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General characteristic of Pipe flow

• pipe is completely filled with water
i d i i f i ll di t l th• main driving force is usually a pressure gradient along the 

pipe, though gravity might be important as well

Pipe flow open-channel flow



Important facts from Fluid Dynamics

Re udρ
μ

=

• Reynolds number

μ

y
– Can be interpreted as a ratio of inertia and viscous forces



Laminar or Turbulent flow
d

well defined streakline one velocity component

• Reynolds number: can be interpreted as a ratio of inertia and 
viscous forcesRe udρ

μ
=

well defined streakline, one velocity component
u=V i

Re 2100<Re 2100<

Re 4000>

velocity along the pipe is unsteady 
and accompanied by random 
component normal to pipe axis 

u v w=V i + j + k



Laminar or Turbulent flow

• In this experiment water flows through a clear pipe with increasing speed. 
Dye is injected through a small diameter tube at the left portion of theDye is injected through a small diameter tube at the left portion of the 
screen. Initially, at low speed (Re <2100) the flow is laminar and the dye 
stream is stationary. As the speed (Re) increases, the transitional regime 
occurs and the dye stream becomes wavy (unsteady, oscillatory laminaroccurs and the dye stream becomes wavy (unsteady, oscillatory laminar 
flow). At still higher speeds (Re>4000) the flow becomes turbulent and the 
dye stream is dispersed randomly throughout the flow.



Entrance region and fully developed flow

• fluid typically enters pipe with nearly uniform velocityyp y p p y y
• the length of entrance region depends on the Reynolds number

0.06Re for laminar flowel
D
=dimensionless 

( )1/ 64.4 Re for turbulent flowe

D
l
D
=

entrance length



Pressure and shear stress

no accelerationno acceleration, 
viscous forces balanced 
by pressure

pressure balanced by
viscous forces and 
acceleration



Fully developed laminar flow

• we will derive equation for fully developed e de e equa o o u y de e oped
laminar flow in pipe using 3 approaches:

from 2nd Newton law directly applied– from 2nd Newton law directly applied
– from Navier-Stokes equation
– from dimensional analysis



2nd Newton’s law directly applied



2nd Newton’s law directly applied
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2nd Newton’s law directly applied
for Newtonian liquid: 
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2nd Newton’s law directly applied

• if gravity is present, it can be added to the pressure:g y p p
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Navier-Stokes equation applied
0⋅ =

∂ ΔV
∇ V

2p v
t ρ
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in cylindrical coordinates:
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boundary conditions:
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• The assumptions and the result are exactly the same as 
Navier-Stokes equation is drawn from 2nd Newton law



Creeping flow in microchannels
• Let’s consider flow with very small Re numbers

2
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∂ Δ
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• DV/Dt part (non-linear) can be neglected leading to 
Stokes equation:Stokes equation:

2p v∇ = ∇
FV +p
ρ

• equation is linear, and therefore is reversible. change of the 
velocity direction at the boundary will lead to change of the 
velocity direction in the whole domain



Dimensional analysis applied
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Dimensional analysis of pipe flow
• major loss in pipes: due to viscous flow in the straight 

elements
• minor loss: due to other pipe components (junctions etc.)

Major loss:Major loss:

( , , , , , )p F V D l ε μ ρΔ =
roughness

• those 7 variables represent complete 
set of parameters for the problemset of parameters for the problem
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as pressure drop is proportional to length of the tube:
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Dimensional analysis of pipe flow

p l εφΔ ⎛ ⎞ pDf Δ

friction factor
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• for fully developed laminar flow in a circular pipe:

64 / Ref = 64 / Ref =
• for fully developed steady incompressible flow (from Bernoulli eq.):
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Non-circular ducts
• Reynolds number based on hydraulic diameter:

4Re hVD ADρ
= =

cross-section
Reh hD

Pμ
= =

wetted perimeter

F i ti f t f i l d t• Friction factor for noncircular ducts:
/ Ref C=for fully developed laminar flow:
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Non-circular ducts
f f• Friction factor for noncircular ducts: / Ref C=



Moody chart
Friction factor as a function of Reynolds number and relative roughness for round pipes
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Colebrook formula



Equivalent circuit theory

p R QΔ = ×flow:

V R IV R I= ×electricity:

• channels connected in series



Equivalent circuit theory

• channels connected in parallelp



Compliance
li (h d li it )• compliance (hydraulic capacitance):

Q – volume V/time I – charge/timeQ volume V/time             I charge/time
dqC =h d

dVC = −flow: electricity: C
dUhydC

dp
flow: electricity:



Equivalent circuits



Pipe networks

• Serial connection

1 2 3

1 2 3

A BL L L L

Q Q Q
h h h h

−

= =
= + +

• Parallel connectionParallel  connection

1 2 3

1 2 3

L L L

Q Q Q Q
h h h
= + +

= =
1 2 3



COMPUTATIONAL FLUID 
DYNAMICS



Introduction
• Computational fluid dynamics applications:

– Aerodynamics of aircraft and vehicles
Hydrodynamics of ships– Hydrodynamics of ships

– Microfluidics and biosensors
– Chemical process engineering

C b ti i d t bi– Combustion engines and turbines
– Construction: External and internal environment
– Electric and electronic engineering: heating and cooling of circuits

• Advantages of CFD approach
– Reduction of time and costs

ff– Ability to do controlled experiment under difficult and hazardous 
condition 

– Unlimited level of detail
P ibili l l h i l– Possibility to couple several physical processes 
(momentum/mass/energy transfer, electrical/magnetic fields etc.)



