecting water through 
a small hole. It is observed that for 
this combination the streamline 
passing through the stagnation 
point could be replaced by a solidpoint could be replaced by a solid 
boundary which resembles a 
streamlined body in a uniform flow. 
The body is open at the 
downstream end and is thus calleddownstream end and is thus called 
a halfbody. 



Rankine Ovals

• a closed body can be modeled as a combination of a 
uniform flow and  source and a sink of equal strengthq g

1 2 1 2sin ( ) cos (ln ln )
2 2
m mUr Ur r rψ θ θ θ φ θ= − − = − −
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Flow around circular cylinder

• when the distance between source and sink approaches 0, 
h f R ki l h i l hshape of Rankine oval approaches a circular shape
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Potential flows
• Flow fields for which an incompressible 

fluid is assumed to be frictionless and 
the motion to be irrotational are 
commonly referred to as potential flows.

• Paradoxically, potential flows can be 
simulated by a slowly moving viscoussimulated by a slowly moving, viscous 
flow between closely spaced parallel 
plates. For such a system, dye injected 
upstream reveals an approximate 
potential flow pattern around apotential flow pattern around a 
streamlined airfoil shape. Similarly, the 
potential flow pattern around a bluff 
body is shown. Even at the rear of the 
bluff body the streamlines closely followbluff body the streamlines closely follow 
the body shape. Generally, however, the 
flow would separate at the rear of the 
body, an important phenomenon not 

t d f ith t ti l thaccounted for with potential theory. 



Viscous Flow

• Moving fluid develops additional components of stress 
due to viscosity. For incompressible fluids:
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for viscous flow normal 
stresses are not necessary thestresses are not necessary the 
same in all directions 



Navier-Stokes Equations
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A l ti l l ti k f l f• Analytical solution are known for only few cases



General form of the Navier-Stokes Equation
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Steady Laminar Flow between parallel plates
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No-slip boundary condition

• Boundary conditions are needed to y
solve the differential equations 
governing fluid motion. One condition 
is that any viscous fluid sticks to any 
solid surface that it touches.solid surface that it touches.

• Clearly a very viscous fluid sticks to a 
solid surface as illustrated by pulling a 
knife out of a jar of honey. The honey 
can be removed from the jar because itcan be removed from the jar because it 
sticks to the knife. This no-slip 
boundary condition is equally valid for 
small viscosity fluids. Water flowing 
past the same knife also sticks to itpast the same knife also sticks to it. 
This is shown by the fact that the dye 
on the knife surface remains there as 
the water flows past the knife. 



Couette flow
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Please find velocity profile and flow rate
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Hagen-Poiseuille flow
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Laminar flow
• The velocity distribution is 

parabolic for steady laminar flowparabolic for steady, laminar flow 
in circular tubes. A filament of dye 
is placed across a circular tube 
containing a very viscous liquid 

hi h i i iti ll t t With thwhich is initially at rest. With the 
opening of a valve at the bottom of 
the tube the liquid starts to flow, 
and the parabolic velocityand the parabolic velocity 
distribution is revealed. Although 
the flow is actually unsteady, it is 
quasi-steady since it is only slowly 
h i Th t i t t ichanging. Thus, at any instant in 

time the velocity distribution 
corresponds to the characteristic 
steady-flow parabolic distribution.steady flow parabolic distribution. 



Problems
6 74 Oil SAE30 15 6C dil fl b fi d h i l• 6.74 Oil SAE30 at 15.6C steadily flows between fixed horizontal 
parallel plates. The pressure drop per unit length is 20kPa/m 
and the distance between the plates is 4mm, the flow isand the distance between the plates is 4mm, the flow is 
laminar.
Determine the volume rate of flow per unit width; magnitude 
and direction of the shearing stress on the bottom plate;

• 6 8 An incompressible viscous

and direction of the shearing stress on the bottom plate; 
velocity along the centerline of the channel

• 6.8 An incompressible viscous 
fluid is placed between two large 
parallel plates. The bottom plate is p p p
fixed and the top moves with the 
velocity U. Determine: 
– volumetric dilation rate; 
– rotation vector; 

vorticity;
yu U=– vorticity; 

– rate of angular deformation.  
u U

b
=


