Lecture 8

Electrokinetic effects.
Electroosmosis and electrophoresis.

Electrokinetic effects

- <u>Electrophoresis:</u> movement of charged surface (e.g. particle or molecule) relative to a stationary liquid.
- <u>Electroosmosis:</u> movement of liquid relative to a stationary charged surface (e.g. capillary tube)
- Sedimentation potential: electric potential created by moving charged particles
- Streaming potential: electric potential created by liquid moving relative to charged surface
- <u>Dielectrophoresis</u>: movement of uncharged particles with polarizability different from the liquid.

Electrokinetic effects

Electrophoresis

 Let's consider a charged spherical particle in a low conductivity liquid.

$$F_{drag} = 6\pi\eta a\vec{s} \qquad \vec{F}_{el} = Ze \cdot \vec{E}$$

the drift velocity is:

$$\vec{u}_{ep} = \frac{Ze \cdot \vec{E}}{6\pi \eta a} = \mu_{ion} \cdot \vec{E}$$

 the equation is valid also for ions (except H+and OH-) assuming hydration radius of approx. 0.2nm (one layer of water molecules).

Origin of electroosmosis

- Most of the materials carry some charge on the surface (due to adsorption, presence of partially dissociated groups etc.)
- This charge will be screened by the ions in the solution
- If an external voltage is applied the ions will start to move in the electric field and cause the flow of the liquid

Charge on Si surface

 In the case of oxides the dominating mechanism of surface charging is the dissociation of hydroxyl groups on the surface

$$\sim SiOH_2 \Longrightarrow \sim SiOH + H^+$$

 $\sim SiOH \Longrightarrow \sim SiO^- + H^+$

Origin of electroosmosis

Ionic structure of the solid (silicon) - liquid (electrolyte) interface

Debye layer in an electrolyte

 The potential at the Stern layer next to the surface is called zeta-potential ζ.

Debye layer

- We can find the charge and potential distribution by linking thermodynamics and electrodynamics:
 - The equilibrium condition: all ions have the same chemical potential:

$$\mu_{\pm}(r) = \mu_{0}(r) + kT \ln \left[\frac{c_{\pm}(r)}{c_{0}} \right] \pm Ze\varphi(r); \ \nabla \mu_{\pm}(r) = 0$$

$$kT \nabla \ln \left[\frac{c_{\pm}(r)}{c_{0}} \right] = \mp \nabla Ze\varphi(r)$$

the boundary conditions: $c_{\pm}(\infty) = c_0; \ \varphi(\infty) = 0$

$$c_{\pm}(r) = c_0 \exp \left[\mp \frac{Ze}{kT} \varphi(r) \right]$$

Debye layer

 Now we can link charge distribution and it's electrical potentials using Poisson equation

$$\begin{cases}
\nabla^2 \varphi(r) = -\frac{\rho_e(r)}{\varepsilon} \\
\rho_{el} = Ze \left[c_+(r) - c_-(r) \right] = -2Ze c_0 \sinh \left[\frac{Ze}{kT} \varphi(r) \right]
\end{cases}$$

Poisson-Boltzmann equation

$$\nabla^2 \varphi(r) = 2 \frac{Zec_0}{\varepsilon} \sinh \left[\frac{Ze}{kT} \varphi(r) \right]$$

Debye-Hückel approximation

In the limit of small zeta-potential:

$$Ze\zeta \ll kT$$

$$\nabla^2 \varphi(r) = 2 \frac{\left(Ze\right)^2 c_0}{kT\varepsilon} \varphi(r) = \frac{1}{\lambda_D^2} \varphi(r)$$

$$\lambda_D = \sqrt{\frac{\varepsilon kT}{2(Ze)^2 c_0}} \approx \sqrt{\frac{1mM}{Z^2 c_0}} 9.6nm$$

Debye-Hückel approximation: an infinite wall

 1-D situation of a potential/charge distribution next to an infinite wall

$$\nabla^2 \varphi(z) = \frac{1}{\lambda_D^2} \varphi(z)$$

the solution should be in the form: $\varphi(z) = C_1 e^{-z/\lambda_D} + C_2 e^{z/\lambda_D}$

the boundary conditions: $\varphi(\infty) = 0 \ \varphi(0) = \zeta$

solution:

$$\varphi(z) = \zeta \exp\left[-\frac{z}{\lambda_D}\right]$$

$$\rho_{el}(z) = -\varepsilon \frac{\partial^2 \varphi}{\partial z^2} = -\frac{\varepsilon \zeta}{\lambda_D^2} \exp\left[-\frac{z}{\lambda_D}\right]$$

