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Preface

This book on theoretical microfluidics has grown out from a set of lecture notes that I began
writing in the summer of 2004. Much of the material has been tested in my teaching at the
Technical University of Denmark at BSc-, MSc- and PhD-level lecture courses. The courses
have been followed by students of both experimental and of theoretical inclination, and it
is my experience that both groups of students have benefitted from the lecture notes. The
more than 200 students I have been in contact with during the past three years have helped
me shape the presentation of the material in a way that appears useful for them in their
studies.

Microfluidics is a vast and rapidly evolving research field, and this textbook is in no
way meant to be an exhaustive review. Instead, my ambition has been to write a final-year
undergraduate textbook, which in a self-contained manner presents the basic theoretical
concepts and methods used in the cross-disciplinary field of microfluidics, thus closing the
gap between a number of basic physics textbooks and contemporary research in microfluidics.
It is my hope that the presentation of basic theory, many worked-through examples and
exercises with solutions, will get the advanced undergraduate students or first-year graduate
students to understand the foundation of the theory, to be able to use the theory as a
practical tool, and to be able to read research papers about microfluidics and lab-on-a-chip
systems. Moreover, I have tried to write the text so that the students in principle can read the
book as a self-study. The gaps in the logical and mathematical progression are deliberately
made relatively small, thus making it possible for a student to fill them in by herself.

To write a textbook is hard work, but I have been so fortunate that many students and
colleagues have helped me on the way with inspiring discussions and in many cases direct
comments on the book as it evolved. In particular, I would like to thank my talented PhD
students for many interesting joint research projects: Goran Goranović, Christian Mikkelsen,
Anders Brask, Mads Jakob Jensen, Lennart Bitsch, Laurits Højgaard Olesen, Martin Heller
and Misha Gregersen, as well as PhD students S. Melker Hagsäter and Kristian Smistrup,
whom I have co-supervised. Also, my latest MSc students, Thomas Eilkær Hansen, Thomas
Glasdam Jensen and Peder Skafte-Pedersen, have been very helpful. Among my local theory
colleagues I have in particular enjoyed the feedback from Niels Asger Mortensen and Fridolin
Okkels in connection with the courses on microfluidics that we have taught together. Several
of my experimental colleagues have contributed with pictures and measurement results, and
they have been thanked at each individual instance throughout the book.

In a broader context, I have received much inspiration from my colleagues at the Center
for Fluid Dynamics at the Technical University of Denmark (Fluid•DTU) Hassan Aref,
Tomas Bohr, Morten Brøns, Ole Hassager, Jens Nørkær Sørensen and Jens H. Walther, and
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vi Preface

the same can be said about my international colleagues Armand Ajdari, Daniel Attinger,
Martin Bazant, Steffen Hardt, Ralph Lindken, Howard Stone and Patrick Tabeling.

Finally, I am grateful to Pernille and Christian for letting me use their beach house at
Kandestederne as an author’s refuge in two absolutely critical phases during my writing of
this book: a couple of weeks in August 2004, when I wrote what is now the first couple of
chapters in the book, and again several weeks in March, April and May 2007, when I wrote
the last chapters and finished the book.

Professor Henrik Bruus
MIC – Department of Micro and Nanotechnology
Technical University of Denmark
May 2007

www.mic.dtu.dk/bruus
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1

Basic concepts in microfluidics

Theoretical microfluidics deals with the theory of flow of fluids and of suspensions in
submillimeter-sized systems influenced by external forces. Although an old discipline in
hydrodynamics, the scientific and technological interest in and development of microfluidics
has been particularly significant during the past decade and a half following the emerging
and rapidly evolving field of lab-on-a-chip systems. This field is mainly driven by technolog-
ical applications, the vision being to develop entire bio/chemical laboratories on the surface
of silicon or polymer chips. Many of the amazing techniques developed over the past fifty
years in connection with the silicon-based microelectronics industry are now used to fab-
ricate lab-on-chip systems. In recent years, also polymer-based lab-on-a-chip systems have
emerged, and these systems promise cheaper and faster production cycles. As microfluidic
technology advances the demand for better theoretical insight grows, and this has been one
of the motivating factors behind this book.

1.1 Lab-on-a-chip technology

There are several advantages of scaling down standard laboratory setups by a factor of 1000
or more from the decimeter scale to the 100 µm scale. One obvious advantage is the dramatic
reduction in the amount of required sample. A linear reduction by a factor of 103 amounts
to a volume reduction by a factor of 109, so instead of handling 1 L or 1 mL a lab-on-a-chip
system could easily deal with as little as 1 nL or 1 pL. Such small volumes allow for very
fast analysis, efficient detection schemes, and analysis, even when large amounts of sample
are unavailable. Moreover, the small volumes makes it possible to develop compact and
portable systems that might ease the use of bio/chemical handling and analysis systems
tremendously. Finally, as has been the case with microelectronics, it is the hope by mass
production to manufacture very cheap lab-on-a-chip systems.

Lab-on-a-chip (LOC) systems can be thought of as the natural generalization of the
existing electronic integrated circuits and microelectromechanical systems (MEMS). Why
confine the systems to contain only electric and mechanical parts? Indeed, a lab-on-chip
system can really be thought of as the shrinking of an entire laboratory to a chip. Two
examples of a systems evolving in that direction are shown in Fig. 1.1: In panel (a) is shown
the CalTech microfluidics large-scale integration chip containing 256 subnanoliter reaction
chambers controlled by 2056 on-chip microvalves, while in panel (b) is shown the MIC-DTU
integrated optochemical lab-on-a-chip system containing optical (lasers and waveguides),
chemical (channels and mixers), and electronic (photodiodes) components. Perhaps, only
our imagination sets the limits of what could be in a lab-on-a-chip system. It is expected

1



2 Basic concepts in microfluidics

(a) (b)

Fig. 1.1 (a) An optical micrograph of a 27 mm by 27 mm polydimethylsiloxane-based (PDMS)

large-scale integrated microfluidic comparator containing 256 subnanoliter reaction chambers and

2056 microvalves fabricated at CalTech by Thorsen et al., Science 298, 580-584 (2002), reprinted

with permission from AAAS. (b) An optical micrograph of a 15 mm by 20 mm integrated opto-

chemical lab-on-a-chip system for optical analysis of chemical reactions fabricated at MIC-DTU

by Balslev et al., Lab Chip 6, 213-217 (2006), reproduced by permission of The Royal Society of

Chemistry. The system is a hybrid polymer/silicon device made on a silicon substrate containing

the integrated photodiodes, while the laser, waveguides, mixer and cuvette are made in a SU-8

polymer film on top of the substrate.

that lab-on-a-chip systems will have great impact in biotechnology, pharmacology, medical
diagnostics, forensics, environmental monitoring and basic research.

