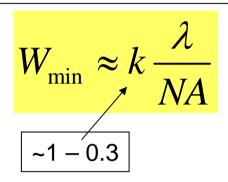
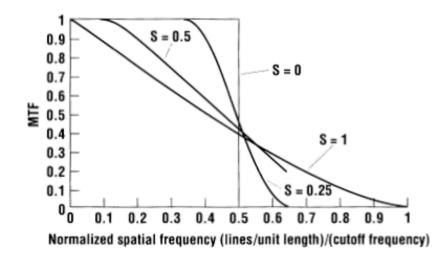
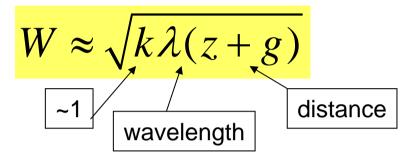

Lecture 6

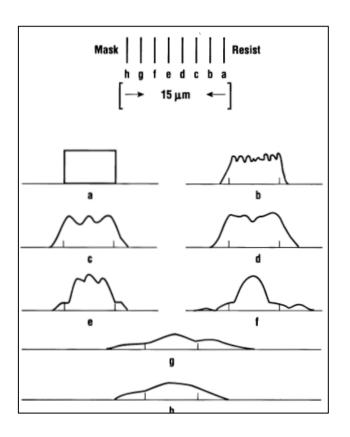
Photoresist


Simple exposure system


Lecture content

- Resist chemistry
- Resist resolution and line profile
- Resist technology
- Advanced resists


Resolution of the aerial image



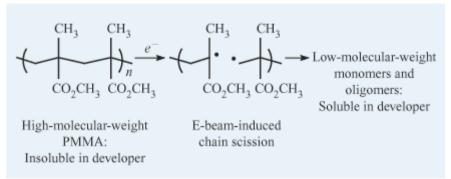
• **k** depends on many factors incl. illumination system, mask etc.

Contact/proximity

Photoresists

Resist polarity

positive resists: exposed regions dissolve in the developer


negative resist: unexposed regions dissolve

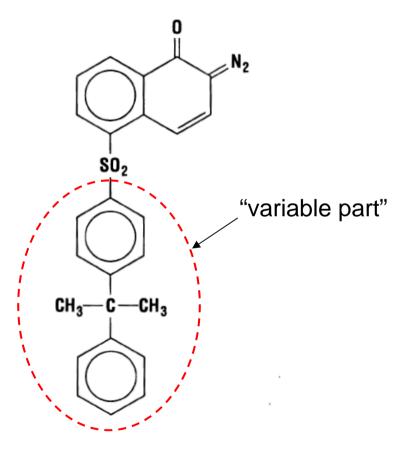
photoresist = resin (base material) + photoactive component (PAC) + solvent

desired qualities: sensitivity (mJ/cm²) resolution

Mechanism of a simple photoresist

- Solubility of a polymer ~ MW⁻².
 - so, scission of a polymer during exposure leads to better solubility: positive resist, e.g. PMMA, ZEP

Poly(methylmethacrylate) - PMMA resist


$$CH_3$$
 Cl e^- Chain scission CO_2CH_3

poly(methyl- α -chloroacrylate-co- α -methylstyrene)

 cross-linking of a polymer during exposure leads to reduced solubility: negative photoresist, e.g.
 Polystyrene

Most current positive resists are based on DQN combination

Meta-cresol novolac

Diazoquinon

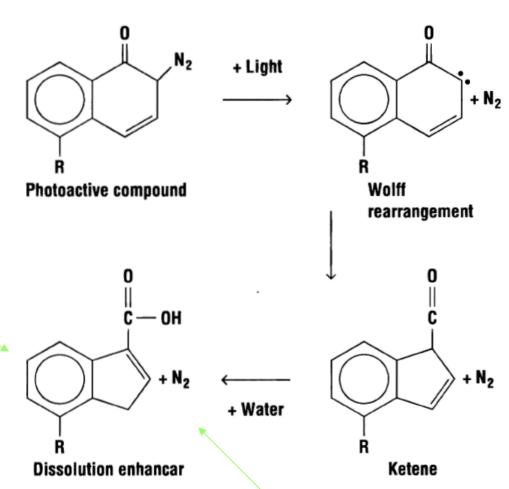
Novolac:

- viscous liquid, viscosity can be adjusted with organic solvents;
- dissolves easily in aqueous solutions