Debye-Hückel approximation: parallel plate channel

 1-D situation of a potential/charge distribution in a parallel plate channel

$$\nabla^2 \varphi(z) = \frac{1}{\lambda_D^2} \varphi(z)$$

the solution should be in the form: $\varphi(z) = C_1 e^{-z/\lambda_D} + C_2 e^{z/\lambda_D}$

the boundary conditions:

$$\varphi(-h/2) = \zeta \left| \varphi(h/2) = \zeta \left| \frac{\partial \varphi}{\partial z} \right|_{z=0} = 0$$

$$\varphi(z) = \zeta \frac{\cosh\left[z/\lambda_D\right]}{\cosh\left[h/2\lambda_D\right]}$$

$$\rho_{el}(z) = -\varepsilon \frac{\partial^2 \varphi}{\partial z^2} = -\frac{\varepsilon \zeta}{\lambda_D^2} \frac{\cosh\left[z/\lambda_D\right]}{\cosh\left[h/2\lambda_D\right]}$$

Capacitance and characteristic frequency of a double layer

- The Debye layer acts as an electrical capacitor
- The capacitance of the Debye layer:

$$q_{el} = \int_{0}^{\infty} \left[-\frac{\varepsilon \zeta}{\lambda_{D}^{2}} \exp\left(-\frac{z}{\lambda_{D}}\right) \right] dz = -\frac{\varepsilon}{\lambda_{D}} \zeta$$

$$C_D = \frac{\mathcal{E}}{\lambda_D}$$

$$\tau_{RC} = RC = \left(\frac{h}{\sigma_{el}A}\right) \left(\frac{1}{2}\frac{\varepsilon}{\lambda_D}A\right) = \frac{1}{2}\frac{h\varepsilon}{\sigma_{el}\lambda_D}$$

Typically, for 1mM solution:

$$\lambda_D = 9.6nm; h = 100\mu m, \sigma_{el} = 10^{-3} S/m; \varepsilon = 78\varepsilon_0$$

$$\tau_{RC} = 3.6ms$$

Electroosmosis

 We have an extra body force in the Navier-Stokes equation due to electrical field:

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \cdot \vec{v} \right] = -\nabla p_{ext} + \eta \nabla^2 \vec{v} - \rho_{el} \nabla \varphi_{ext}$$

$$E_{ext} = -\nabla \varphi$$

Comments:

- we assume that the external potential doesn't change the charge distribution
- for continuous EO flow, some electrochemical processes on electrodes are required

Electroosmosis

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \cdot \vec{v} \right] = -\nabla p_{ext} + \eta \nabla^2 \vec{v} - \rho_{el} \nabla \varphi_{ext}$$

$$\vec{v} = (v_x(z), 0, 0)$$

$$\nabla p_{ext} = 0$$

$$0 = \eta \frac{\partial^2 v_x}{\partial z^2} + \varepsilon \frac{\partial^2 \varphi_{eq}}{\partial z^2} E$$

$$0 = \eta \frac{\partial^2 v_x}{\partial z^2} + \varepsilon \frac{\partial^2 \varphi_{eq}}{\partial z^2} E \qquad \text{or} \qquad \frac{\partial^2}{\partial z^2} \left[v_x(z) + \frac{\varepsilon E}{\eta} \varphi(z) \right] = 0$$

- the boundary conditions: $v_x(-h/2) = v_x(h/2) = 0$

• the solution
$$v_x(z) = \left[\zeta - \varphi_{eq}(z)\right] \frac{\varepsilon E}{\eta} = \frac{\varepsilon \zeta}{\eta} E \left[1 - \frac{\cosh\left[z/\lambda_D\right]}{\cosh\left[h/2\lambda_D\right]}\right]$$

Electroosmosis

Flow velocity profile between parallel plates

Electroosmotic flow

- typical values are: $\zeta \approx 100 \, mV$; $\lambda_D \approx 10 nm$;
- As we see, if electric field is applied across a tube filled with electrolyte a fairly uniform plug flow is produced (vs. parabolically pressure driven)

Measuring of zeta potential

- tracking electroosmotic velocities
- streaming potential:
 - if a pressure driven flow is applied to an electrolyte, a potential will build up

$$\Delta V = \frac{\mathcal{E}\zeta}{\sigma\mu} \Delta p$$
 Helmholtz-Smoluchowski equation

Electrophoretic effect

Electrophoresis: motion of electrically charged molecule of particles in response to electric field Electrophoretic velocity

zeta potential at the particle surface

$$u = \frac{\mathcal{E}\mathcal{S}}{\eta} E \qquad \qquad \lambda_d \ll d \quad \text{(particle size)}$$

$$\lambda_d \ll d$$
 (particle size)

$$u = \frac{2}{3} \frac{\varepsilon \varsigma}{\eta} E \qquad \qquad \lambda_d \gg d$$

$$\lambda_d \gg d$$

Generally:
$$\mu_{ep}=Arac{\mathcal{E}\mathcal{S}}{\eta}E;~\mu_{net,j}=\mu_{eo}+\mu_{ep,j}$$

Resolution of electrophoretic system:
$$R_{mn} = \frac{\Delta t_{mn}}{w} \frac{\propto t}{\sqrt{t}}$$

Electrokinetic valve

Geometry

Electrokinetic valve

Technique

Focusing

Injection