The fundamental laws of Nature underlying our understanding of the operation of lab-
on-a-chip systems are all well known. Throughout the book we shall draw on our knowledge
from mechanics, fluid dynamics, acoustics, electromagnetism, thermodynamics and physical
chemistry. What is new, however, is the interplay between many different forces and the
change of the relative importance of these forces as we pass from the m- and mm-sized
macrosystems to µm- and nm-sized micro- and nanosystems.

1.2 Scaling laws in microfluidics

When analyzing the physical properties of microsystems, it is helpful to introduce the con-
cept of scaling laws. A scaling law expresses the variation of physical quantities with the
size ` of the given system or object, while keeping other quantities such as time, pressure,
temperature, etc. constant. As an example, consider volume forces, such as gravity and in-
ertia, and surface forces, such as surface tension and viscosity. The basic scaling law for the
ratio of these two classes of forces can generally be expressed by

surface forces
volume forces

∝ `2

`3
= `−1−→

`→0
∞. (1.1)

This scaling law implies that when scaling down to the microscale in lab-on-a-chip systems,
the volume forces, which are very prominent in our daily life, become largely unimportant.
Instead, the surface forces become dominant, and as a consequence, we must rebuild our
intuition and be prepared for some surprises on the way.
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Table 1.1 The scaling laws as a function of a typical length scale, object size or distance ` for a

number of physical quantities studied in this book.

Area `2 Eq. (1.1) Time `0 Section 1.2
Volume `3 Eq. (1.1) Velocity `1 Section 1.2
Rel. fluctuations `−

1
2 Exercise 1.3 Hydrostatic pressure `1 Eq. (3.3)

Reynolds number Re `2 Eq. (2.39) Hydraulic resistance `−4 Table 4.1
Péclet number `2 Eq. (5.53) Stokes drag `1 Eq. (3.128)
Diffusion time `2 Eq. (5.10) Particle diffusion const. `−1 Eq. (6.49)
Fluid acceleration time `2 Eq. (6.25) Taylor dispersion time `−2 Eq. (5.71)

Young–Laplace pressure `−1 Eq. (7.8) Contact angle `0 Eq. (7.14)
Bond number Bo `2 Eq. (7.30) Capillary rise height `−1 Eq. (7.21)
Marangoni force `−1 Eq. (7.39) Capillary speed `1 Eq. (7.36)

Electric field `−1 Eq. (8.3a) EO velocity `−1 Eq. (9.11)
Ionic mobility `−1 Eq. (8.15) EO mobility `0 Eq. (9.12)
Debye length `0 Eq. (8.26) EO flow rate `1 Eq. (9.35a)
Debye frequency `−1 Eq. (8.45) EO pressure `−2 Eq. (9.35b)

DEP force, particle `3 Eq. (10.23) MAP force, particle `3 Eq. (11.13)
DEP force, system ` Eq. (10.31) MAP force, system ` Eq. (11.13)

Thermal diffusion time `2 Eq. (12.16a) Acoustic impedance `0 Eq. (15.61)
Thermal resistance `−1 Eq. (12.59) Acoustic radiation force `3 Eq. (15.81)
Thermal capacitance `3 Eq. (12.61) Optical absorbance `1 Eq. (16.25b)
Thermal RC-time `2 Eq. (12.63) Optical damping coeff. `0 Eq. (16.14)

In Table 1.1 are listed the scaling laws for a number of physical quantities studied in
this book. Depending on the context the length scale ` is either controlling all lengths in
the system while maintaining constant aspect ratios or it represents a single object-size or
-distance, which is being downscaled while maintaining all other lengths of the system. The
table gives a first impression of the intricate interplay between the many physical forces
present in microfluidic systems.

1.3 Fluids and fields

The main purpose of a lab-on-a-chip system is to handle fluids. A fluid, i.e. either a liquid or
a gas, is characterized by the property that it will deform continuously and with ease under
the action of external forces. The shape of a fluid is determined by the vessel containing it,
and different parts of the fluid may be rearranged freely without affecting the macroscopic
properties of it. In a fluid the presence of shear forces, however small in magnitude, will result
in large changes in the relative positions of the fluid elements. In contrast, the changes in
the relative positions of the atoms in a solid remain small under the action of any small
external force. When applied external forces cease to act on a fluid, it will not necessarily
retract to its initial shape. This property is also in contrast to a solid, which relaxes to its
initial shape when no longer influenced by (small) external forces.



4 Basic concepts in microfluidics

(a) (b) (c)

Fig. 1.2 (a) A sketch of a typical solid with 0.1 nm wide molecules (atoms) and a lattice constant

of 0.3 nm. The atoms oscillate around the indicated equilibrium points forming a regular lattice.

(b) A sketch of a liquid with the same molecules and same average intermolecular distance 0.3 nm

as in panel (a). The atoms move around in a thermally induced irregular pattern. (c) A sketch of a

gas with the same atoms as in panel (a). The average interatomic distance is 3 nm, and the motion

is free between the frequent interatomic collisions.

1.3.1 Fluids: liquids and gases

The two main classes of fluids, the liquids and the gases, differ primarily by the densities
and by the degree of interaction between the constituent molecules as sketched in Fig. 1.2.
The density ρgas ≈ 1 kg m−3 of an ideal gas is so low, at least a factor of 103 smaller
than that of a solid, that the molecules move largely as free particles that only interact by
direct collisions at atomic distances, ≈ 0.1 nm. The relatively large distance between the gas
molecules, ≈ 3 nm, makes the gas compressible. The density ρliq ≈ 103 kg m−3 of a liquid
is comparable to that of a solid, i.e. the molecules are packed as densely as possible with
a typical average intermolecular distance of 0.3 nm, and a liquid can, for many practical
purposes, be considered incompressible.

