
S-cell Problem (home work)
• Calculate velocity field in an S-

cell (3D fluidic cell, 50µm height). (6,15.5) (12 15 5)
• What would flow field uniformity 

across a 1mmx1mm array 
tt d i th iddl f th ll? (4.5,14)

( , ) (12,15.5)

spotted in the middle of the cell? (4.5,14)

(12,14.5)

(9,14.5)

(7.5,13)

Data:
Flow rate: 100ul/min
Liquid: water, T=298K (3,1)

(4.5,2.5)

Channel height (z): 50um
Channel width: 1mm in/outlet;
3mm chamber
C t di 1 5

(0,1)
(7.5,1.5)

(0,0)
Curvature radius: 1.5mm

(6,0)







Lecture 7

Flow and Diffusion. 
Micromixers MultiphysicsMicromixers. Multiphysics
modelling with COMSOL



Brownian motion

• discovered by R. Brown and J.Ingenhous by 
b ti f ll i fl ti tobservation of pollen grains floating on water 

• macroscopic (concentration) and microscopic 
h t diff iapproach to diffusion  



Random walk

• Diffusion can be modeled as a random walk 
using Monte-Carlo simulation 



Microscopic approach

• Model: 1D random walk on a grid (uncorrelated steps left and 
right with constant step length l)
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• Average distance after N steps (averaged over M walks):g p ( g )
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Microscopic approach (cont)
• Rms distance after N steps
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• In case of uncorrelated 2D steps
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Macroscopic approach to diffusion

• First Fick’s law
J D c= − ∇

• Second Fick’s law
c D c∂
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Convection-diffusion equation
• Continuity equation for heterogeneous fluid 
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• in integral form

C ρ∂

Gauss theorem

( ( , ) ) ( ( , ) )diff diffC dV n C v r t J da C v r t J dV
t
α

α α α α
ρ ρ ρ

Ω ∂Ω Ω

∂
= − ⋅ + = − ∇⋅ +

∂∫ ∫ ∫

( ( , ) )diffC C v r t J
t
α

α α
ρ ρ∂
= ∇⋅ +

∂

diffC v C J
t
α

α α
ρρ ∂⎡ ⎤+ ⋅∇ = −∇⋅⎢ ⎥∂⎣ ⎦

2C v C D C
t
α

α α α
∂

+ ⋅∇ = ∇
∂

convection-diffusion equation



Diffusion equation
• diffusion equation 2c D c

t
∂

= ∇
∂

• from dimensional analysis 0 0L DT=

• Typical values:Typical values:
9 2

10 2

2 10 m /s,  small ions in waterD −≈ ⋅
10 2

11 2

5 10 m /s,  sugar molecules in water
4 10 m /s,  30bp DNA in water

D
D

−
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≈ ⋅
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12 21 10 m /s,  5kbp DNA in waterD −≈ ⋅



Limited point-source diffusion
• Normal (Gaussian) distribution

21
2 221( ) ; ( ) 0; ( ) 1;

2
s

P s e s sP s ds s s P s ds
π

∞ ∞
−

−∞ −∞

≡ = = = =∫ ∫

• Let’s consider diffusion from a point source described p
by δ-function. 
The solution of the diffusion equation is: 
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Limited point-source diffusion
• In 2D case: 
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Spreading from a point source in 1D

• solution:

22

0 4( , )
4

x
Dtcc x t e

Dtπ

−
=



Limited planar source

• Let’s consider diffusion into half space.e s co s de d us o o a space
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Constant planar source diffusion 
(Ilkovic’s solution)(Ilkovic’s solution)

• Problem: consider a half-space with an initial p
concentration c0. Concentration on the wall is zero at 
any time. Find the concentration profile vs time.y p
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Example: diffusion between two plates
• A liquid drop contains nanoparticles that are 

immobilized upon contact with the walls. Find 
the concentration dependence vs timethe concentration dependence vs time

• For times less than  / 2
4
e

D
τ =

Ilkovic’s solution can be used: 
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Navier-Stokes equation: Diffusion of momentum

2v p g v
t

ρ ρ μ∂
= −∇ + + ∇

∂

• In the case of decelerating Poiseuille flow

v μ∂ 2v v
t

μ
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∂
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∂

kinematic viscosity νkinematic viscosity ν
Diffusion constant for momentum!

