Viscous flow In pipes

and channels.
Computational Fluid Dynamics
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Laminar and turbulent flow

Entrance region

Flow In a pipe

Channels of non-circular cross-section
Circuit theory for fluidic channels
Computational fluid dynamics



General characteristic of Pipe flow

« pipe is completely filled with water

 main driving force is usually a pressure gradient along the
pipe, though gravity might be important as well

Pipe flow open-channel flow



Important facts from Fluid Dynamics

Re :—'OUd
Y7

* Reynolds number
— Can be interpreted as a ratio of inertia and viscous forces



Laminar or Turbulent flow

Re = ,OUd [> Reynolds number: can be interpreted as a ratio of inertia and

viscous forces
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Laminar or Turbulent flow

In this experiment water flows through a clear pipe with increasing speed.
Dye is injected through a small diameter tube at the left portion of the
screen. Initially, at low speed (Re <2100) the flow is laminar and the dye
stream is stationary. As the speed (Re) increases, the transitional regime
occurs and the dye stream becomes wavy (unsteady, oscillatory laminar
flow). At still higher speeds (Re>4000) the flow becomes turbulent and the

dye stream is dispersed randomly throughout the flow.



Entrance region and fully developed flow
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 fluid typically enters pipe with nearly uniform velocity

* the length of entrar}ce region depends on the Reynolds number

dimensionless — = =0.06Re for laminar flow
entrance length

Be —4.4 (Re)1/6 for turbulent flow
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Fully developed laminar flow

« we will derive equation for fully developed
laminar flow In pipe using 3 approaches:
— from 29 Newton law directly applied
— from Navier-Stokes equation
— from dimensional analysis



2"d Newton'’s law directly applied

Fluid element at time ¢ Element at time ¢ + o1
\ /
Velocity ¢ \ / [
e -
profile —— == _r_
r T\\ \\ D
B B ? T - - I - X
> L 7/
A
>V = u(n)i < 4 >




2"d Newton'’s law directly applied
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2"d Newton'’s law directly applied

du (Apj
for Newtonian liquid: 7 =—u— T=|—|r
dr 21
du_ ([ Ap
dr 2,u|

U=-— EApjr+C
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boundary condition: u=0atr=D/2=C, = (lﬁ_pI) [
U

u(r) =ﬁ22|2 J{l_%” '

Flow rate:
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2"d Newton'’s law directly applied

o If gravity is present, it can be added to the pressure:

Ap—-pglsingd 27
I or
(Ap — pglsin @) D
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Navier-Stokes equation applied

V-V=0

N v.owv=_2P, g+vwV
ot Jo,

in cylindrical coordinates:
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boundary conditions:

ou

=0; u(R)=0
o (R)

0

 The assumptions and the result are exactly the same as
Navier-Stokes equation is drawn from 2"d Newton law



Creeping flow in microchannels

e Let’s consider flow with very small Re numbers

V-V=0
8—V+V-VV=—&+9—I—VV2\/
ot o,

« DV/Dt part (non-linear) can be neglected leading to
Stokes equation:
Vp =WV L
o,

e equation is linear, and therefore is reversible. change of the
velocity direction at the boundary will lead to change of the

velocity direction in the whole domain



Dimensional analysis applied

Ap=F(V,1,D, z)
DAp _ (1
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assuming pressure drop proportional to the length:
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Dimensional analysis of pipe flow

« major loss in pipes: due to viscous flow in the straight
elements

 minor loss: due to other pipe components (junctions etc.)

Maior loss: Ap = Py — P>
(1) (2)
Ap=F(,D,l,e, u,p) -
roughness
* those 7 variables represent complete
set of parameters for the problem
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Dimensional analysis of pipe flow

friction factor

' ApD
Ap2=|¢(Re,ij f=1p2
tpvV° D D LlpV
g | pV°
f =¢| Re,— d Ap=Tf—
¢( e Dj an P 5

« for fully developed laminar flow in a circular pipe:

f =64/Re

» for fully developed steady incompressible flow (from Bernoulli eq.):



Non-circular ducts

 Reynolds number based on hydraulic diameter:

~ pVD, D - 4 A —| cross-section
= =

U P.

Re,

wetted perimeter

e Friction factor for noncircular ducts:
for fully developed laminar flow: f =C/Re

T
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Non-circular ducts

* Friction factor for noncircular ducts:

f =C/Re

Shape Parameter C = fRe,

I. Concentric Annulus D,/D,
Dy, =Dy - D,y 0.0001 71.8
0.01 80.1
0.1 89.4
0.6 95.6
1.00 96.0

S5
.
II. Rectangle a/b

D, = 2ab 0 96.0
arh 0.05 89.9
) 0.10 84.7
‘j 0.25 72.9
0.50 62.2
b 0.75 579
1.00 56.9




Friction factor as a function of Reynolds number and relative roughness for round pipes

Moody chart
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Equivalent circuit theory

flow: Ap = R x Q
g 0 1
electricity: V = R X I

e channels connected In series

Py +Ap, 4 Py R=R,+ R,
Ap, = R0,

pot+Ap Q Po

Apy = Ry

|
Ap= (R, + Ry) Q
Po+Ap, ) Py




Equivalent circuit theory

e channels connected in parallel

Pp+4p; Ql Pp R ( 1 1 )_1
Apy = Ry (4 1
pptAp @ Q py
Apy = Ry O
Pg+Ap Q2 p Ap — (L 4 1y1
0 2 2 0 Ap (51 + Hz) Q