The intermolecular forces in a liquid are of quite an intricate quantum and electric nature
since each molecule is always surrounded by a number of molecules within atomic distances.
In model calculations of simple liquids many features can be reproduced by assuming the
basic Lennard-Jones pair-interaction potential, VLJ(r) = 4ε

[
(σ/r)12− (σ/r)6

]
, between any

pair of molecules. Here, r is the distance between the molecules, while the maximal energy
of attraction ε and the collision diameter σ are material parameters typically of the order
100 K×kB and 0.3 nm, respectively. The corresponding intermolecular force is given by the
derivative FLJ(r) = −dVLJ/dr. The Lennard-Jones potential is shown in Fig. 1.3(a) and
discussed further in Exercise 1.2.

At short time intervals and up to a few molecular diameters the molecules in a liquid
are ordered almost as in a solid. However, whereas the ordering in solids remains fixed in
time and space,1 the ordering in liquids fluctuates. In some sense the thermal fluctuations
are strong enough to overcome the tendency to order, and this is the origin of the ability of
liquids to flow.

1The molecules in a solid execute only small, thermal oscillations around equilibrium points well described
by a regular lattice.
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Fig. 1.3 (a) The Lennard-Jones pair-potential VLJ(r) often used to describe the interaction poten-

tial between two molecules at distance r, see also Exercise 1.2. For small distances, r < r0 ≈ 0.3 nm

the interaction forces are strongly repulsive (gray region), while for large distances, r > r0, they are

weakly attractive. (b) A sketch adopted from Batchelor (2000) of some measured physical quantity

of a liquid as a function of the volume Vprobe probed by some instrument. For microscopic probe vol-

umes (left gray region) large molecular fluctuations will be observed. For mesoscopic probe volumes

(white region) a well-defined local value of the property can be measured. For macroscopic probe

volumes (right gray region) gentle variations in the fluid due to external forces can be observed.

1.3.2 The continuum hypothesis and fluid particles
Although fluids are quantized on the length scale of intermolecular distances (of the order
0.3 nm for liquids and 3 nm for gases), they appear continuous in most lab-on-a-chip ap-
plications, since these typically are defined on macroscopic length scales of the order 10 µm
or more. In this book we shall therefore assume the validity of the continuum hypothesis,
which states that the macroscopic properties of a fluid is the same if the fluid were perfectly
continuous in structure instead of, as in reality, consisting of molecules. Physical quantities
such as the mass, momentum and energy associated with a small volume of fluid containing
a sufficiently large number of molecules are to be taken as the sum of the corresponding
quantities for the molecules in the volume.

The continuum hypothesis leads to the concept of fluid particles, the basic constituents in
the theory of fluids. In contrast to an ideal point particle in ordinary mechanics, a fluid par-
ticle in fluid mechanics has a finite size. But how big is it? Well, the answer to this question
is not straightforward. Imagine, as illustrated in Fig. 1.3(b), that we probe a given physical
quantity of a fluid with some probe sampling a volume Vprobe of the fluid at each mea-
surement. Let Vprobe change from (sub-)atomic to macroscopic dimensions. At the atomic
scale (using, say, a modern AFM or STM tool) we would encounter large fluctuations due
to the molecular structure of the fluid, but as the probe volume increases we soon enter
a size where steady and reproducible measurements are obtained. This happens once the
probe volume is big enough to contain a sufficiently large number of molecules, such that
well-defined average values with small statistical fluctuations are obtained. As studied in
Exercise 1.3 a typical possible side length λ∗ in a cubic fluid particle in a liquid is

λ∗ ≈ 10 nm, (for a liquid). (1.2)

Such a liquid particle contains approximately 4 × 104 molecules and exhibits number fluc-
tuations of the order 0.5%. For a fluid particle in a gas λ∗ is roughly ten time larger. If the
size of the fluid particle is taken too big the probe volume could begin to sample regions of
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the fluid with variations in the physical properties due to external forces. In that case we
are beyond the concept of a constituent particle and enter the regime we actually would like
to study, namely, how do the fluid particles behave in the presence of external forces.

A fluid particle must thus be ascribed a size λ∗ in the mesoscopic range. It must be larger
than microscopic lengths (' 0.3 nm) to contain a sufficiently large number of molecules, and
it must be smaller than macroscopic lengths (' 10 µm) over which external forces change
the property of the fluid. Of course, this does not define an exact size, and in fluid mechanics
it is therefore natural to work with physical properties per volume, such as mass density,
energy density, force density and momentum density. In such considerations the volume is
taken to the limit of a small, but finite, fluid-particle volume, and not to the limit of an
infinitesimal volume.

The continuum hypothesis breaks down when the system under consideration approaches
the molecular scale. This happens in nanofluidics, e.g. in liquid transport through nanopores
in cell membranes or in artificially made nanochannels.

1.3.3 The velocity, pressure and density field
Once the concept of fluid particles in a continuous fluid has been established we can move
on and describe the physical properties of the fluid in terms of fields. This can basically be
done in two ways, as illustrated in Fig. 1.4 for the case of the velocity field. In these notes
we shall use the Eulerian description, Fig. 1.4(a), where one focuses on fixed points r in
space and observes how the fields evolve in time at these points, i.e. the position r and the
time t are independent variables. The alternative is the Lagrangian description, Fig. 1.4(b),
where one follows the history of individual fluid particles as they move through the system,
i.e. the co-ordinate ra(t) of particle a depends on time.

In the Eulerian description the value of any field variable F (r, t) is defined as the average
value of the corresponding molecular quantity Fmol(r

′, t) for all the molecules contained in
some liquid particle of volume ∆V(r) positioned at r at time t,

F (r, t) =
〈
Fmol(r

′, t)
〉
r′∈∆V(r)

. (1.3)

If we for brevity let mi and vi be the mass and the velocity of molecule i, respectively, and

(a) (b)

x x x x

y y y y

v(r, t−∆t)
v(r, t)

v

(

r
b
(t−∆t), t−∆t

)

v

(

ra(t−∆t), t−∆t
)

v

(

r
b
(t), t

)

v

(

r
a
(t), t

)

r r r r

Fig. 1.4 (a) The velocity field v(r, t) in the Eulerian description at the point r at the two times

t−∆t and t. The spatial co-ordinates r are independent of the temporal co-ordinate t. (b) The

Lagrangian velocity fields v
(
ra(t), t

)
and v

(
rb(t), t

)
of fluid particles a (white) and b (dark gray).

