

Molecular motion and Transport properties

Molecular motion

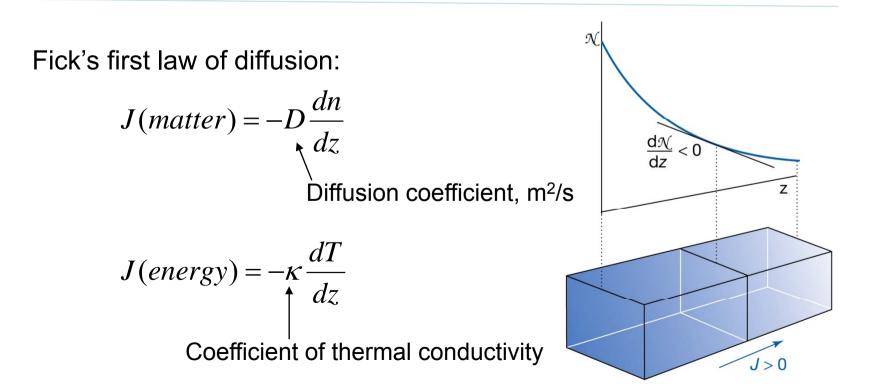
The Aim:

 Describe the migration of properties through the matter using simple random motion picture

Within this lecture:

- Transport properties of a substance: ability of transferring matter, energy or other property from one place to another
- Basis for description of the main transport properties:
 - **Diffusion**: migration of matter down a concentration gradient
 - Thermal conduction: migration of energy down a temperature gradient
 - Electric conduction: migration of charge along electric potential
 - Viscosity: migration of linear momentum down a velocity gradient

- Rate of migration of a property is measured by its *flux J* (quantity of property passing through a unit area per unit time), e.g. matter flux, energy flux
- Flux of property is usually proportional to the first derivative of some other related property (from experimental observation), e.g. matter flux~*dN/dz* (*N* - number density of particles), energy flux ~*dT/dz*



- Viscosity of fluids (arises due to transfer of momentum)

 $J(x-component of momentum) = -\eta \frac{dv_x}{dz}$ coefficient of viscosity

Bring high x-momentum x-momentum x-momentum x-momentum x-momentum x-momentum x-momentum x-momentum

- Transport properties of gases can be fairly accurately predicted with the kinetic theory gases.
- Kinetic model assumes that the only contribution to gas energy is a kinetic energy
- Three main assumptions:
 - Gas consist of molecules of mass **m**
 - Size of molecules is negligible (d << distances)</p>
 - Molecules interact through elastic collisions (e.g. kinetic energy is conserved at every collision)

• Application of kinetic theory of gases

Property	Transported quantity	Simple kinetic theory	Units
Diffusion	Matter	$D = \frac{1}{3}\lambda \bar{c}$	$m^2 s^{-1}$
Thermal conductivity	Energy	$\kappa = \frac{1}{3} \lambda \bar{c} C_{V,m}[A]$	J $K^{-1} m^{-1} s^{-1}$
		$=\frac{\bar{c}C_{V,m}}{3\sqrt{2}\sigma N_{A}}$	
Viscosity	Linear momentum	$\eta = \frac{1}{3}\lambda \bar{c}m\mathcal{N}$	$kg m^{-1} s^{-1}$
		$=\frac{m\bar{c}}{3\sqrt{2}\sigma}$	

where
$$\lambda$$
 is a mean free path and $\overline{c} = \int_{0}^{\infty} v f(v) dv = \left(\frac{8RT}{\pi M}\right)^{\frac{1}{2}}$ is a mean velocity

- The diffusion coefficient: $D = \frac{1}{3}\lambda \overline{c}$
 - 1. Mean free path is decreasing when pressure increases, so D decreases with increasing pressure
 - 2. Mean velocity increasing with T, so does the D.
 - 3. Mean free path increases when the collision cross section decreases, so D is larger for small molecules
- The thermal conductivity: $\kappa = \frac{1}{3} \lambda \overline{c} C_{v,m}[A]$
 - 1. Mean free path is decreasing when pressure increases, and therefore inversely proportional to the concentration, so κ is independent on pressure
 - 2. Thermal conductivity is greater for gases with high heat capacity.