Governing equations for fluid dynamics
• Mass conservation: 

mass change in a volume is equal to the net rate of flow
∂ ( ) 0div u

t
ρ ρ∂
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∂
( ) 0div u =Uncompressible fluid

• Moment conservation: Navier-Stokes equation 
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Discretization of the equations

• To obtain the solution the continuous non-linear 
equations are discretized and converted to algebraic 
equations.

• Discritization techniques:
– Finite difference
– Finite volume (finite element)
– Boundary elements



Discretization Techniques

• Finite difference
– Differential equations are converted to algebraic through the use of 

Taylor series expansion
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1, , 2

, ,

1, ,

...
1! 2!

( )

i j i j
i j i j

i j i j

u x u xu u
x x

u uu O x

+

+

⎛ ⎞∂ Δ ∂ Δ⎛ ⎞= + + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
−∂⎛ ⎞ = + Δ⎜ ⎟∂ Δ⎝ ⎠ ,

( )
i jx x⎜ ⎟∂ Δ⎝ ⎠

• How shall we represent the 
d d i ti ?second derivative?



Discretization Techniques
• Finite element

– Similar to finite difference method continuous functions are replaced by– Similar to finite difference method, continuous functions are replaced by 
piecewise approximations valid on particular grid element

• Finite volume
– Control Volume form of NSE is used on every grid elementControl Volume form of NSE is used on every grid element

• Boundary element method
– Boundary is broken into discrete segments (panels), appropriate 

singularities (sources, sinks, doublets, vortices) are distributed along the 
segments



CFD Methodology
finite element method:
1. Choose appropriate physical model
2 Define the geometry2. Define the geometry.
3. Define the mesh (grid): flow field is broken into set of 

elements
• Mesh could be structured (regular pattern) or unstructured. 

Other types could be hybrid (several structured elements), 
moving (time dependent)

4. Define the boundary conditions
5. Solving: conservation equations are (mass, momentum 

and energy) are written for every element and solvedand energy) are written for every element and solved.
6. Postprocessing: solution is visualized and hopefully 

understood



CFD Methodology

• Common problems:
C– Convergence issues

– Difficulties in obtaining the quality grid 
and managing the resources
Difficulties in turbulent flow situations– Difficulties in turbulent flow situations 

• Verification
– Using other techniques



Flow in a 2D pipe
C• Can be solved analytically:

Boundary condition (no slip) 0)()( =−= huhuBoundary condition (no slip) 0)()( =−= huhu

)(
2
1 22 hy

x
pu −
∂
∂

=
μ

Velocity profile
2 x∂μ

P t

Problem: 
Solve analytically and numerically and compare.

Parameters
V=0.001m/s; h=0.2m; m=10-3 Pa*s

Questions:Q
• What is the Reynolds number?
• What is the calculated pressure drop in the 
pipe? What is the entrance pressure drop?p p p p
• Is laminar flow fully developed?



S-cell Problem (home work)
• Calculate velocity field in an S-

cell (3D fluidic cell, 50mm height). (6,15.5) (12 15 5)
• What would flow field uniformity 

across a 1mmx1mm array 
tt d i th iddl f th ll? (4.5,14)

( , ) (12,15.5)

spotted in the middle of the cell? ( , )

(12,14.5)
(9,14.5)

(7.5,13)

Data:
Flow rate: 100ul/min
Liquid: water, T=298K (3,1)

(4.5,2.5)

Channel height (z): 50um
Channel width: 1mm in/outlet;
3mm chamber
C t di 1 5

(0,1)
(7.5,1.5)

(0,0)
Curvature radius: 1.5mm

(6,0)



Problems
• Ethanol solution of a dye (μ=1.197 

mPa·s) is used to feed a fluidic lab-on-
chip laser Dimension of the channelchip laser. Dimension of the channel 
are L=122mm, width w=300um, height 
h=10 um. Calculate pressure required 

hi fl f Q 10 l/hto achieve flow rate of Q=10µl/h.

• 8.7 A soft drink with properties of 10 ºC water is sucked through p p g
a 4mm diameter 0.25m long straw at a rate of 4 cm3/s. Is the 
flow at outlet laminar? Is it fully developed?

• Calculate total resistance of a 
microfluidic circuit shown. Assume 
that the pressure on all channels isthat the pressure on all channels is 
the same and equal Δp.