The particles pass the point r at time t−∆t and t, respectively. The particle co-ordinates ra,b(t)

depend on t. Note that ra(t−∆t) = r and rb(t) = r.
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furthermore let i ∈ ∆V stand for all molecules i present inside the volume ∆V(r) at time t,
then the definition of the density ρ(r, t) and the velocity field v(r, t) can be written as

ρ(r, t) ≡ 1
∆V

∑

i∈∆V
mi, (1.4a)

v(r, t) ≡ 1
ρ(r, t)∆V

∑

i∈∆V
mivi. (1.4b)

Here, we have introduced the “equal-to-by-definition sign” ≡. Notice how the velocity is
defined through the more fundamental concept of momentum. Through the technique of
micro particle-image velocity, micro-PIV, see Santiago et al. (1998), it is possible to measure
the velocity field in a transparent microfluidic device. Microparticles with diameters of the
order 1 µm are suspended in the flow to be measured. Their positions are recorded as gray-
scale values in a CCD camera through an optical microscope using either either transmitted
or reflected light. Two pictures are recorded by sending two light pulses in quick succession
of the order milliseconds apart at time t1 and t1, and the corresponding light intensities
in each CCD camera pixel positioned at r are denoted I1(r) and I2(r). The CCD pixel
array is divided into a number of interrogartion areas n, and for each of those a cross-
correlation function Rn(∆r) is defined as the average over all pixel co-ordinates in the given
interrogation area n as Rn(∆r) ≡ 〈I1(r)I2(r + ∆r)〉n, where ∆r is some pixel displacement
vector. The value ∆rn of ∆r that maximizes Rn(∆r) is a statistical measure of the overall
displacement of the fluid inside the given interrogation area n. Thus the average flow velocity
vn of that area is given by

vn ≡
∆rn

t2 − t1
. (1.5)

Examples of micro-PIV measurements of velocity fields can be seen in Figs. 15.4 and 15.5.
In general, the field variables in microfluidics can be scalars (such as density ρ, viscosity

η, pressure p, temperature T , and free energy F), vectors (such as velocity v, current density
J, pressure gradient ∇p, force densities f , and electric fields E) and tensors (such as stress
tensor σ and velocity gradient ∇v).

To obtain a complete description of the state of a moving fluid it is necessary to know
the three components of the velocity field v(r, t) and any two of the thermodynamical
variables of the fluid, e.g. the pressure field p(r, t) and the density field ρ(r, t). All other
thermodynamical quantities can be derived from these fields together with the equation of
state of the fluid.

1.4 SI units and mathematical notation

Notation is an important part in communicating scientific and technical material. Especially
in fluid mechanics the mathematical notation is important due to the involved many-variable
differential calculus on the scalar, vector and tensor fields mentioned in the previous section.
Instead of regarding units and notation as an annoying burden the student should instead
regard it as part of the trade that needs to be mastered by the true professional. Learn the
basic rules, and stick to them thereafter.
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1.4.1 SI units

Throughout these notes we shall use the SI units. If not truly familiar with this system,
the name and spelling of the units, or the current best values of the fundamental physical
constants of Nature, the reader is urged to consult the websites of the Bureau International
des Poids et Mesures (BIPM) or the National Institute of Standards and Technology (NIST)
for constants, units, and uncertainty at

http://www.bipm.fr/en/si/ , (1.6a)
http://physics.nist.gov/cuu/ . (1.6b)

A scalar physical variable is given by a number of significant digits, a power of ten and a
proper SI unit. The power of ten can be moved to the unit using prefixes such as giga, kilo,
micro, atto, etc. The SI unit can be written in terms of the seven fundamental units or
suitable derived units. As an example the viscosity η of water at 20 ◦C is written as

η = 1.002× 10−3 kg m−1s−1 = 1.002 mPa s. (1.7)

Note the multiplication sign before the power of ten and the space after it, and note that the
SI units are written in roman and not in italics. Unfortunately, most typesetting systems
will automatically use italics for letters written in equations. Note also the space inserted
between the units. Be aware that even though many units are capitalized, as are the names
of the physicists that gave rise to them, e.g. Pa and Pascal, the unit itself is never capitalized
when written in full, e.g. pascal. Also, the unit is written pascal without plural form whether
there is one, five or 3.14 of them.

There will be two exceptions from the strict use of SI units. Sometimes, just as above,
temperatures will be given in ◦C, so be careful when inserting values for temperature in
formulae. Normally, a temperature T in an expression calls for values in kelvin. The other
exception from SI units is the atomic unit of energy, electronvolt (eV),

1 eV = 1.602× 10−19 J = 0.1602 aJ. (1.8)

Note that it would be possible to use attojoule instead of electronvolt, but this is rarely
done.

1.4.2 Vectors, derivatives and the index notation

The mathematical treatment of microfluidic problems is complicated due to the presence of
several scalar, vector and tensor fields and the non-linear partial differential equations that
govern them. To facilitate the treatment some simplifying notation is called for.

First, a suitable co-ordinate system must be chosen. We shall encounter three, as sum-
marized in Appendix C: Cartesian co-ordinates (x, y, z) with corresponding basis vectors
ex, ey, and ez; cylindrical co-ordinates (r, φ, z) with corresponding basis vectors er, eφ, and
ez; and spherical co-ordinates (r, θ, φ) with corresponding basis vectors er, eθ, and eφ. All
sets of basis vectors are orhtonormal, which means that the involved vectors have unity
length and are mutually orthogonal, but the Cartesian basis vectors are special since they
are constant in space, whereas all other sets of basis vectors depend on position in space.
For simplicity, we postpone the usage of the curvilinear co-ordinates to later chapters and
use only Cartesian co-ordinates in the following.
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The position vector r = (rx, ry, rz) = (x, y, z) can be written as

r = rx ex + ry ey + rz ez = x ex + y ey + z ez. (1.9)

In fact, any vector v can be written in terms of its components vi (where for Cartesian
co-ordinates i = x, y, z) as

v =
∑

i=x,y,z

vi ei ≡ vi ei. (1.10)

In the last equality we have introduced the Einstein summation convention: by definition a
repeated index always implies a summation over that index. Other examples of this handy
notation, the so-called index notation, is the scalar product,

v · u = viui, (1.11)

the length v of a vector v,

v = |v| =
√

v2 =
√

v · v =
√

vivi, (1.12)

and the ith component of the vector-matrix equation u = Mv,

ui = Mij vj . (1.13)

Likewise, the full contraction or double-dot product of two tensors T and S, which in fact
is the trace Tr (TS), can be written as

T :S ≡
∑

i,j

TijSji = TijSji = Tr (TS). (1.14)