• The viscosity:
$$\eta = \frac{1}{3} M \lambda \overline{c}[A]$$

- 1. The viscosity is independent on pressure
- 2. Because $\overline{c} \propto T^{\frac{1}{2}}$, $\eta \propto T^{\frac{1}{2}}$ the viscosity of gas is increasing with T

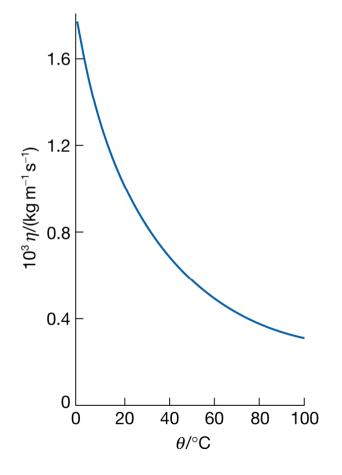
Molecular motion in liquids

- Experimentally measured in inelastic neutron scattering, as a relaxation time in e.g. NMR and through viscosity
- Activation origin for viscosity in liquids (i.e. a molecule needs to escape from its neighbors).

Thus, it should be inversely proportional to the probability of escape:

$$\eta \propto \exp(E_A/RT)$$

Viscosity drops sharply with temperature



Conductivity of electrolyte solution



Conductivity of electrolyte solution

- Strong electrolytes
 - fully ionized in the solution
 - Kohlrausch's law

$$\Lambda_{m} = \Lambda_{m}^{0} - Kc^{1/2}$$
Limiting molar conductivity

 Law of the independent migration of ions: limiting molar conductivity can be expressed as a sum of ions contribution

$$\Lambda_m^0 = \nu_+ \lambda_+ + \nu_- \lambda_-$$

i.e. ions migrate independently in the zero concentration limit

	$\lambda/(\mathrm{mS}\mathrm{m}^2\mathrm{mol}^{-1})$		$\lambda/(\mathrm{mS}\mathrm{m}^2\mathrm{mol}^{-1})$
H^{+}	34.96	OH-	19.91
Na ⁺	5.01	Cl ⁻	7.63
K^+	7.35	Br ⁻	7.81
Zn ²⁺	10.56	SO_{4}^{2-}	16.00

For example, limiting molar conductivity of $BaCl_2$ in water will be: 12.73+2*7.63=27.98 mS m² mol⁻¹.

Conductivity of electrolyte solution

• Weak electrolytes: not fully ionized in the solution

$$HA(aq) + H_2O \longrightarrow H_3O^+(aq) + A^-(aq) \qquad K_a = \frac{a_{H_3O^+}a_{A^-}}{a_{HA}}$$

If we define degree of deprotonation:

$$\begin{bmatrix} H_{3}O^{+} \end{bmatrix} = \alpha c \quad \begin{bmatrix} A^{-} \end{bmatrix} = \alpha c \quad \begin{bmatrix} HA \end{bmatrix} = (1 - \alpha)c_{1/\Lambda_{m}}$$

$$K_{a} = \frac{\alpha^{2}c}{1 - \alpha} \quad \alpha = \frac{K_{a}}{2c} \left(\left(1 + \frac{4c}{K_{a}} \right)^{1/2} - 1 \right)$$