Meta-cresol novolac

Diazoquinon

- in <u>unexposed</u> state acts as inhibitor, reduces dissolution rate in developer by factor >10 (softbake crucial!)
- in exposed state helps dissolution in developer


Diazoquinon

Photolysis of DQ

carboxylic acid,

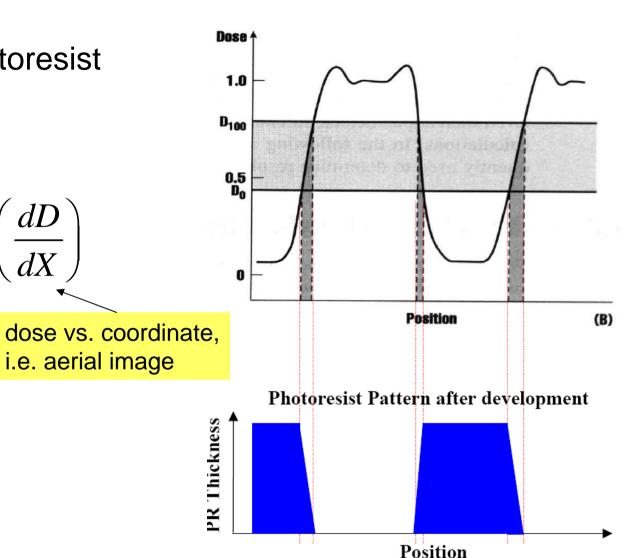
solution

dissolves in base

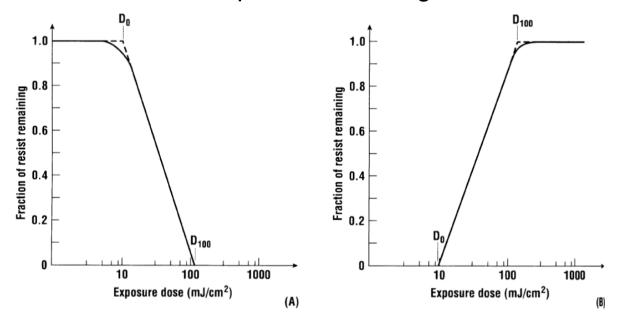
foams resist, assist dissolution

- Advantages:
 - unexposed areas are not attacked by the developer: possible to create narrow lines on a blank field
 - fairly resistant to chemical attack (incl. plasma etching)

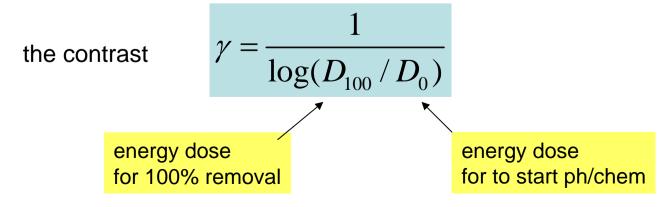
Example: Shipley S1800 family of resists


Negative resists

- usually employ crosslinking: larger molecules are less soluble
- high photo speed
- main disadvantage: swelling during development in organic solvents
- generally not used for features smaller than 2um

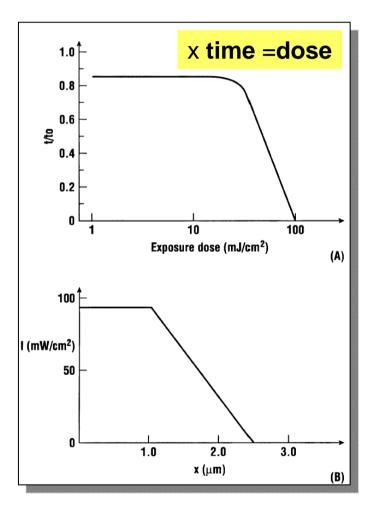

Slope of photoresist lines:

$$\frac{dZ}{dX} = \left(\frac{dZ}{dD}\right) \left(\frac{dD}{dX}\right)$$


profile vs. dose, i.e. contrast

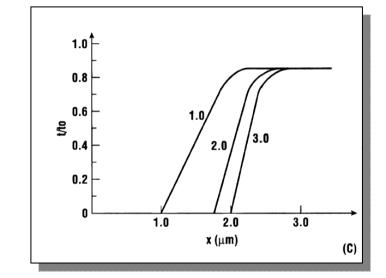
contrast curves for idealized positive and negative tone resists