Further studies of the index notation can be found in Exercise 1.4.
For the partial derivatives of some function F (r, t) we use the symbols ∂i, with i = x, y, z,

and ∂t,

∂xF ≡ ∂F

∂x
, and ∂tF ≡ ∂F

∂t
, (1.15)

while for the total time derivative, as, e.g. in the case of the Lagrangian description of some
variable F

(
r(t), t

)
following the fluid particles, see Fig. 1.4(b), we use the symbol dt,

dtF ≡ dF

dt
= ∂tF +

(
∂tri

)
∂iF = ∂tF + vi∂iF. (1.16)

The nabla operator ∇ containing the spatial derivatives plays an important role in differ-
ential calculus. In Cartesian co-ordinates it is given by

∇ ≡ ex∂x + ey∂y + ez∂z = ei∂i. (1.17)

Note that we have written the differential operators to the right of the unit vectors. While
not important for Cartesian co-ordinates it is crucial when working with curvilinear co-
ordinates. The Laplace operator, which appears in numerous partial differential equations
in theoretical physics, is just the square of the nabla operator,
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∇2 ≡ ∇2 ≡ ∂i∂i. (1.18)

In terms of the nabla operator the total time derivative in Eq. (1.16) can be written as

dtF
(
r(t), t

)
= ∂tF + (v ·∇)F. (1.19)

Since ∇ is a differential operator, the order of the factors does matter in a scalar product
containing it. So, whereas v · ∇ in the previous equation is a differential operator, the
product ∇·v with the reversed order of the factors is a scalar quantity. It appears so often
in mathematical physics that it has acquired its own name, namely the divergence of the
vector field,

∇·v ≡ ∂xvx + ∂yvy + ∂zvz = ∂ivi. (1.20)

Concerning integrals, we denote the 3D integral measure by dr, so that in Cartesian co-
ordinates we have dr = dxdy dz, in cylindrical co-ordinates dr = rdrdφdz, and in spherical
co-ordinates dr = r2dr sin θdθ dz. We also consider definite integrals as operators acting on
integrands, thus we keep the integral sign and the associated integral measure together to
the left of the integrand. As an example, the integral over a spherical body with radius a of
the scalar function S(r) is written as

∫

sphere

S(x, y, z) dxdy dz =
∫

sphere

dr S(r) =
∫ a

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ S(r, θ, φ). (1.21)

When working with vectors and tensors it is advantageous to use the following two special
symbols: the Kronecker delta δij ,

δij =
{

1, for i = j,
0, for i 6= j,

(1.22)

and the Levi–Civita symbol εijk,

εijk =





+1, if (ijk) is an even permutation of (123) or (xyz),
−1, if (ijk) is an odd permutation of (123) or (xyz),

0, otherwise.
(1.23)

In the index notation, the Levi–Cevita symbol appears directly in the definition of the
cross-product of two vectors u and v,

(u× v)i ≡ εijk ujvk, (1.24)

and in the definition of the rotation ∇×v of a vector v. The expression for the ith component
of the rotation is:

(∇× v)i ≡ εijk ∂jvk. (1.25)

To calculate in the index notation the rotation of a rotation, such as ∇ × (∇ × v), or the
rotation of a cross-product it is very helpful to know the following expression for the product
of two Levi–Civita symbols with one pair of repeated indices (here k):

εijk εlmk = δilδjm − δimδjl. (1.26)

Note the plus sign when pairing index 1 with 1 and 2 with 2 (direct pairing), while a minus
sign appears when pairing index 1 with 2 and 2 with 1 (exchange pairing).
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Let us end this short introduction to the index notation by an explicit example, namely
the proof of the expression for the rotation of a rotation of a vector field v,

∇× (∇× v) = ∇(∇·v)−∇2v, (1.27a)

or the equivalent expression for the gradient of the divergence,

∇(∇·v) = ∇2v + ∇× (∇× v). (1.27b)

These expressions are used in hydrodynamics, acoustics and electromagnetism. First we write
out the ith component of the left-hand side of Eq. (1.27a) using the Levi–Civita symbol for
each cross-product, one at a time,

(∇×∇× v
)
i
= εijk∂j

(∇× v
)
k

= εijk∂j

(
εklm∂lvm

)
= εijkεklm ∂j∂lvm. (1.28a)

Then we permute the indices in the second Levy–Civita symbol and apply Eq. (1.26),
(∇×∇×v

)
i
= εijkεlmk ∂j∂lvm =

(
δilδjm− δimδjl

)
∂j∂lvm = δilδjm ∂j∂lvm− δimδjl ∂j∂lvm.

(1.28b)
Finally, we perform the sum over the indices appearing in the Kronecker deltas
(∇×∇×v

)
i
= ∂j∂ivj−∂j∂jvi = ∂i

(
∂jvj

)−(
∂j∂j

)
vi = ∂i

(∇·v)−∇2vi =
[∇(∇·v)−∇2v

]
i
,

(1.28c)
which indeed proves Eq. (1.27a) and therefore also Eq. (1.27b).

Finally, we use upright letters for the two mathematical constants

e ≡ the exponential constant exp(1), and i ≡ the imaginary unit
√−1. (1.29)

1.5 Perturbation theory

As we shall see shortly, the governing differential equations of microfluidics can only be solved
analytically in a few idealized cases. Given sufficiently powerful computers, it is of course
possible to solve almost any problem numerically, however, it is often of great value also
to find analytical approximations to these solutions. One general applicable approximation
scheme is the so-called perturbation theory, which we shall se examples of throughout the
book. Here, we give a short introduction to the method.

Imagine that a given problem can be formulated in terms of some partial differential
operator D acting on the field f(r, t) as

Df = 0. (1.30)

The goal is to determine f . Now, assume that the differential operator can be written as a
series expansion

D = D0 + αD1 + α2D2 + · · · , (1.31)

where D0 is a differential operator, which represents a simpler problem that we can solve,
where α is a small dimensionless parameter, known as the perturbation parameter, which
describes how far the actual problem deviates from the simpler solvable problem, and where
Di for i > 0 are known differential operators. The simpler problem is also denoted the
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unperturbed problem, while terms proportional to α and higher powers in α are denoted
the perturbation terms. For α = 0 the actual problem is identical to the simpler problem,
and can thus be solved, while for 0 < |α| ¿ 1 the actual problem deviates slightly from the
simpler problem. The idea is to calculate the field f by successively finding the higher-order
terms in the expansion

f = f0 + αf1 + α2f2 + · · · . (1.32)

Inserting the perturbation series for D and f results, under the assumption of proper con-
vergence, in the following expression for Df ,

Df = (D0 + αD1 + α2D2 + · · · )(f0 + αf1 + α2f2 + · · · )
= D0f0 + α(D1f0 +D0f1) + α2(D2f0 +D1f1 +D0f2) + · · · . (1.33)

The original problem Eq. (1.30), Df = 0 is consequently reformulated as

D0f0 + α(D1f0 +D0f1) + α2(D2f0 +D1f1 +D0f2) + · · · = 0. (1.34)

For this to be true for any value of α each term must be zero, and we get the following
infinite system of equations to solve,

D0f0 = 0, order α0 terms, (1.35a)

D0f1 = −D1f0, order α1 terms, (1.35b)

D0f2 = −D2f0 −D1f1, order α2 terms, (1.35c)
...