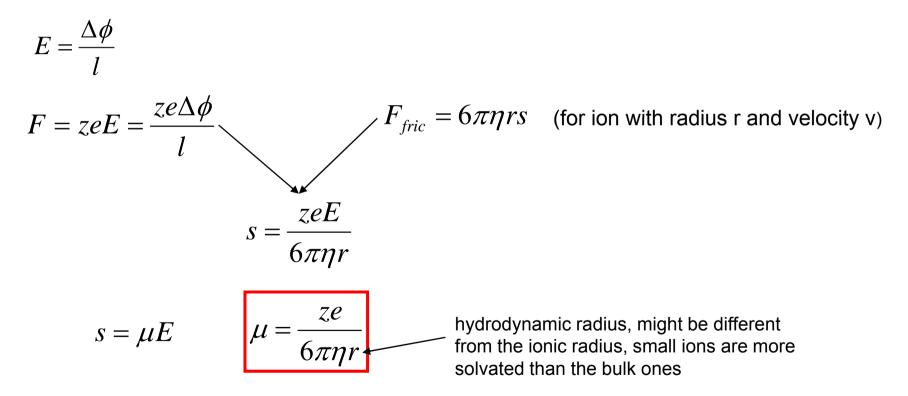
$$\Lambda_{m} = \alpha \Lambda_{m}^{0}$$
Ostwald's dilution law
$$\frac{1}{\alpha} = 1 + \frac{\alpha c}{K_{a}} \qquad \frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} + \frac{c\Lambda_{m}}{K_{a} \left(\Lambda_{m}^{0} \right)^{2}}$$

$$c\Lambda_{m}$$

Mobilities of ions

• We need to know how ions move to understand e.g. Kohlrausch law

Let's consider uniform electric field between the electrodes in solution:



Example: Cs⁺ ion: z=1, r=170pm, η =1*10⁻³ kg m⁻¹ s⁻¹. Than μ =5*10⁻⁸ m²/Vs, i.e. with 1V applied across 1cm the drift speed is 5um/s.

Mobilities of ions

• Mobility and conductivity

$$\lambda = z \mu F, \qquad F = N_A e \qquad \text{Faraday constant}$$
Let's consider a fully dissociated electrolyte:

$$J(ions) = \frac{s\Delta t A \cdot v c N_A}{A\Delta t} = s v c N_A \qquad \text{Area, } A$$

$$J(charge) = z e s v c N_A = z s v c F = z \mu E v c F$$

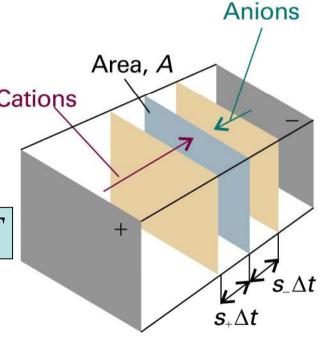
$$I = J \cdot A = z \mu E v c F A = z \mu v c F A \frac{\Delta \phi}{l}$$

$$I = \frac{\Delta \phi}{R} = G\Delta \phi = \kappa A \frac{\Delta \phi}{l} \qquad \Longrightarrow \qquad \mathcal{K} = z \mu \mathcal{V} c F$$

• In solution

$$\Lambda_m^0 = (z_+ \mu_+ \nu_+ + z_- \mu_- \nu_-) F$$

Example: if μ =5*10⁻⁸ m²/Vs and z=1, Λ =10mS m² mol⁻¹.



