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Models of Self-Assembly

 The aim: Solving the engineering problems of
self-assembly: forward, backward and the
yield.
— understand the feasibility



Modelling helix formation

 Many long molecular chain objects self-
assemble into helical shapes (DNA, a-helix of

a protein).
 Why It happens?
IS It possible to predict the helix parameters?



Modelling helix formation

 Model: solid elastic rod of length L, radius t and persistence
length |, iIs immersed in the solution of hard spheres (radius r,
concentration n)

 From a pure thermodynamic reason, the energy change upon
bending the rod:
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In a helix Vy/L is related to «.
and the optimal helix
parameters can be found:
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Modelling helix formation

« simple model: a bent rod on a lattice

N straight rod
Elasticenergy =2 )_m/’

i=1

Excluded volume energy = S(V, =V,) = V(M)

E(M) = a ), m — AV ()

bent rod

N+1 bonds

Start at the origin



Modelling helix formation

e The excluded volume in a lattice model:
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Empty circles are the excluded volume
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Chemical kinetics model

* In Hosokawa experiment there are 4 possible
configuration of tiles:

possible reactions:

xi(ﬁj ’%“sj" 2X, = X,

*= : X o
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* The state of the system can be described
X() =[ X (£), (1), %, (1), %, ()]




Chemical kinetics model

« The evolution of the system can be described as
X(t+1)=X(t) + AP (X(t))

possible reactions:

A -1 0 -2 X +X, > X,
o1 -10 X, +X, = X,
0O O 1 1
- . 2X, > X,

o 1 T
P[X(t)] - ?[Pllxlzﬁzplz X X5 2R 3% X, P22X22:|

probability of bond formation



The Waterbug model

 The model is motivated by the capillary force driven assembly
but can be reformulated for magnetic and electrostatic force

as we" _
e Feet, radius R

Angle with axis is 6

qi:[xibyiﬂgi]
>

Center located at
(x, vi)

Rigid rods, length 2d

* The state of the system can be described as:

q=[0a,,d,-.. 0y |




The Waterbug model

 The energy can be calculated as a sum of potential energy
(e.g. due to surface tension) and kinetic energy.
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e Equatina the Lanqranqian to the friction forces and minimizing
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The Waterbug model

 The model can predict stability of the systems

 Demonstrate what wettability control can do to
eliminate defects and to construct finite structures




Conformational switching model

e Let’s consider a system of 3 particles A,B,C that can

form bonds:
| ABC |
A+ B — AB / e
B+C— BC | (AB)C | | A(BC) |
AB + C — ABC | |
A + BC — ABC. | (AB)C) | | (A(BC)) |

 How a preferred route of self-assembly can be
created?



Conformational switching model

e We can introduce a conformational switch in the B-
tile (“minus switch”)

7] Push rod

A+ B— AB'

AB' + C — AB'C.
AT+ O — AD

B+C— BC
AB + C — ABC |
A + BC — ABC. | (AB)C) | | (ABC)) |

 How a preferred route of self-assembly can be
created?



Conformational switching model

e Let's consider a different
system:

A

b [T

* Tile C here can block access to tile B preventing the
desired structure formation

A+ B — AB
AB + C — ABC
A+ C — AC.

 How a preferred route of self-assembly can be
created?



Conformational switching model

e To avoid it we can
Introduce a switch: E E IE

 Then the possible reactions are:

A+B— A'B
AB+C— ABC



Conformational switching model

Imagine we have to form (AB) complex in a system
with a large excess of A

The process will be very slow and within the finite time
we will not get high concentration AB.

We can introduce a different type of conformational
switch in the A-tile (“plus switch”)

A+ A— AA.
AA'+ B — A+ AB.

This will reduce the concentration of A and increase
the yield



Conformational switching model

* Now let’s consider 4 particle system

A+ B— AB
B+ C— BC
C+D—CD
AB + C — ABC
ABC + D — ABCD
B+ CD— BCD
A+ BCD — ABCD
AB + CD — ABCD.