... .

By assumption, the homogeneous zero-order equation (1.35a) is the unperturbed, solvable
problem, and f0 can therefore be found. This implies that the first-order equation (1.35b)
becomes an inhomogeneous differential equation for the first-order contribution f1 with a
known right-hand side, so in principle we can now find f1. This in turn means that the
second-order equation (1.35c) has become an inhomogeneous differential equation for f2

with a known right-hand side determined by the, at this point known, lower-order fields f0

and f1, and in principle f2 can be found. In this way the perturbation scheme allows for
consecutive determination of fn once all lower-order contributions fi, for i < n have been
found.

In practice, it is only possible or worthwhile to calculate a few of the terms, rarely going
beyond the second order contribution. The series is therefore truncated, i.e. neglecting all
terms O(

α3
)

with α3 and higher powers, and an approximate result has been found,

f = f0 + αf1 + α2f2 +O(
α3

) ≈ f0 + αf1 + α2f2. (1.36)

In some cases it may be advantageous to absorb the perturbation parameter α into the
operators and functions as αnDn → Dn and αnfn → fn. The perturbation expansions
Eqs. (1.31) and (1.32) become

D = D0 +D1 +D2 + · · · , (1.37a)
f = f0 + f1 + f2 + · · · . (1.37b)
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In the differential equation Df = 0, terms of order n are those where the sum of indices is
n, e.g. Dkfn−k, so the expanded differential equation (1.34) is now written as

(D0f0) + (D1f0 +D0f1) + (D2f0 +D1f1 +D0f2) + · · · = 0, (1.38)

where the parentheses contain the zero-order term, the first-order terms, the second-order
terms, etc. The infinite system of equations (1.35) is unaffected by making the perturbation
parameter α implicit.

1.6 Eigenfunction expansion
A second general approach involves expansion of the hydrodynamic fields in certain basis
functions or eigenfunctions φn(r), which are found as the eigenfunctions to simpler differ-
ential equation eigenvalue problems related to the problem to be solved. Often, the basis
functions φn(r) are determined from the Helmholtz equation with Dirichlet boundary con-
ditions involving the Laplace operator with eigenvalues k2

n in a domain Ω with the boundary
∂Ω,

∇2φn(r) = −k2
n φn(r), for r ∈ Ω and n = 1, 2, 3, . . . , (1.39a)

φn(r) = 0, for r ∈ ∂Ω. (1.39b)

For a 1D domain the expansion is the standard Fourier expansion in sine functions, while
for a 2D circular domain it is the Fourier–Bessel expansion in Bessel functions. Any field
f(r) can be expanded in the basis- or eigenfunctions as

f(r) =
∞∑

n=1

anφn(r), (1.40)

and the problem is solved once the coefficients an are determined.
The basis- or eigenfunctions are mutually orthogonal in the sense that the integral over

the domain Ω is zero for a product of two different eigenfunctions is zero, and by proper
normalization the integral over the square of a single eigenfunction is unity,

∫

Ω

dr φn(r)φm(r) = δnm, (1.41)

where we have used the Kronecker delta Eq. (1.22). This special orthonormality property of
the eigenfunctions forms the basis for the so-called Hilbert space theory of functions, where
functions can be thought of as abstract vectors in a linear vector space. In physics, Hilbert
spaces are used particularly in quantum physics, and the reader unfamiliar with the concept
is referred to any basic textbook on quantum theory for further reading. We shall briefly use
some of the concepts in fluid dynamics mainly as a convenient shorthand notation. First,
we introduce the Dirac bra-ket notation for real-valued functions and integrals,

〈f | ≡ f(r), the bra of f, (1.42a)
|g〉 ≡ g(r), the ket of g, (1.42b)

〈f |g〉 ≡
∫

Ω

dr f(r) g(r), the bra(c)ket of f g. (1.42c)

For complex-valued functions the function f associated with the bra-vector is to be complex
conjugated. The bra(c)ket 〈f |g〉 is also known as the inner product of f and g, and the
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bra-ket notation makes it possible to interpret the involved operation of “multiplying by a
function f followed by integration over the domain” as a simple “multiply from the left by
the bra 〈f |”. From the linearity of integrals it is easy to show, see Exercise 1.6, that

〈a1f1+a2f2|b1g1+b2g2〉 = a1b1〈f1|g1〉+ a1b2〈f1|g2〉+ a2b1〈f2|g1〉+ a2b2〈f2|g2〉. (1.43)

In the Dirac notation the expansion Eq. (1.40) becomes

|f〉 =
∞∑

n=1

an|φn〉, (1.44)

and the othonormality property Eq. (1.41) appears as

〈φn|φm〉 = δnm. (1.45)

If we assume that the function f(r) is known, then we can determine the expansion coeffi-
cients an by multiplying Eq. (1.44) from the left by 〈φm| and utilizing the linearity of the
inner product as well as the othonormality of the eigenfunctions,

〈φm|f〉 = 〈φm|
[ ∞∑

n=1

an|φn〉
]
〉 =

∞∑
n=1

an〈φm|φn〉 = am. (1.46)

This simple result is the generalization of the familiar method of determining Fourier coef-
ficients. We note that by combining Eqs. (1.44) and (1.46) we obtain

|f〉 =
∞∑

n=1

〈φn|f〉 |φn〉 =
∞∑

n=1

|φn〉〈φn|f〉 =

[ ∞∑
n=1

|φn〉〈φn|
]
|f〉, (1.47)

and consequently the parenthesis on the right-hand side must be unity, and we have derived
the so-called completeness condition

∞∑
n=1

|φn〉〈φn| ≡ 1. (1.48)

