S-cell Problem (home work)

- Calculate velocity field in an Scell (3D fluidic cell, 50µm height).
- What would flow field uniformity across a 1mmx1mm array spotted in the middle of the cell?

Data:

Flow rate: 100ul/min Liquid: water, T=298K

Channel height (z): 50um

Channel width: 1mm in/outlet;

3mm chamber

Curvature radius: 1.5mm

Lecture 7

Flow and Diffusion.
Micromixers. Multiphysics
modelling with COMSOL

Brownian motion

 discovered by R. Brown and J.Ingenhous by observation of pollen grains floating on water

macroscopic (concentration) and microscopic approach to diffusion

Random walk

Diffusion can be modeled as a random walk using Monte-Carlo simulation

Microscopic approach

 Model: 1D random walk on a grid (uncorrelated steps left and right with constant step length *l*)

$$\left\langle \Delta x_i \cdot \Delta x_j \right\rangle = l \delta_{ij}$$

Average distance after N steps (averaged over M walks):

$$\langle \Delta x_N \rangle = \frac{1}{M} \sum_{j=1}^{M} x_N^{(j)} = \frac{1}{M} \sum_{j=1}^{M} \sum_{i=1}^{N} x_i^{(j)} = \sum_{i=1}^{N} \langle x_i \rangle = 0$$

Rms distance after N steps (averaged over M walks):

$$\left\langle \Delta x_{N}^{2} \right\rangle = \frac{1}{M} \sum_{j=1}^{M} \left[x_{N}^{(j)} \right]^{2} = \frac{1}{M} \sum_{j=1}^{M} \left(\sum_{i=1}^{N} x_{i}^{(j)} \right) \left(\sum_{k=1}^{N} x_{k}^{(j)} \right) = \frac{1}{M} \sum_{j=1}^{M} \left(\left(\sum_{i=1}^{N} \left[x_{i}^{(j)} \right]^{2} \right) + \left(\sum_{i=1}^{N} \sum_{k \neq i}^{N} x_{i}^{(j)} x_{k}^{(j)} \right) \right) = N l^{2} + \sum_{i=1}^{N} \sum_{k \neq i}^{N} \left\langle x_{i}^{(j)} x_{k}^{(j)} \right\rangle$$

Microscopic approach (cont)

Rms distance after N steps

$$\left\langle \Delta x_{N}^{2} \right\rangle = N l^{2}$$

$$l_{diff,N} = \sqrt{\left\langle \Delta x_{N}^{2} \right\rangle - \left\langle \Delta x_{N} \right\rangle^{2}} = \sqrt{N} l = \sqrt{\frac{t l^{2}}{\tau}} = \sqrt{D} t$$

In case of uncorrelated 2D steps

$$\left\langle R_N^2 \right\rangle = \left\langle x_N^2 + y_N^2 \right\rangle = \left\langle x_N^2 \right\rangle + \left\langle y_N^2 \right\rangle = 2Nl^2$$

$$l_{diff}^{2D} = \sqrt{2Dt}$$

Macroscopic approach to diffusion

First Fick's law

$$J = -D\nabla c$$

Second Fick's law

$$\frac{\partial c}{\partial t} = D\Delta c$$

$$\frac{\partial c}{\partial t} = D\Delta c - v\nabla c + S$$
 source/sink term

Einstein formula

$$D = \frac{kT}{C_D} \qquad \qquad D = \frac{kT}{6\pi\eta R}$$

Convection-diffusion equation

Continuity equation for heterogeneous fluid

$$\frac{\partial \rho}{\partial t} + \nabla (\rho \vec{v}) = 0; \quad \rho(\vec{r}) \equiv \sum_{\alpha} \rho_{\alpha}(\vec{r}); \quad C_{\alpha}(r,t) \equiv \frac{\rho_{\alpha}(r,t)}{\rho(r,t)}$$

in integral form

Gauss theorem
$$\int_{\Omega} \frac{\partial C_{\alpha} \rho}{\partial t} dV = -\int_{\partial \Omega} n \cdot (C_{\alpha} \rho \vec{v}(r, t) + \vec{J}_{\alpha}^{diff}) da = -\int_{\Omega} \nabla \cdot (C_{\alpha} \rho \vec{v}(r, t) + \vec{J}_{\alpha}^{diff}) dV$$

$$\begin{split} \frac{\partial C_{\alpha} \rho}{\partial t} &= \nabla \cdot (C_{\alpha} \rho \vec{v}(r, t) + \vec{J}_{\alpha}^{diff}) \\ \rho \left[\frac{\partial C_{\alpha} \rho}{\partial t} + \vec{v} \cdot \nabla C_{\alpha} \right] &= -\nabla \cdot \vec{J}_{\alpha}^{diff} \end{split}$$

$$\frac{\partial C_{\alpha}}{\partial t} + \vec{v} \cdot \nabla C_{\alpha} = D_{\alpha} \nabla^{2} C_{\alpha}$$
 convection-diffusion equation