 We have 5 possible assembly sequences:
(((AB)C)D); ((AB)(CD)), (A((BC)D), (A(B(CD))), (A(BC)D)

e Can we do it with a “minus device” again? — No.



Conformational switching model

e Saitou and Jakiela proved that in a general case of
self-assembling automation (SA), defined as a pair of
a finite set of components and a finite set of rules of
the form: W+ b8 b

a®b? = a™b’.

e any assembly sequences can be encoded with just 3
conformational state per particle.



Graph Grammar (E.Klavins)

IS It possible to incorporate conformational
switching into graph approach?

A1 [

e Assume we have tiles A, B,C, but now we
want to form AB and CC.
AB — unstable complex, ABC — stable
complex, CC — unreachable complex.




Graph Grammar (E.Klavins)

 Formally, graph G over an alphabet
> Is a triple G(V,E,l) where V Is set of

: : ABC
vertices, E — set of edges and | is a / > K
labelling function | (AB)C | | A@BC) |

e |n addition, we need to attach | l
| (AB)C) | | (A®BC)) |

a set of rules to the graph

: example of destructive rules
example of constructive rules

a a—b—0» b—b—a a
a b—b-rc example of relabelling rules

b b—c—c b—b—a-ec



Graph Grammar (E.Klavins)

e Let’s look how our rules work on a graph:

a . b—b
a
a 2 a — [ b—b
(L ﬂ—i‘b—b - a
a b—b a
(1 h—-?-h—ﬂ Go | Gq
b b—c—c .
b—¢—c¢c—b
b—e¢—b
c—c¢ -
o = ° & a
L c—e¢

the only stable structure! G3 Go




Assembly by folding

e Let’s make a mechanical model of a protein:
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Assembly by folding

 From this model we can define topological

construction possible or impossible to reach by
folding:
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e Impossible constructions can be made possible by

Increasing thickness.



Computing with tiles

e Rothemund’s tiles:

.....
Tilea bénd and k-
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01 1
10 i
11 0




Tile assembly model

Turing machine (introduced by Alan Turing in 1936)
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Action of Turing machine:

A read/write head hovers above a tape where each square can either be
left blank, or can contain a zero or a one.

This read-write head can erase a symbol, write a symbol, and advance the
tape one square in either direction.

The decision is made based on the internal state of a head. The head has
a finite number of states and a look-up table that dictates how it should
behave once it reads the tape.

If a special halting state where the Turing Machine stops all operation.




Tile assembly model

e Turing proved that this machine provides a model of
computation and this model is universal.

« Other universal models of computation can be created but if
they are equivalent to the Universal Turing Machine.

 As was shown Hao Wang in 1961, a model known as \Wang
Tiles Is equivalent to the Turing Universal Machine
— Square tiles on a square grid.
— Tiles have four colored faces
— Tiles must not be rotated
— Abuttant faces have to have the same color




Tile assembly model

* Erik Winfree suggested to model self-assembly with
tiles using instead of colours binding domains,
assigning the bond strength and the temperature
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Tile assembly model

 Temperature means that only bonds of given
strength “survives”. This leads to cooperative
bonding.

T=2

0 0 0
n 0 nifn O nfln O ni|n 1 ¢

R
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Complexity of a System

Kolmogorov’s definition of complexity:

e For a given bit string the complexity can be defined
as the length of the shortest computer program
required to produce a string on a Universal Turing
Machine

1 1 1 1 1 1 1 1 1 for i=1..10 write 1 end

1011001110 write 1; write O; write 1; write 1; write O;

for i=1..3 write 0 end; write O

* Problems with the Kolmogorov’s definition:
* Proving that given program is the shortest possible

 Random string are the most complex according to the
definition



Complexity of systems

o Complexity can be defined in terms of tiles
required to self-assemble a given bit string

1111111111 1 tile

1010101010 2 tiles

e \What complexity Is required to assemble a
square of NxN?

e Complexity is ~N? at T=1
e but ~log(N) at T=2




e (7) For a lattice model of a rod with N=2,
compute possible configurations and sketch a
phase diagram

e HOme:

— (9) Hosokawa model simulation.