As a simple example of how to use the eigenfunction expansion to solve problems, let us
consider the Poisson equation for the unknown field f(r) with a known source term g(r),

∇2f(r) = −g(r). (1.49)

Inserting the expansions |f〉 =
∑∞

n=1 an|φn〉 and |g〉 =
∑∞

n=1〈φn|g〉|φn〉 into the Poisson
equation leads to

∞∑
n=1

an∇2|φn〉 = −
∞∑

n=1

〈φn|g〉 |φn〉. (1.50)

Employing the fundamental relation Eq. (1.39a) and multiplying from the left by 〈φm| leads,
as shown in Exercise 1.6 to the determination of the coefficients am, and the solution can
be written as

|f〉 =
∞∑

n=1

〈φn|g〉
k2

n

|φn〉. (1.51)

This simple example points to the usefulness of the eigenfunction-expansion approach. The
eigenvalues k2

n are increasing rapidly for increasing values of n, so for many practical purposes
it suffices to truncate the infinite sum and include only the first few terms.
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In Section 3.4.1 we shall use eigenfunction expansion to study liquid flow through straight
channels of constant but arbitrarily shaped cross-sections. In this context the domain Ω is
the 2D cross-section, and issues related to the area and areal coverage become important.
In the Dirac notation the area A of the domain Ω is written as

A =
∫

Ω

dr 1 =
∫

Ω

dr 12 = 〈1|1〉. (1.52)

Likewise, when integrating over an eigenfunction φn(r) over the domain we get a measure of
how much area this eigenfunction effectively covers. However, since 〈1|1〉 = A and 〈φn|φn〉 =
1 the dimension of 〈1|φn〉 is seen to be length. Therefore the so-called effective area An of
eigenfunction φn(r) is defined as the square of the area integral,

An =
[ ∫

Ω

dr φn(r)
]2

=
[ ∫

Ω

dr φn(r) φn(r)
]2

=
[〈1|φn〉

]2 = 〈φn|1〉〈1|φn〉. (1.53)

1.7 Further reading

Two classic textbooks on the fundamentals of fluid dynamics are Landau and Lifshitz (1993)
and Batchelor (2000), and more are listed in Section 2.4. Books focusing in particular on
microfluidics or lab-on-a-chip systems are Karniadakis and Beskok (2002), Geschke, Klank
and Telleman (2004), Tabeling (2005), and Berthier and Silberzan (2006); these titles are
well supplemented by the review papers on microfluidics by Stone, Stroock and Ajdari (2004)
and Squires and Quake (2005). For perturbation theory in fluid mechanics see Van Dyke
(1975), while eigenfunction expansion in the Dirac notation is treated in quantum mechanics
textbooks such as Merzbacher (1998) and Bruus and Flensberg (2004).

1.8 Exercises

Exercise 1.1
The intermolecular distance in air
Assume that air at room temperature and a pressure of 1000 hPa is an ideal gas. Estimate
the average intermolecular distance. Compare the result with that of liquids.

Exercise 1.2
The Lennard-Jones potential for intermolecular pair-interaction
An approximative but quite useful expression for intermolecular pair-interactions is the so-
called Lennard-Jones potential,

VLJ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]
. (1.54)

Let r0 be the distance at which the pair of molecules experience the smallest possible inter-
action energy.

(a) Determine r0 in units of the collision diameter σ and calculate the corresponding
interaction energy V (r0) in units of the maximum attraction energy ε.

(b) Calculate VLJ(3σ) and use the result to discuss the applicability of the ideal-gas
model to air, given that for nitrogen σN2

= 0.3667 nm and εN2
/kB = 99.8 K.



16 Basic concepts in microfluidics

Exercise 1.3
The size of the fundamental fluid particle in a liquid
Consider a small cube of side length λ∗ in the middle of some liquid. The typical average
intermolecular distance in the liquid is the one discussed in Section 1.3.1. Due to random
thermal fluctuations the molecules inside the cube are continuously exchanged with the
surrounding liquid, but on average there are N molecules inside the cube. For sufficiently
small fluctuations the cube can play the role of a fundamental fluid particle.

(a) Use the standard result from basic statistics that the standard deviation of the
counting number of uncorrelated random events (here, the number N of molecules inside
the cube) is given by

√
N to estimate the side length λ, such that the relative uncertainty√

N/N of the number of molecules is 1%.
(b) Determine λ∗ such that the relative uncertainty of the number of molecules is 0.1%.

Exercise 1.4
The index notation
To become familiar with the index notation try to work out the following problems.

(a) Use the index notation to prove that ∂k

(
p δik

)
= (∇p)i.

(b) Use the index notation to prove that ∇·(ρv) = (∇ρ)·v + ρ∇·v.
(c) Prove that Eq. (1.25) for the rotation of a vector is correct.
(d) Use Eqs. (1.24) and (1.26) to prove that a× (b× c) = (a·c)b− (a·b)c.

Exercise 1.5
First-order perturbation of the damped, harmonic oscillator
Consider the 1D, damped, harmonic oscillator of mass m, force constant k, damping coeffi-
cient γ and position co-ordinate x(t) described by the equation of motion

m ∂ 2
t x = −kx−mγ ∂tx. (1.55)

The initial condition is given by x(0) = ` and ∂tx(0) = 0. We study the solution of this
problem using perturbation theory using the damping as the perturbation. The unperturbed
oscillator has γ = 0 and the solution x0(t) = ` cos(ω0t) with ω0 ≡

√
k/m.

(a) Introduce the following dimensionless variable x̃ and t̃ by the definitions x ≡ ` x̃
and t ≡ t̃/ω0, and let α = γ/ω0 be the dimensionless perturbation parameter. Calculate the
first-order perturbation result x̃ = x̃0 + α x̃1.

(b) Find the exact solution using a trial solution of the complex form x̃ = exp(iβt̃), and
compare a first-order expansion in α of the result with the first-order perturbation result.

Exercise 1.6
The Dirac bra-ket notation
The Dirac bra-ket notation is a compact notation that makes it possible to maintain the
overview in a complex calculation without getting swamped by details.

(a) Prove the linearity relation for the inner product given in Eq. (1.43):
〈a1f1+a2f2|b1g1+b2g2〉 = a1b1〈f1|g1〉+ a1b2〈f1|g2〉+ a2b1〈f2|g1〉+ a2b2〈f2|g2〉.