The measure of the ability of a resist to distinguish between black and white areas of the mask:


contrast values for common resists

λ (nm)	AZ-1350	AZ-1450	Hunt 204
248	0.7	0.7	0.85
313	3.4	3.4	1.9
365	3.6	3.6	2
436	3.6	3.6	2.1

$$D_{100}/D_0 = 10^{\frac{1}{2}} - 10^{\frac{1}{5}}$$


 contrast depends on the processing e.g. softbake, postbake, wavelength, development etc.

calculating the resist profile

$$\frac{dZ}{dX} = \left(\frac{dZ}{dD}\right) \left(\frac{dD}{dX}\right)$$

resist profile at several exposure times

- lower exposures (< 50mJ/cm²): shallow angle resist profile
- high exposure (>150mJ/cm²): sharp profile determined by the quality of aerial image and scattering
- typically exposure is in moderate or high exposure regimes

light absorption in the resist

$$I = I_0 e^{-\alpha z}$$

- D₀ independent on the resist thickness (T_R)
- D₁₀₀ inversely proportional to adsorbance A:

$$A = \frac{\int_{0}^{T_{R}} (I - I(z)) dz}{I_{0}I_{R}} = 1 - \frac{1 - e^{-\alpha T_{R}}}{\alpha T_{R}}$$

the contrast is

$$\gamma = \frac{1}{\beta + \alpha T_R}$$

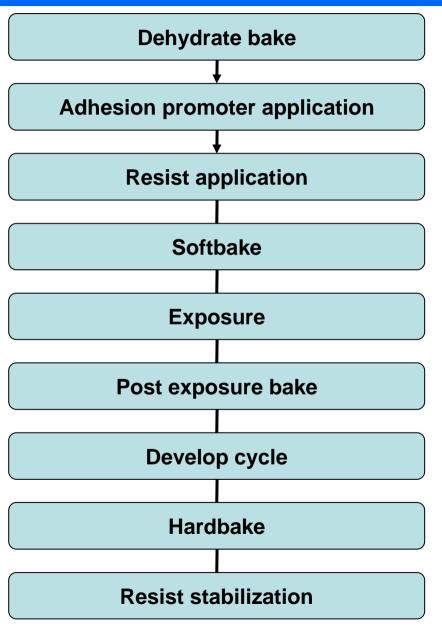
contrast drops with the resist thickness!

! thinner resist has higher contrast though less stable against etch and might limit the thickness of lift-off layer.

The Critical Modulation Transfer Function (CMTF)

$$CMTF_{resist} = \frac{D_{100} - D_0}{D_{100} + D_0} \qquad \gamma = (\log(D_{100}/D_0))^{-1} CMTF_{resist} = \frac{10^{1/\gamma} - 1}{10^{1/\gamma} + 1}$$

The resolution criterion:


For successfully resolved image the MTF should be larger than CMTF

Radiation and Resist profiles

scattering at the resist interface and adsorption affect the resist profile

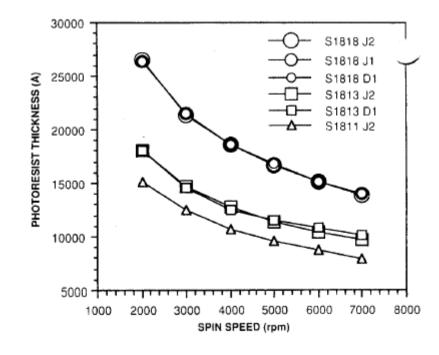
develop rate for exposed/unexposed resist

Profile	Dose	Developer influence	R/R ₀	Uses
	high	low	>10	lift-off, ion implant
	moderate	moderate	5-10	dry etch, lift- off, wet etch
	low	dominant	<5	wet etch

150 – 200 °C in vacuum or dry nitrogen

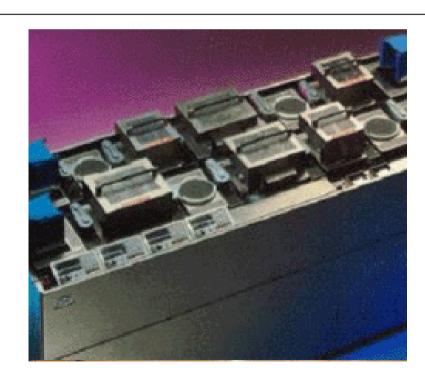
usually, HMDS (hexamethyldisilazane) via spin coating or vapour deposition spin coating with static or dynamic dispense $T_R \propto 1/\sqrt{\omega}$

to remove solvent and establish exposure characteristics, typ. 90-100 °C


required for some (negative) resists

alkaline develop for DQN (or alkaline-free based on TMAH (tetramethyl ammonium hydroxide)