Mobilities of ions

• Transport numbers - fraction of total current carried by ions of specific type

$$t_{\pm} = \frac{I_{\pm}}{I}, \qquad t = t_{+} + t_{-}$$

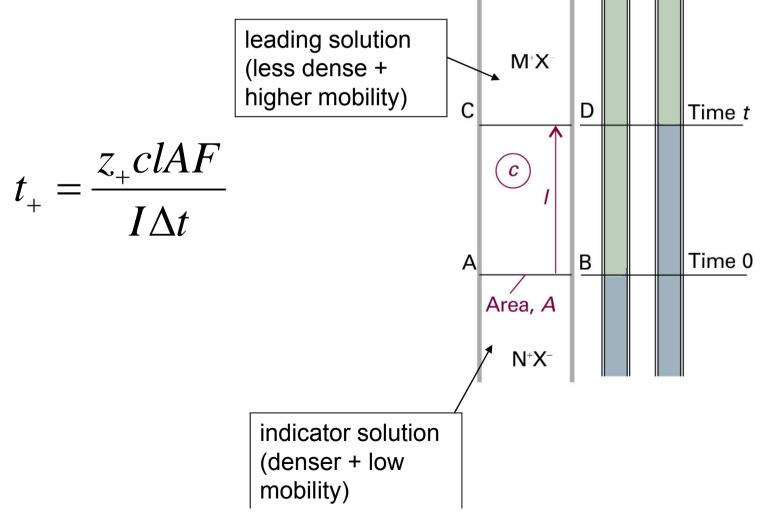
• Limiting transport numbers – defined in the limit of zero concentration of electrolyte solution

$$t_{\pm}^{0} = \frac{z_{\pm}\mu_{\pm}\nu_{\pm}}{z_{+}\mu_{+}\nu_{+} + z_{-}\mu_{-}\nu_{-}}$$
as $z_{+}\nu_{+} = z_{-}\nu_{-} \implies t_{\pm}^{0} = \frac{\mu_{\pm}}{\mu_{+} + \mu_{-}}$
or, using $\lambda = z\mu F \implies t_{\pm}^{0} = \frac{\nu_{\pm}\lambda_{\pm}}{\nu_{+}\lambda_{+} + \nu_{-}\lambda_{-}} = \frac{\nu_{\pm}\lambda_{\pm}}{\Lambda_{m}^{0}}$

as we can measure transport number of individual ions, the ionic conductivity and ionic mobility can be determined as well

Moving boundary technique

- Measuring transport numbers
 - Moving boundary technique

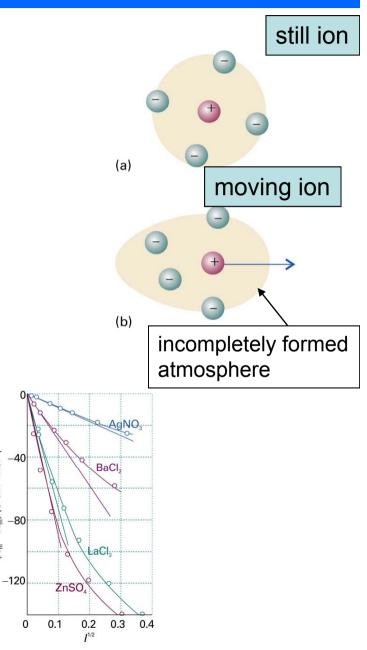


Conductivities and ion-ion interactions

 $A_m^\circ)/(S \text{ cm}^2 \text{ mol}^{-1})$

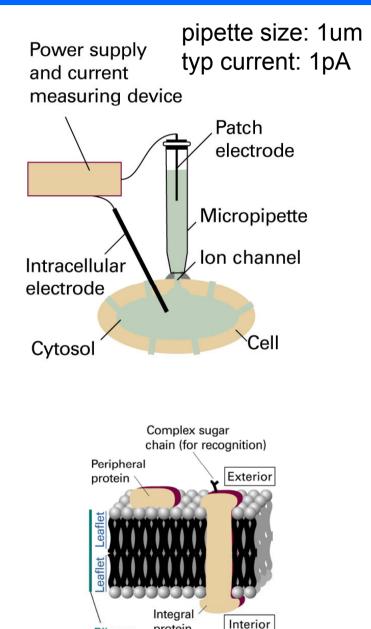
- Reduction of ion mobility due to retardation of ionic atmosphere is called relaxation effect
- Enhanced viscous drag due to ionic atmosphere moving in opposite direction is called electrophoretic effect

Those two effect taken into account lead to $c^{\frac{1}{2}}$ dependence in Kolrausch law