(b) Use the Dirac notation expansions |f〉 =
∑∞

n=1 an|φn〉 and |g〉 =
∑∞

n=1〈φn|g〉|φn〉
to solve the Poisson equation for the unknown field f(r) with a known source term g(r).
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1.9 Solutions
Solution 1.1
The intermolecular distance in air
A single air molecule occupies the volume λ3 = V/N , where V is the volume of air containing
N molecules. The length scale λ thus represents the average intermolecular distance. Using
pV = NkBT , with p = 105 Pa and T = 300 K, we find

λ =
( V

N

) 1
3

=
(

kBT

p

) 1
3

= 3.5 nm. (1.56)

Thus the intermolecular distance in air is roughly one order of magnitude larger than the
intermolecular distance in a typical liquid.

Solution 1.2
The Lennard-Jones potential for intermolecular pair interaction

(a) The minimum is found by solving ∂rVLJ(r) = 0, which yields r0 = 2
1
6 σ ≈ 1.12σ, and

a corresponding interaction energy of VLJ(r0) = −ε.
(b) VLJ(3σ) = −0.0055ε. For nitrogen this means that in the distance 3σN2

= 1.1 nm the
interaction energy in kelvin is VLJ(3σN2

)/kB = −0.5 K. The average intermolecular distance
is 3.5 nm, while the average kinetic translation energy in kelvin is 3

2T = 450 K. Thus, the
interaction effects are minute and can be neglected.

Solution 1.3
The size of the fundamental fluid particle in a liquid
Consider a cube of liquid with side length λ∗ in which α =

√
N/N is a given relative

uncertainty in the number of molecules inside the cube. Each molecule occupies the volume
λ3, where λ = 0.3 nm is a typical value of the intermolecular distance in a liquid. Clearly
(λ∗)3 = Nλ3 and N = α−2 and thus λ∗(α) = α−

2
3 λ.

(a) With α = 10−2 we find λ∗ = 6.5 nm.
(b) With α = 10−3 we find λ∗ = 30 nm. For a gas λ∗ is roughly ten times larger.

Solution 1.4
The index notation

(a) Since δij is a constant we have ∂kδij ≡ 0 for any value of i, j and k.
We thus find ∂k

(
pδij

)
=

(
∂kp

)
δij + p

(
∂kδij

)
= ∂ip + 0 =

(∇p)i.
(b) For the divergence of the current density we get

∇·(ρv) = ∂j

(
ρvj) =

(
∂jρ

)
vj + ρ

(
∂jvj

)
=

(∇ρ
)·v + ρ∇·v

(c) Let us consider the z component of the rotation. By definition we have
(∇× v

)
z

=
∂xvy−∂yvx. Using index notation we obtain

(∇×v
)
z

= εzjk∂jvk. The only non-zero terms
are carrying the indices (j, k) = (x, y) or (j, k) = (y, x), and since εzxy = +1 and εzyx = −1
we get the desired result:

(∇ × v
)
z

= εzjk∂jvk = ∂xvy − ∂yvx. Likewise, for the x and y
components of the rotation.

(d) For the double cross-product identity we get
[
a × (b × c)

]
i = εijkaj(b × c)k =

εijkaj

(
εklmblcm

)
= εijkεlmk ajblcm, where in the last equation we have made an even per-

mutation of the indices in the second Levi–Civita symbol, εklm = εlmk. Finally, we use
Eq. (1.26) to express the product of the two Levi–Civita symbols as a linear combina-
tion of Kronecker deltas, εijkεlmk ajblcm =

(
δilδjm − δimδjl

)
ajblcm = ajcjbi − ajbjci =

(a · c)bi − (a · b)ci =
[
(a · c)b− (a · b)c

]
i
, which proves the relation.
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Solution 1.5
First-order perturbation of the damped, harmonic oscillator
Introducing the dimensionless variables yields the following equation of motion,

∂ 2
t̃

x̃ = −x̃ − α ∂t̃ x̃. (1.57)

(a) With x̃ = x̃0 + αx̃1 the zero-order equation becomes ∂ 2
t̃

x̃0 = −x̃0 with the solution
x̃0(t̃) = cos(t̃). The first-order equation becomes ∂ 2

t̃
x̃1 = −x̃1 − ∂

t̃
x̃0 = −x̃1 + sin(t̃) with

the solution x̃1(t̃) = − 1
2 t̃ cos(t̃). So the complete first-order perturbation result is

x̃(t̃) = cos(t̃)
[
1− 1

2αt̃
]

+O(α2). (1.58)

(b) Insertion of the trial function x̃ = exp(iβt̃) into Eq. (1.57) leads to the simple
algebraic equation −β2 = −1− i αβ with the solution β =

√
1− (α/2)2 + i α/2 ≈ 1 + i α/2.

Hence
Re

[
eiβt̃

]
≈ Re

[
eit̃ e−αt̃/2

]
= cos(t̃) e−αt̃/2 ≈ cos(t̃)

[
1− 1

2αt̃
]

(1.59)

in agreement with the first-order result Eq. (1.58).

Solution 1.6
The Dirac bra-ket notation

(a) Use the basic definition Eq. (1.42c) to obtain

〈a1f1+a2f2|b1g1+b2g2〉
=

∫

Ω

dr
[
a1f1(r)+a2f2(r)

] [
b1g1(r)+b2g2(r)

]

=
∫

Ω

dr
[
a1b1f1(r)g1(r) + a1b2f1(r)g2(r) + a2b1f2(r)g1(r) + a2b2f2(r)g2(r)

]

= a1b1〈f1|g1〉+ a1b2〈f1|g2〉+ a2b1〈f2|g1〉+ a2b2〈f2|g2〉. (1.60)

(b) With the expansion |f〉 =
∑∞

n=1 an|φn〉 we get

∇2|f〉 =
∞∑

n=1

an∇2|φn〉 =
∞∑

n=1

an(−k2
n)|φn〉, (1.61)

and with |g〉 =
∑∞

n=1〈φn|g〉|φn〉 the Poisson equation ∇2f(r) = −g(r) therefore becomes

∞∑
n=1

ank2
n|φn〉 =

∞∑
n=1

〈φn|g〉 |φn〉. (1.62)

When multiplied by 〈φm| and using the orthonormality property Eq. (1.45) this reduces to

amk2
m = 〈φm|g〉. (1.63)

Division by k2
m leads to an expression for am and thus a determination of the solution |f〉,

|f〉 =
∞∑

m=1

am|φm〉 =
∞∑

m=1

〈φn|g〉
k2

m

|φm〉. (1.64)
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