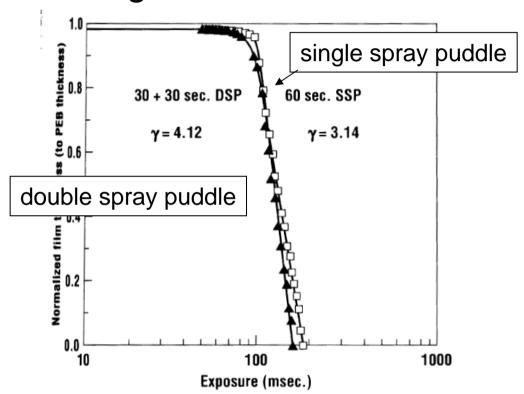
to increase resist stability for etching


- spin coating critical process! depends on:
 - deposition technique (static, dynamic, prespin)
 - acceleration (important for uniformity)
 - spin rate (2000 6000 rpm)
 - resist viscosity

Spin curves for Shipley S1800

$$T_R \propto \frac{1}{\sqrt{\omega}}$$

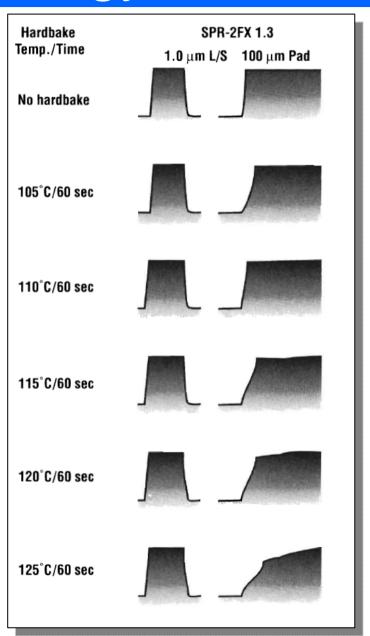
- spin coating equipment:
 - automated track systems: high reproducibility, high costs
 - manual spin coater + hot plate/oven


Develop – can change the image contrast

techniques

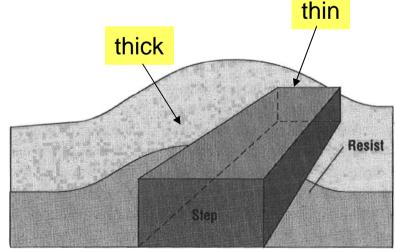
- tank
- puddle
- spray etc.

Developer


- metal bearing
- metal free

 hardbake – changes chemical/physical properties, affects the pattern

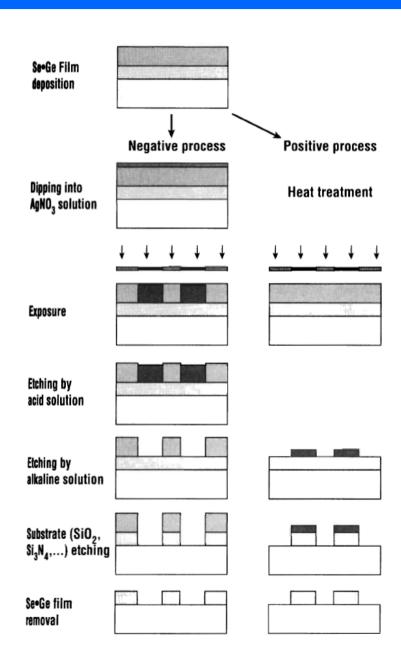
• resist profiles of 1 μ m line vs. hardbake T


Second-order exposure effects

- absorption in the resist and absorption spectrum
- actinic effect (bleaching)

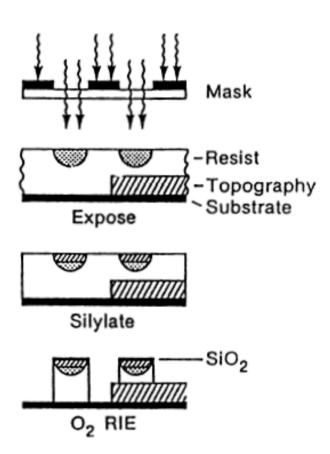
MICROPOSIT S1813 J2 PHOTO RESIST Figure 6. Absorbance Spectrum

 effect of the underlying topography: thickness variation will cause line width variation.