• Characteristic time for diffusion across the channel
2aT ρ
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Schmidt number=Sc
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ν μ

ρ
= = intrinsic property of the solution



Diffusion vs Sedimentation
Does the gravity force affects the diffusion?

• Let’s compare diffusion and sedimentation time across a 
microfluidic chamber

• sedimentation time:
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• diffusion time:
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• if β<<1 sedimentation dominates



Diffusion in confined volumes
• For example, delivery of drugs relies on a diffusion in 

ECS of cellular clustersECS of cellular clusters

cell arrangement in the human skin

• tortuosity: ration between the distance in liquid and 
the straight distance between the points



Diffusion in confined volumes
It can be shown that:

f 2D l i t i l tti t t it i l t 2• for any 2D regular isotropic lattice tortuosity is equal to 

• for 3D:

2τ =

3τ =for 3D: 3τ =

• The situation is more• The situation is more 
complicated for irregular 
cells and in the presence 
of intercleft volumes



How to treat anisotropic media
• to treat a media with a preferential direction we have to 

introduce a diffusion tensor:
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b t ti d li th di t it’ ibl t t t• by rotating and scaling the coordinates it’s possible to return to 
a isotropic (scalar) D:

2 2 2c c c c⎡ ⎤∂ ∂ ∂ ∂
2 2 2

c c c cD
t ξ η ζ

⎡ ⎤∂ ∂ ∂ ∂
= + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦



H-filter: separating solutes by diffusion

• H-filter takes advantages of laminar flow (flow don’t mix) and 
f t diff i h t di tfast diffusion over short distances

• Characteristic times:Characteristic times:

convection time: 
0
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L
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• Critical diffusion constant:
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H-cell model

• H-cell perform separation via 
diff i d i t ll ddiffusion during controlled 
time:
– Two laminar streams are 

brought into contact for 
given amount of time

• Small species from A can p
diffuse into B

• Modelling parameters:
C ll h i ht 20– Cell height – 20µm

– Pressure at inlets: P0=2 Pa; 

• Calculate critical diffusion Ca cu a e c ca d us o
constant and compare 
with the modelling results



Mixing on microscale

• Flow in microchannels is laminar and mixing occurs through 
diffusion (slow!)diffusion (slow!) 

• Chemical reactions (necessary for Lab-on-Chip assays, but 
also for DNA and protein synthesis etc.) require mixing of 

treagents 



Passive micromixers

• General approach: to shorten diffusion time via increased 
t t/d d thi k b h ti d ticontact/decreased thickness or by chaotic advection

• Parallel lamination:Parallel lamination:



Passive micromixers
S• Serial lamination:



Passive micromixers
• Chaotic advection at high Re numbers

Recirculation are 
produced at the zig-zag 
turns of channel or 
behind the obstacles. 
C iti l R bCritical Re numbers are 
reported ~80 for zig-zag 
channel

• Chaotic advection at intemediate Re numbersChaotic advection at intemediate Re numbers



Passive micromixers

• Another way to induce mixing in y g
laminar flow – patterned surface
– Top -- no surface patterningp p g
– Middle – slants
– Bottom V-shape (herringbone) –p ( g )

clearly see enhanced mixing
• Effective at low Reynolds numbers y

(in the range of 1- 100)



Passive micromixers
• Design variations of chaotic advection mixers

• Droplet micromixers



Active micromixers

• Function via 
– pressure disturbance, 
– mechanical microstirrers, ,
– electrohydrodynamic
– electrophoretic disturbancee ect op o et c d stu ba ce



Problems

• An analyte (ca=1)is injected into S-cell. 
Plot concentration vs. time in the middle of 
the cell. How concentration is varied across 
the 1mm central area?the 1mm central area?

• Problems 5.7 and 5.8 (Bruus).