Ion channels and Ion pumps

- passive ion transport: ions transport down the concentration and membrane potential gradient
- active transport: driven by an exergonic process
- transport mechanisms: ullet
 - by carrier molecule
 - through a channel former
- Channel formers:
 - ion channels: highly selective proteins that can open and close in response to some stimuli (e.g. potential built-up or effector molecule)
 - ion pumps: proteins actively transporting particular ions

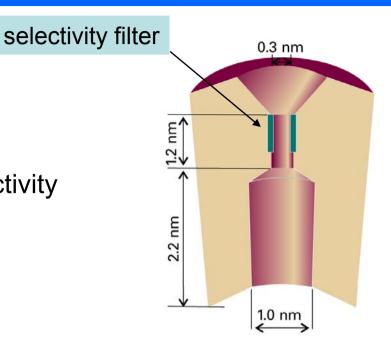


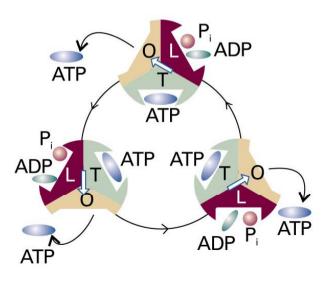
protein

Bilayer

Ion channels and Ion pumps

- K⁺ ion channel:
 - 1. K⁺ ion stripped of the hydration shell
 - 2. gripped by carbonyl group in the selectivity filter region
 - 3. K⁺ ion is driven out by electrostatic interaction with the next ion
- H⁺-ATPase ion pump that couples proton flow to synthesis of ATP

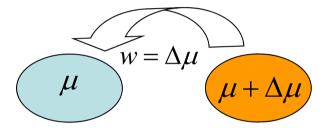




Thermodynamic force

If the chemical potential depends on position, the maximum nonexpansion work

$$dw = d\mu = \left(\frac{\partial\mu}{\partial x}\right)_{p,T} dx$$

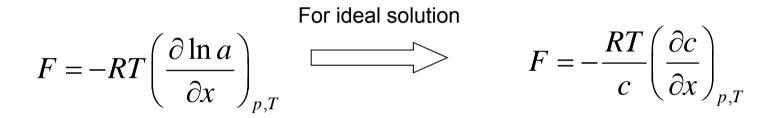


Comparing with dw = -Fdx

 $F = -\left(\frac{\partial \mu}{\partial x}\right)_{p,T} \quad \longleftarrow \quad \text{Thermodynamic force}$

• Thermodynamic force of concentration gradient

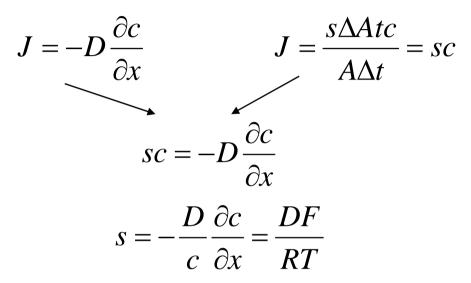
 $\mu = \mu_0 + RT \ln a$



Fick's law of diffusion:

Particles flux:
$$J \sim drift \ velocity \sim F \sim \frac{\partial c}{\partial x}$$

• The Einstein relation



We know drift speed vs force relation for ion mobility, so we can deduce diffusion constant

$$s = \mu E = \frac{DzeN_AE}{RT} \qquad \square > D = \frac{\mu RT}{zF}$$

For example: for $\mu = 5 \cdot 10^{-8} m^2 / sV$ we find $D = 1 \cdot 10^{-9} m^2 / s$