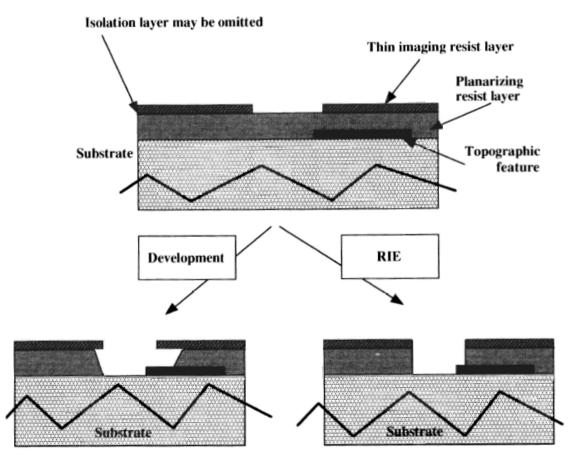

- Resist for 193 nm and 157 nm lines
 - Novolac strongly adsorbs below 248 nm and DQ doesn't bleach significantly
 - Possibilities:
 - Chemically amplified resist (CAR) system based on DQN. Typically: Photoacid generator (PAG)
 - PMMA or other polymers that undergo chain scission or crosslinking. (high contrast, but low sensitivity ~200 mJ/cm², against 5-10 mJ/cm² required, very low etch resistance).
 - acrylic-based resins with PAG and a protection agent

Photoacid generators

- CAR related effects:
 - diffusion of PAG from exposed to unexposed regions
 - deterioration of the surface of the resist upon exposure to air

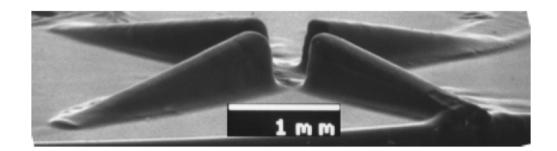

Inorganic resists

- Ag/Se-Ge:
 - very high contrast γ ~7
 - requires planarization
 - tends to have pinholes
 - defects added during plating


dry developable resists

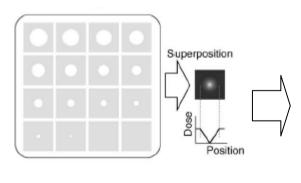
Example: Si-containing resists (polysilynes-based)

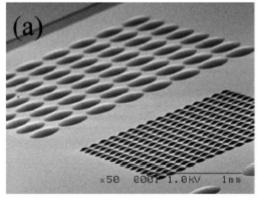
Multilayer resist


- multilayer resist may be required for
 - resolution improvement
 - topography planarization
 - lift-off improvement
 - etching improvement etc.

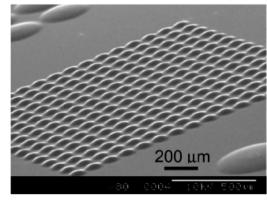
Gray-scale lithography

 regime where resist profile strongly depends on exposure (low doses) can be used to create 3D structures

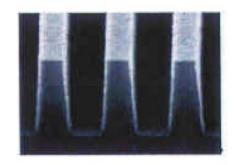

SU8 gray scale lithography

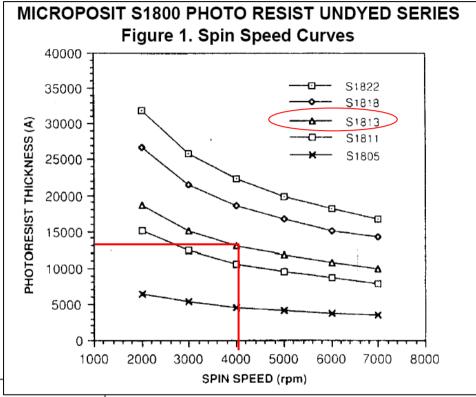

dry

etch


fabrication of aspherical lens array by gray scale lithography

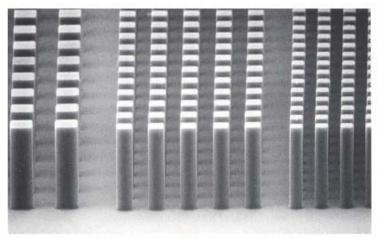
DMD superposition of an image stack

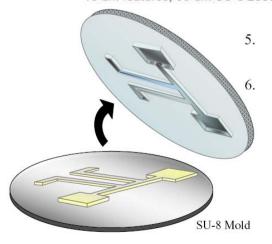

photoresist pattern


pattern in silicon

Shipley S1800 resist

- positive resist
- exist in a number of different viscosity formulation, we use S1813