Diffusion equation

• diffusion equation $\frac{\partial c}{\partial t} = D\nabla^2 c$

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

• from dimensional analysis $L_0 = \sqrt{DT_0}$

Typical values:

 $D \approx 2 \cdot 10^{-9} \,\mathrm{m}^2/\mathrm{s}$, small ions in water

 $D \approx 5 \cdot 10^{-10} \,\mathrm{m}^2/\mathrm{s}$, sugar molecules in water

 $D \approx 4 \cdot 10^{-11} \,\mathrm{m}^2/\mathrm{s}$, 30bp DNA in water

 $D \approx 1.10^{-12} \text{ m}^2/\text{s}$, 5kbp DNA in water

Limited point-source diffusion

Normal (Gaussian) distribution

$$P(s) \equiv \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}s^2}; \langle s \rangle = \int_{-\infty}^{\infty} sP(s)ds = 0; \langle s^2 \rangle = \int_{-\infty}^{\infty} s^2 P(s)ds = 1;$$

• Let's consider diffusion from a point source described by δ -function. $c(x,0) = N_0 \delta(x)$

The solution of the diffusion equation is:

$$c(x,t) = N_0 (4\pi Dt)^{-1/2} \exp\left[-\frac{x^2}{4DT}\right] = N_0 P(s_x), \ s_x^2 = \frac{x^2}{2Dt}$$
$$l_{diff}^2 = \langle x^2 \rangle = 2Dt \langle s_x^2 \rangle = 2Dt$$

Limited point-source diffusion

In 2D case:

$$c(x, y, 0) = N_0 \delta(x) \delta(y)$$

$$c(x, t) = N_0 (4\pi Dt)^{-1/2} \exp\left[-\frac{x^2}{4DT}\right] \times (4\pi Dt)^{-1/2} \exp\left[-\frac{y^2}{4DT}\right] =$$

$$= N_0 P(s_x) P(s_y)$$

$$l_{diff, 2D}^2 = \langle x^2 + y^2 \rangle = 2Dt \langle s_x^2 + s_y^2 \rangle = 4Dt$$

Spreading from a point source in 1D

• solution:

$$c(x,t) = \frac{c_0}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$

Limited planar source

Let's consider diffusion into half space.

$$c(r,0) = 2N_0 \delta(x)$$

$$c(r,t) = N_0 (\pi Dt)^{-1/2} \exp \left[-\frac{x^2}{4DT} \right] = 2N_0 P(s_x), \ s_x^2 = \frac{x^2}{2Dt}$$

Constant planar source diffusion (Ilkovic's solution)

• <u>Problem:</u> consider a half-space with an initial concentration c_0 . Concentration on the wall is zero at any time. Find the concentration profile vs time.

$$c = c_0 erf\left(\frac{x}{\sqrt{4Dt}}\right) \qquad erf(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-u^2} du$$

$$\frac{\partial c}{\partial x} = c_0 \frac{2}{\sqrt{\pi}} e^{-\frac{x^2}{4Dt}} \frac{1}{\sqrt{4Dt}}$$

$$J = -D\nabla c_{|wall} = -c_0 \sqrt{\frac{D}{\pi t}}$$

Example: diffusion between two plates

 A liquid drop contains nanoparticles that are immobilized upon contact with the walls. Find the concentration dependence vs time

• For times less than $\tau = \frac{e/2}{4D}$

Ilkovic's solution can be used:

$$J = -2c_0 \sqrt{\frac{D}{\pi t}}$$

Navier-Stokes equation: Diffusion of momentum

$$\rho \frac{\partial \vec{v}}{\partial t} = -\nabla p + \rho \vec{g} + \mu \nabla^2 \vec{v}$$

In the case of decelerating Poiseuille flow

Characteristic time for diffusion across the channel

$$T = \frac{a^2 \rho}{\mu}$$

Schmidt number=
$$Sc = \frac{v}{D} = \frac{\mu}{\rho D}$$

intrinsic property of the solution

Diffusion vs Sedimentation

Does the gravity force affects the diffusion?