Compliance

e compliance (hydraulic capacitance):

Q — volume V/time | — charge/time
dv d
flow: Chyd — electricity: C — —q
dp

S Q
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Equivalent circuits
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Pipe networks
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COMPUTATIONAL FLUID
DYNAMICS



Introduction

e Computational fluid dynamics applications:
— Aerodynamics of aircraft and vehicles
— Hydrodynamics of ships
— Microfluidics and biosensors
— Chemical process engineering
— Combustion engines and turbines
— Construction: External and internal environment
— Electric and electronic engineering: heating and cooling of circuits

* Advantages of CFD approach
— Reduction of time and costs

— Ability to do controlled experiment under difficult and hazardous
condition

— Unlimited level of detall

— Possibility to couple several physical processes o
(momentum/mass/energy transfer, electrical/magnetic fields etc.)



Governing equations for fluid dynamics

e Mass conservation:
mass change in a volume is equal to the net rate of flow

(Z_/t) + diV(plj) -0 Urllcompressibguid diV(lj) =0

« Moment conservation: Navier-Stokes eguation

p(a_u+u8u+vau+wﬁ_u):_@+pg +lu(82u+82u+82u)
ot  ox oy oz OX " ox> oy> oz’

p(@+uav+vav+wﬂ):—@+pg +ﬂ(82v+82v+82v)
ot ox oy oz oy g ox> oy> oz’

p(@+u%+v%+wﬂ):—@+pg +,u(azw+a2w+azw)
ot ox oy oz oz Z ox> oy’ oz’



Discretization of the equations

* To obtain the solution the continuous non-linear
equations are discretized and converted to algebraic
equations.

 Discritization techniques:

— Finite difference
— Finite volume (finite element)
— Boundary elements



Discretization Technigues

* Finite difference

— Differential equations are converted to algebraic through the use of
Taylor series expansion

ou) Ax (ou) Ax® i-1 i i+1

Ui = Ui + + 5 +...

| | OX i, I! OX i 2! ® j+1

U.,..—U .
(a—uj = b4 O(AX) e o o J
OX J; i AX Ay
@ j-1
 How shall we represent the ™ % 1

second derivative? X




Discretization Technigues

* Finite element

— Similar to finite difference method, continuous functions are replaced by
piecewise approximations valid on particular grid element

* Finite volume
— Control Volume form of NSE is used on every grid element
 Boundary element method

— Boundary is broken into discrete segments (panels), appropriate
singularities (sources, sinks, doublets, vortices) are distributed along the
segments

[; = strength of vortex on
i panel



CFD Methodology

finite element method:
1. Choose appropriate physical model
2. Define the geometry.

3. Define the mesh (grid): flow field is broken into set of
elements

. Mesh could be structured (regular pattern) or unstructured.
Other types could be hybrid (several structured elements),
moving (time dependent)

4’ ~ pvas
*‘kv&uﬁ'ﬁé’gggﬁ%‘ﬁﬂéﬁa

SN

QW%VA

(a)

Define the boundary conditions

Solving: conservation equations are (mass, momentum
and energy) are written for every element and solved.

6. _Postprocessing: solution is visualized and hopefully
understood

o B




CFD Methodology

CFD Methodology |

Common problems:

— Convergence issues
— Difficulties in obtaining the quality grid

and managing the resources

— Difficulties in turbulent flow situations

Verification

— Using other techniques

Physics Grid Discretize Solve Analyze
Discretization Algorithm Verification
Problem Geometry Method Development & Validation
| | Governing || Structuredor | | | Rk Steady/ Postprocess
Equations Unstructured y Unsteady Values
Special Implicit or . : Visualize
i vocels “| Requirements B Explicit i, Smulator Flow Field
Assumptions & C Interpret
Simplifications s g Results




Flow in a 2D pipe

e Can be solved analytically:

Boundary condition (no slip)u(h) = u(=h) l ’ — >
P
h
i

1 op, » o :
P2 gy )
241 Ox (y )

Velocity profile U=

~d
-

Problem:
Solve analytically and numerically and compare. s e

Parameters |
V=0.001m/s; h=0.2m; m=103 Pa*s

Questions:

* What is the Reynolds number?

* What is the calculated pressure drop in the
pipe? What is the entrance pressure drop?
* Is laminar flow fully developed?




S-cell Problem (home work)

Calculate velocity field in an S-
cell (3D fluidic cell, 50mm height).

What would flow field uniformity

across a Immxlmm array
spotted in the middle of the cell?

Data:

Flow rate: 100ul/min

Liquid: water, T=298K
Channel height (z): 50um
Channel width: 1mm in/outlet;
3mm chamber

Curvature radius: 1.5mm
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Problems

e Ethanol solution of a dye (n=1.197
mPa-s) is used to feed a fluidic lab-on-
chip laser. Dimension of the channel
are L=122mm, width w=300um, height
h=10 um. Calculate pressure required
to achieve flow rate of Q=10ul/h.

o 8.7 A soft drink with properties of 10 °C water is sucked through
a 4mm diameter 0.25m long straw at a rate of 4 cm3/s. Is the
flow at outlet laminar? Is it fully developed?

 Calculate total resistance of a Top view P g oss section
microfluidic circuit shown. Assume & t
that the pressure on all channels is 321: 300 m
the same and equal Ap. —© S
6 76 mm N UTJ ow
_gf 69 mm o[ 114 mm
4€ 62 mm o |14 mm