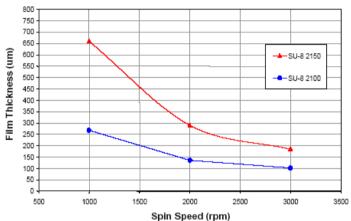

0.48 µm Lines/Spaces


H	High Resolution Process Parameters	
(Refer to Figure 1)		
`		
Substrate:	Polysilicon	
Photoresist:	MICROPOSIT®S1813® PHOTO RESIST	
Coat:	12,300Å	
Softbake:	115°C/60 sec. Hotplate	
Exposure:	Nikon 1505 G6E, G-Line (0.54 NA), 150 mJ/cm ²	
Develop:	MICROPOSIT® MF®-321 DEVELOPER	
	15 + 50 sec. Double Spray Puddle (DSP) @ 21°C	

SU8-2000

- negative resist,
- thick layers <200mm in a single coat
- high aspect ratios, up to 1:10
- vertical sidewalls

10 um features, 50 um SU-8 2000 coating


Process Flow

SU-8 2000 (cont)

spin coat

Figure 1. SU-8 2000 Spin Speed versus Thickness

soft bake

THICKNESS	SOFT BA	KE TIMES
microns	(65°C)* minutes	(95°C) minutes
100 - 150 160 - 225 230 - 270 280 - 550	5 5 - 7 7 7 - 10	20 - 30 30 - 45 45 - 60 60 - 120

postbake

THICKNESS microns	PEB TIME (65°C)* minutes	PEB TIME (95°C) minutes
100 - 150	5	10 - 12
160 - 225	5	12 - 15
230 - 270	5	15 - 20
280 - 550	5	20 - 30

^{*} Optional step for stress reduction

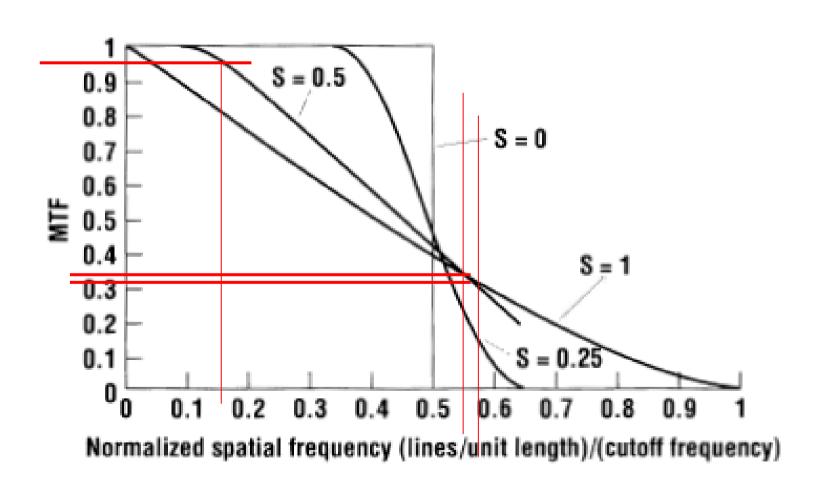
exposure

THICKNESS microns	EXPOSURE ENERGY mJ/cm ²
100 - 150	240 - 260
160 - 225	260 - 350
230 - 270	350 - 370
280 - 550	370 - 600

Problems

• **8.1**: Calculate CMTF for AZ-1450 at the wavelengths listed in the table. Assuming NA=0.4 use figure 7.22 to determine the minimum feature for an aligner with S=0.5.

λ (nm)	Contrast AZ-1450
248	0.7
313	3.4
365	3.6
436	3.6


8.15: Assume that a wafer is being exposed with a proximity printer. In the far field limit in one dimension intensity depends as:

as.
$$I(x) = I(0) \left[\frac{2W}{\lambda g} \right]^{2} I_{x}^{2}; I_{x} = \sin \left[\frac{2\pi xW}{\lambda g} \right] / \frac{2\pi xW}{\lambda g}$$

Assume that you are using 1 μm thick positive tone resist with D0=30mJ/cm2 and D100=100mJ/cm2. For l=436nm, g=10μm, and I(0)=100mW.μm2/cm2 calculate resist profiles for W=1μm and exposure times 1, 2, 4, and 7 sec.

Problems

Problem 8.1

