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Models of Self-Assembly

• The aim: Solving the engineering problems of e a So g e e g ee g p ob e s o
self-assembly: forward, backward and the 
yieldyield.
– understand the feasibility 



Modelling helix formation

• Many long molecular chain objects self-a y o g o ecu a c a objec s se
assemble into helical shapes (DNA, α-helix of 
a protein)a protein). 

• Why it happens? 
• Is it possible to predict the helix parameters?



Modelling helix formation
• Model: solid elastic rod of length L, radius t and persistence 

length lp is immersed in the solution of hard spheres (radius r, 
concentration n)concentration n)

• From a pure thermodynamic reason, the energy change upon 
bending the rod:bending the rod: 

21F Ll nVκΔ ∝ − 02 pF Ll nVκΔ ∝

In a helix V0/L is related to κ. 
and the optimal helixand the optimal helix 
parameters can be found:

indeed 
found in 
proteins

Y. Snir and R. D. Kamien, Science 307, 1067 (2005)



Modelling helix formation
• simple model: a bent rod on a lattice

[ ]0 1

2

, ,...,

El ti

N

N

m m m m=

∑
straight rod

2

1
Elasticenergy

Excluded volume energy ( ) ( )

i
i

s e

m

V V V m

α

β β
=

=

= − =

∑ bent rod

2

1
( ) ( )

N

i
i

E m m V mα β
=

= −∑

N+1 bonds



Modelling helix formation
• The excluded volume in a lattice model:

• For N=1
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Chemical kinetics model
• In Hosokawa experiment there are 4 possible 

configuration of tiles:g
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possible reactions:
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• The state of the system can be described
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Chemical kinetics model
• The evolution of the system can be described as
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The Waterbug model
• The model is motivated by the capillary force driven assembly 

but can be reformulated for magnetic and electrostatic force 
llas well

[ ], ,i i i iq x y θ=
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• The state of the system can be described as:

[ ]q q q q= [ ]1 2, ,..., Nq q q q=



The Waterbug model
• The energy can be calculated as a sum of potential energy 

(e.g. due to surface tension) and kinetic energy. 

E ti th L i t th f i ti f d i i i i• Equating the Langrangian to the friction forces and minimizing 

can be solved numerically



The Waterbug model
• The model can predict stability of the systems
• Demonstrate what wettability control can do toDemonstrate what wettability control can do to 

eliminate defects and to construct finite structures



Conformational switching model
• Let’s consider a system of 3 particles A,B,C that can 

form bonds:

• How a preferred route of self-assembly can be• How a preferred route of self-assembly can be 
created?



Conformational switching model
• We can introduce a conformational switch in the B-

tile (“minus switch”)( )

• How a preferred route of self-assembly can be• How a preferred route of self-assembly can be 
created?



Conformational switching model
• Let’s consider a different 

system:y

• Tile C here can block access to tile B preventing the 
desired structure formation

• How a preferred route of self-assembly can be• How a preferred route of self-assembly can be 
created?



Conformational switching model
• To avoid it we can 

introduce a switch:

• Then the possible reactions are:



Conformational switching model
• Imagine we have to form (AB) complex in a system 

with a large excess of A g

• The process will be very slow and within the finite time• The process will be very slow and within the finite time 
we will not get high concentration AB.

• We can introduce a different type of conformational 
switch in the A-tile (“plus switch”)

• This will reduce the concentration of A and increase• This will reduce the concentration of A and increase 
the yield



Conformational switching model
• Now let’s consider 4 particle system

• We have 5 possible assembly sequences:
(((AB)C)D); ((AB)(CD)), (A((BC)D), (A(B(CD))), (A(BC)D)

• Can we do it with a “minus device” again? – No.

((( ) ) ); (( )( )), ( (( ) ), ( ( ( ))), ( ( ) )



Conformational switching model
• Saitou and Jakiela proved that in a general case of 

self-assembling automation (SA), defined as a pair of g ( ), p
a finite set of components and a finite set of rules of 
the form:  

• any assembly sequences can be encoded with just 3 
conformational state per particle.conformational state per particle.



