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Inviscid and Viscous flow
Navier-Stockes equation



Differential analysis of Fluid Flow

 The aim: to produce differential equation
describing the motion of fluid in detall



Fluid Element Kinematics

* Any fluid element motion can be represented
as consisting of translation, linear deformation,
rotation and angular deformation

Element at 7, Element at 1, + 61
|
r |
N
! j ! | — s =T
ff | | | | \ \ / /
_’/I —_ | I + I + \ \ + // r"
|- | . I | , |
_____ - JI \ - / —
General Translation Linear Rotation Angular

motion deformation deformation



Velocity and acceleration field

* Velocity field
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Linear motion and deformation

e Let’s consider stretching of a fluid element under velocity

gradient in one direction
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Volumetric dilatation rate:
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Angular motion and deformation

Fluid elements located in a moving fluid move with the fluid and generally
undergo a change in shape (angular deformation).

A small rectangular fluid element is located in the space between concentric
cylinders. The inner wall is fixed. As the outer wall moves, the fluid element
undergoes an angular deformation. The rate at which the corner angles change
(rate of angular deformation) is related to the shear stress causing the
deformation



Angular motion and deformation
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* Rotation is defined as the average of those velocities:
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Angular motion and deformation
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« Vorticity is defined as twice the rotation vector
=2w=VxV

 If rotation (and vorticity) is zero flow is called irrotational



Angular motion and deformation

e Rate of shearing strain (or rate of angular
deformation) can be defined as sum of fluid element
rotations:
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Conservation of mass

 As we found before:
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Conservation of mass

e Incompressible flow
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* Flow in cylindrical coordinates
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e Incompressible flow in cylindrical coordinates
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Stream function

« 2D incompressible flow ) )
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e We can define a scalar function such that
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e Lines along which stream function is const are
stream lines:
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Stream function

e Flow between streamlines
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Description of forces

Body forces — distributed _
through the element, e.g. 5Fb — 5mg
Gravity

Surface forces — result
of interaction with the
surrounding elements:
e.g. Stress

Forces

}

Arbitrary
surface

Linear forces: Surface tension




Stress acting on a fluidic element
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Stresses: double subscript notation

e normal stress: O

e shearing stress: Xy Xz

normal to direction
the plane of stress

(b) (@)

X

sign_convention: positive stress is directed in positive axis
directions if surface normal is pointing in the positive direction




Stress tensor

« To define stress at a point we need to define “stress vector”
for all 3 perpendicular planes passing through the point




Force on a fluid element

 To find force in each direction we need to sum all forces
(normal and shearing) acting in the same direction
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Differential equation of motion
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Inviscid flow

* no shearing stress in inviscid flow, so
—P =0, :ny =04

e equation of motion is reduced to Euler equations
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Bernoulli equation

» let’s write Euler equation for a steady flow along a streamline
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Irrotational Flow

« Analysis of inviscide flow can be further simplified if we
assume if the flow is irrotational:
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« Example: uniform flow in x-direction:
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Bernoulli equation for irrotational flow

—pgVz-Vp :§V(\/ V)= oV x(V xV)

always =0, not only along a stream line

 Thus, Bernoulli equation can be applied between any two
points in the flow field
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Velocity potential

* equations for irrotational flow will be satisfied automatically if
we introduce a scalar function called velocity potential such

that:
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e This type of flow is called potential flow

e As for incompressible flow conservation of mass leads to:
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Some basic potential flows

Equipotential line
(¢ = constant)

« As Laplace equation is a linear one,
the solutions can be added to each
other producing another solution;

 stream lines (y=const) and
equipotential lines (¢=const) are
mutually perpendicular

dy Vv
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Both ¢ and vy satisfy Laplace’s equation
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Uniform flow

e constant velocity, all stream lines are straight and

parallel
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Source and Sink

e Let’'s consider fluid flowing radially outward f
the origin perpendicular to x-y plane
from mass conservation:
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now we consider situation when the

stream lines are concentric circles 1.e.

we interchange potential and stream

functions: s—KO
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circulation
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Shape of a free vortex
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Doublet

 let’'s consider the equal strength, source-sink pair:
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Summary

m TABLE 6.1

Summary of Basic, Plane Potential Flows

Description of Velocity
Flow Field Velocity Potential Stream Function Components®