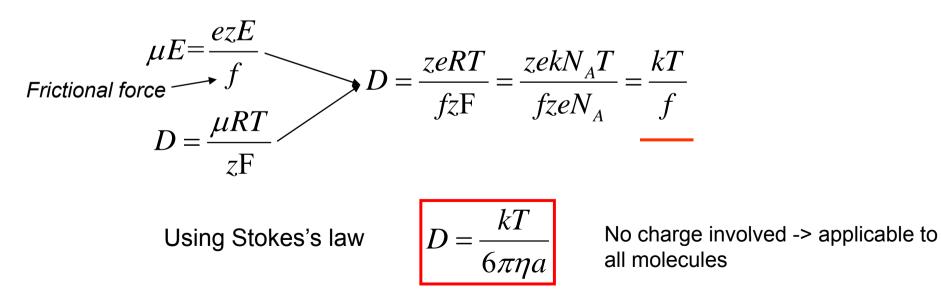
• The Nernst-Einstein equation

Molar conductivity of ions in the solution

$$\lambda = z\mu \mathbf{F} = \frac{z^2 D \mathbf{F}^2}{RT}$$

$$\Lambda_{m} = (v_{+}z_{+}^{2}D_{+} + v_{-}z_{-}^{2}D_{-})\frac{F^{2}}{RT}$$

• The Stokes-Einstein equation



Diffusion equation

• How concentration distribution evolves with time due to diffusion

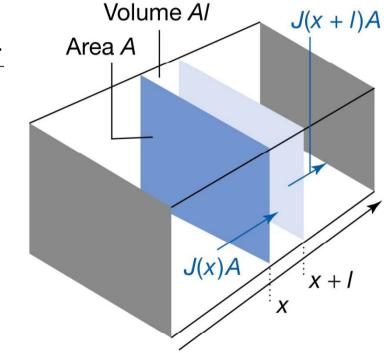
$$\frac{\partial c}{\partial t} = \frac{JAdt}{Aldt} - \frac{J'Adt}{Aldt} = \frac{J - J'}{l}$$

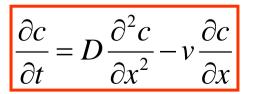
$$J - J' = -D\frac{\partial c}{\partial x} + D\frac{\partial c'}{\partial x} = -D\frac{\partial c}{\partial x} + D\frac{\partial}{\partial x}\left(c + \left(\frac{\partial c}{\partial x}\right)l\right) = Dl\frac{\partial^2 c}{\partial x^2}$$

$$\frac{\partial c}{\partial t} = D\frac{\partial^2 c}{\partial x^2}$$

Diffusion with convection

$$\frac{\partial c}{\partial t} = \frac{JAdt}{Aldt} - \frac{J'Adt}{Aldt} = \frac{J - J'}{l}$$
$$J - J' = cv - c'v = \left(c - \left(c + \left(\frac{\partial c}{\partial x}\right)l\right)\right)v = vl\frac{\partial c}{\partial x}$$
$$\frac{\partial c}{\partial t} = v\frac{\partial c}{\partial x} \qquad \text{due to convection only}$$