Graph Grammar (E.Klavins)
• Is it possible to incorporate conformational 

s itching into graph approach?switching into graph approach?

• Assume we have tiles A, B,C, but now we 
want to form AB and CC. 
AB – unstable complex ABC – stableAB unstable complex, ABC stable
complex, CC – unreachable complex.



Graph Grammar (E.Klavins)
• Formally, graph G over an alphabet
Σ is a triple G(V E l) where V is set ofΣ is a triple G(V,E,l) where V is set of 
vertices, E – set of edges and l is a 
labelling functionlabelling function

• In addition, we need to attach ,
a set of rules to the graph

example of constructive rules example of destructive rules

example of relabelling rules



Graph Grammar (E.Klavins)
• Let’s look how our rules work on a graph:

the only stable structure!y



Assembly by folding

• Let’s make a mechanical model of a protein:e s a e a ec a ca ode o a p o e

f ldi l RRRLRfolding rule: RRRLR



Assembly by folding
• From this model we can define topological 

construction possible or impossible to reach by p p y
folding:

• impossible constructions can be made possible by 
i i thi kincreasing thickness.



Computing with tiles
• Rothemund’s tiles:



Tile assembly model
T i hi (i d d b Al T i i 1936)• Turing machine (introduced by Alan Turing in 1936)

• Action of Turing machine: 
• A read/write head hovers above a tape where each square can either be• A read/write head hovers above a tape where each square can either be 

left blank, or can contain a zero or a one. 
• This read-write head can erase a symbol, write a symbol, and advance the 

tape one square in either direction. 
• The decision is made based on the internal state of a head. The head has 

a finite number of states and a look-up table that dictates how it should a e u be o s a es a d a oo up ab e a d c a es o s ou d
behave once it reads the tape. 

• If a special halting state where the Turing Machine stops all operation.



Tile assembly model
T i d th t thi hi id d l f• Turing proved that this machine provides a model of 
computation and this model is universal. 
Other universal models of computation can be created but if• Other universal models of computation can be created but if 
they are equivalent to the Universal Turing Machine. 

• As was shown Hao Wang in 1961 a model known as Wang• As was shown Hao Wang in 1961, a model known as Wang 
Tiles is equivalent to the Turing Universal Machine
– Square tiles on a square grid.q q g
– Tiles have four colored faces
– Tiles must not be rotated
– Abuttant faces have to have the same color



Tile assembly model
• Erik Winfree suggested to model self-assembly with 

tiles using instead of colours binding domains,tiles using instead of colours binding domains, 
assigning the bond strength and the temperature



Tile assembly model
• Temperature means that only bonds of given 

strength “survives” This leads to cooperativestrength survives . This leads to cooperative 
bonding.

T=2



Complexity of a System
Kolmogorov’s definition of complexity:
• For a given bit string the complexity can be definedFor a given bit string the complexity can be defined 

as the length of the shortest computer program 
required to produce a string on a Universal Turingrequired to produce a string on a Universal Turing 
Machine

1111111111 for i=1..10 write 1 end

1011001110 write 1; write 0; write 1; write 1; write 0; 
for i=1..3 write 0 end; write 0

• Problems with the Kolmogorov’s definition:
• Proving that given program is the shortest possibleg g p g p
• Random string are the most complex according to the 

definition



Complexity of systems

• Complexity can be defined in terms of tiles Co p e y ca be de ed e s o es
required to self-assemble a given bit string

1111111111 1 tile

1010101010 2 tiles

• What complexity is required to assemble a 
square of NxN?square of NxN?
• Complexity is ~N2 at T=1
• but ~log(N) at T=2



Problems

• (7) For a lattice model of a rod with N=2, ( ) o a a ce ode o a od ,
compute possible configurations and sketch a 
phase diagramphase diagram

• Home:
– (9) Hosokawa model simulation.