Uniform flow at ¢ = U(xcosa + vsin @) i = U(ycosa — xsin @) u = Ucosa
angle a with the x v = Usina«a
axis (see Fig.
6.16b)
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(see Fig. 6.17) ¢= 27 n 7 v= 27 b U o
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. Kcos 6 K sin 0 K cos #
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"Velocity components are related to the velocity potential and stream function through the relationships:
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Superposition of basic flows

e basic potential flows can be combined to form new
potentials and stream functions. This technique is
called the method of superposition

e superposition of source and uniform flow
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Superposition of basic flows

« Streamlines created by injecting
dye in steadily flowing water show
a uniform flow. Source flow is
created by injecting water through
a small hole. It is observed that for
this combination the streamline
passing through the stagnation
point could be replaced by a solid
boundary which resembles a
streamlined body in a uniform flow.
The body is open at the
downstream end and is thus called

a halfbody.




Rankine Ovals
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U - Stagnation Stagnation
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* a closed body can be modeled as a combination of a
uniform flow and source and a sink of equal strength

W:Ursiné’—%(@l—@) ¢:Ur0059_%(lnrl_lnr2)



Flow around circular cylinder

 when the distance between source and sink approaches 0,
shape of Rankine oval approaches a circular shape
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Potential flows

Flow fields for which an incompressible

fluid is assumed to be frictionless and e ———

the motion to be irrotational are ———

commonly referred to as potential flows.

Paradoxically, potential flows can be
simulated by a slowly moving, viscous
flow between closely spaced parallel
plates. For such a system, dye injected
upstream reveals an approximate
potential flow pattern around a
streamlined airfoil shape. Similarly, the
potential flow pattern around a bluff
body is shown. Even at the rear of the
bluff body the streamlines closely follow
the body shape. Generally, however, the
flow would separate at the rear of the
body, an important phenomenon not
accounted for with potential theory.




Viscous Flow

* Moving fluid develops additional components of stress

due to viscosity. For incompressible fluids:
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Navier-Stokes Equations
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e 4 equations for 4 unknowns (u,v,w,p)
« Analytical solution are known for only few cases



General form of the Navier-Stokes Equation
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Steady Laminar Flow between parallel plates
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Boundary condition (no slip) u(h)=u(-h)=0

Velocity profile  u= L @t y> —h?)

3
Flow rate q= judyz_[ las(yz—hz) :—2h(

What is maximum velocity (u,,,,) and average velocity?



No-slip boundary condition

Boundary conditions are needed to
solve the differential equations
governing fluid motion. One condition
Is that any viscous fluid sticks to any
solid surface that it touches.

Clearly a very viscous fluid sticks to a
solid surface as illustrated by pulling a
knife out of a jar of honey. The honey
can be removed from the jar because it
sticks to the knife. This no-slip
boundary condition is equally valid for
small viscosity fluids. Water flowing
past the same knife also sticks to it.
This is shown by the fact that the dye
on the knife surface remains there as
the water flows past the knife.




Couette flow
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plate Boundary condition (no slip) u(0) =0;u(b)=U

Please find velocity profile and flow rate
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Hagen-Poiseuille flow
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Laminar flow

The velocity distribution is
parabolic for steady, laminar flow
In circular tubes. A filament of dye
IS placed across a circular tube
containing a very viscous liquid
which is initially at rest. With the
opening of a valve at the bottom of
the tube the liquid starts to flow,
and the parabolic velocity
distribution is revealed. Although
the flow is actually unsteady, it is
guasi-steady since it is only slowly
changing. Thus, at any instant in
time the velocity distribution
corresponds to the characteristic
steady-flow parabolic distribution.




e 6.74 OIl SAE30 at 15.6C steadily flows between fixed horizontal
parallel plates. The pressure drop per unit length is 20kPa/m
and the distance between the plates is 4mm, the flow Is
laminar.

Determine the volume rate of flow per unit width; magnitude
and direction of the shearing stress on the bottom plate;

velocity along the centerline of the channel
U

* 6.8 An incompressible viscous \ —>  Moving
fluid is placed between two large I ,
parallel plates. The bottom plate is |
fixed and the top moves with the i v
velocity U. Determine: . ‘ Fixed
— volumetric dilation rate; plate
— rotation vector;

— vorticity; U= U %

plate
u

— rate of angular deformation.