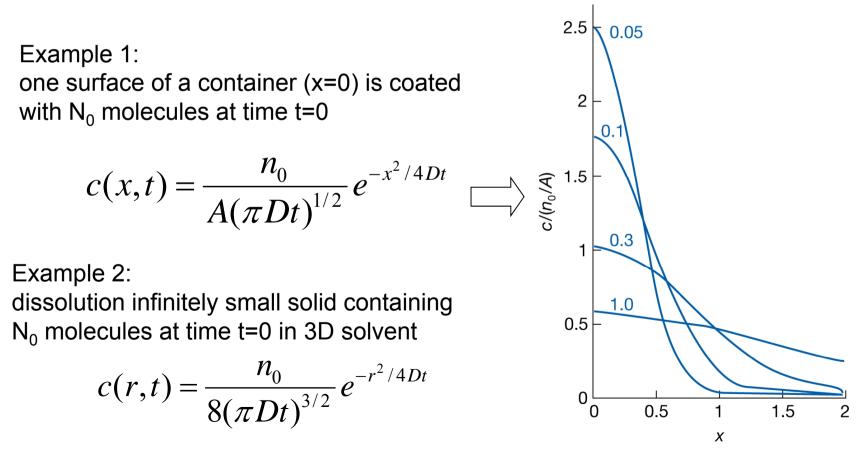




Solution of diffusion equation

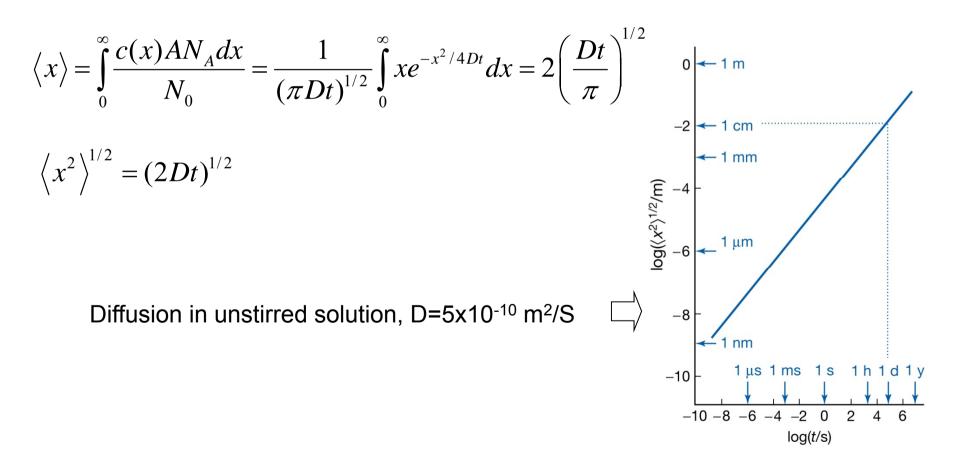
$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - v \frac{\partial c}{\partial x}$$

• 2nd order differential equation: two boundary condition are required for spatial dependence and single for time dependence



Diffusion probabilities

- Probability to find a particle at a given slab of thickness dx is proportional to the concentration there: $p(x) = c(x)AN_A dx / N_0$
- The mean distance traveled by the particles:



Random Walk

- Apparently diffusion can be modeled as a random walk, where particle is jumping distance λ in a time *τ*.
 Direction of the jump is chosen randomly
- One dimensional walk:

$$p = \left(\frac{2\tau}{\pi t}\right)^{1/2} e^{-x^2\tau/2t\lambda^2}$$

Comparing with the solution of diffusion equation

$$D = \frac{\lambda^2}{2\tau}$$
 Einstein-Smoluchowski equation

Connection between microscopic and macroscopic parameters.

Problems

- Atkins 21.24a What fraction of the total current is carried by Li+ ions when current flows through an aqueous solution of LBr at 25°C.
- Atkins 21.25a The limiting molar conductivities of KCI, KNO₃, and AgNO₃ are 14.99 mS m² mol⁻¹, 14.50 mS m² mol⁻¹, and 13.34 mS m² mol⁻¹, respectively (all at 25°C). What is the limiting molar conductivity of AgCI at this temperature?
- Atkins P24.36. The diffusion coefficient of particular RNA molecule is 1.0x10⁻¹¹ m²/s. Estimate time required for a molecule to diffuse 1 um from nucleus to the cell wall

Assignment VI

- P21.8 Conductivities are often measured by comparing the resistance of a cell filled with some standard solutions. The conductivity of water is 76 mS/m at 25°C and 0.1M KCl(aq) is 1.1639 S/m. A cell has resistance of 33.21 Ohm when filled with 0.1M KCl(aq) and 300.0 Ohm when filled with 0.1M CH₃COOH. What is the molar conductivity of the acetic acid at that concentration and temperature
- P21.16 Estimate the diffusion coefficient and the effective hydrodynamic radii of the alkali metal cations at 25°C. Estimate the approximate number of water molecules dragged along by the cations. Take ionic radii from the Table 20.3