- Let's compare diffusion and sedimentation time across a microfluidic chamber
- sedimentation time:

$$C_D V_s = 6\pi \eta R_H V_s = \Delta \rho g \frac{V_p}{V_p}$$

$$V_{s} = \frac{2}{9} \frac{\Delta \rho g R^{2}}{\eta}$$

$$\tau_1 = d/V_s$$

• diffusion time: $\tau_2 = \frac{d^2}{4D}$

$$\beta = \frac{\tau_1}{\tau_2} = \frac{d}{V_s} \frac{4D}{d^2} = 4 \frac{kT}{\Delta mg} \frac{1}{d}$$

• if β <<1 sedimentation dominates

Diffusion in confined volumes

 For example, delivery of drugs relies on a diffusion in ECS of cellular clusters

cell arrangement in the human skin

 tortuosity: ration between the distance in liquid and the straight distance between the points

Diffusion in confined volumes

It can be shown that:

- for any 2D regular isotropic lattice tortuosity is equal to $\tau = \sqrt{2}$
- for 3D: $\tau = \sqrt{3}$

 The situation is more complicated for irregular cells and in the presence of intercleft volumes

How to treat anisotropic media

 to treat a media with a preferential direction we have to introduce a diffusion tensor:

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix}$$

$$\begin{vmatrix} J_1 \\ J_2 \\ J_3 \end{vmatrix} = -[D]\nabla c$$

$$\frac{\partial c}{\partial t} = D_{11} \frac{\partial^2 c}{\partial x^2} + D_{22} \frac{\partial^2 c}{\partial y^2} + D_{33} \frac{\partial^2 C}{\partial z^2} + (D_{23} + D_{32}) \frac{\partial c}{\partial y \partial z} + (D_{31} + D_{13}) \frac{\partial c}{\partial z \partial x} + (D_{12} + D_{21}) \frac{\partial c}{\partial x \partial y}$$

 by rotating and scaling the coordinates it's possible to return to a isotropic (scalar) D:

$$\frac{\partial c}{\partial t} = D \left[\frac{\partial^2 c}{\partial \xi^2} + \frac{\partial^2 c}{\partial \eta^2} + \frac{\partial^2 c}{\partial \zeta^2} \right]$$

H-filter: separating solutes by diffusion

- H-filter takes advantages of laminar flow (flow don't mix) and fast diffusion over short distances
- Characteristic times:

convection time:
$$\tau_{conv} = \frac{L}{v_0}$$
 diffusion time:
$$\tau_{diff} = \frac{w^2}{4L}$$

• Critical diffusion constant: $D^* = \frac{v_0 w^2}{4L}$

 $\tau_{conv} \geq \tau_{\textit{diff}} \quad \mbox{is the same through the channel}$

H-cell model

- H-cell perform separation via diffusion during controlled time:
 - Two laminar streams are brought into contact for given amount of time
- Small species from A can diffuse into B
- Modelling parameters:
 - Cell height 20µm
 - Pressure at inlets: P₀=2 Pa;
- Calculate critical diffusion constant and compare with the modelling results

Mixing on microscale

- Flow in microchannels is laminar and mixing occurs through diffusion (slow!)
- Chemical reactions (necessary for Lab-on-Chip assays, but also for DNA and protein synthesis etc.) require mixing of reagents

- General approach: to shorten diffusion time via increased contact/decreased thickness or by chaotic advection
- Parallel lamination:

Serial lamination:

Chaotic advection at high Re numbers

Recirculation are produced at the zig-zag turns of channel or behind the obstacles.
Critical Re numbers are reported ~80 for zig-zag channel

Chaotic advection at intermediate Re numbers

- Another way to induce mixing in laminar flow – patterned surface
 - Top -- no surface patterning
 - Middle slants
 - Bottom V-shape (herringbone) –
 clearly see enhanced mixing
- Effective at low Reynolds numbers (in the range of 1- 100)

Design variations of chaotic advection mixers

Droplet micromixers

Active micromixers

- Function via
 - pressure disturbance,
 - mechanical microstirrers,
 - electrohydrodynamic
 - electrophoretic disturbance

Problems

- An analyte (c_a=1)is injected into S-cell.
 Plot concentration vs. time in the middle of the cell. How concentration is varied across the 1mm central area?
- Problems 5.7 and 5.8 (Bruus).

