Self-Assembly

Lecture 3
Surfactants Self-Assembly

Anionic surfactants

- Largest group of surfactants (~65% world market)
- Sensitive to electrolytes (salt and Ca²⁺)
- Sulphates hydrolyse at low pH, otherwise chemically stable
- Soaps still important (foam and washing)
- Alkylether sulphates, lower cmc, compatible low pH and high hardness.
- Phosphate esters; good wetting agents, corrosion inhibitors, antistatic properties

Biodegradable under aerobic conditions Shampoos, handsoaps, laundry detergents

unsaturated

fatty acids

omega-3 – 3rd carbon from the metyl end has double bond

saturated

Non-ionic surfactants

- Second largest group of surfactants (~25% world market)
- Dominated by polyoxyethylene products
- Not sensitive to salts (e.g. Ca²⁺)
- Temperature sensitive: water solubility reduced at higher T
- Much lower cmc than anionic surfactants; efficient at low concentrations

Spans (Sorbitan Esters)
Tweens (Polyoxyethylene Sorbitan Esters)

Smooth rinsing (no water spots)
Dish soaps, window washers, insecticides

Cationic surfactants

- Composed of a quaternary amino group as cationic head
- Not compatible with anionic surfactants
- Adsorbs strongly to many surfaces
- Used to modify surface properties:

Textile softener

Adhesion promoter

Corrosion inhibitor

Anticaking agent

Mineral flotation

Desinfectant

- Counter ions: halides (Cl-, Br-) or organic (MeSO₄-)
 - More toxic than anionic surfactants

Zwitterionic surfactants

- Smallest group of surfactants
- Usually composed of a quaternary aminogroup and a sulphonic or carboxylic acid
- · Charge depends on pH
- Very mild and low irritation, used in shampoos etc.
- Generally stable in acids and alkali

Alkyl betaine

Alkyl sulphobetaine

Alkyl imidazoline

Surfactant self-assembly

- At low concentrations surfactants form adsorbed layers of air/solution and solid/solution interfaces
- At critical micellization concentration (cmc) the surfactant starts self-assembling into micelles
 - driven by hydrophobic interaction
 - spontaneous and reversible cooperative transition

Surfactant self-assembly

- Compounds that are sparingly soluble in water can dissolve in oily core above cmc yielding solubilized systems
- Addition of co-surfactants (usually alcohols) to an emulsion can lead to formation of a termodynamically stable microemulsion
- Some surfactants self-assembling into vesicles (called liposomes in case of phospholipids)
- At high concentrations surfactants form liquid crystalline phases

Adsorbed surfactant layers

- Surfactant in contact with clean adsorbs onto the surface
- Hydrophobic surfaces:
 - surfactant contacts surface via tail forming progressively more compact monolayers
 - at higher coverage the morphology was observed to form hemi-cylindrical aggregates irrespective of the nature of surfactants

Adsorbed surfactant layers

- Hydrophilic surfaces:
 - surfactant is attracted to the surface via ion-exchange step
 - then, surface aggregates are formed in a cooperative process
 - the morphology depends on the surfactant geometry, could be bilayer, sperical or cylindrical aggregates

A 100 B 100 -75 -75 -75 -75 -25 -25 -25 nm nm nm

C₁₄TAB on silica 7mM. Sperical micelles, (A) pH 6.3; (B) pH=2.9

C₁₄TAB on mica 7mM. cylindrical micelles

- The balance between the attractive and repulsive interaction in a micelles results in a micelles of finite size
- Micelles are spherical near CMC
- The aggregation number of a spherical micelle can be estimated as

$$N_S = \frac{4\pi l^3}{3v}$$

$$l \approx (0.154 + 0.1265 \cdot n) nm$$
$$v \approx (27.4 + 26.9 \cdot n) \times 10^{-3} nm^{3}$$

 At higher concentration the micellar shape is governed by the surfactant packing parameter

$$P = \frac{v}{a_0 l_c}$$

	Critical		
Lipid	packing parameter v/a _o / _c	Critical packing shape	Structures formed
Single-chained lipids (surfactants) with large head-group areas: SDS in low salt	< 1/3	Cone ∂_0	Spherical micelles
Single chained lipids with small head-group areas: SDS and CTAB in high salt, nonionic lipids	1/3-1/2	Truncated cone	Cylindrical micelles Company of the company of the cylindrical micelles Company of the cylindrical mic
Double-chained lipids with large head-group areas, fluid chains: Phosphatidyl choline (lecithin), phosphatidyl serine, phosphatidyl inositol, phosphatidyl inositol, phosphatidic acid, sphingomyelin, DGDG*, dihexadecyl phosphate, dialkyl dimethyl ammonium salts	1/2-1	Truncated cone	Flexible bilayers, vesicles
Double-chained lipids with small head-group areas, anionic lipids in high salt, saturated frozen chains. phosphatidyl ethanolamine, phosphatidyl serine + Ca ²⁺	~1	Cylinder	Planar bilayers
Double-chained lipids with small head-group areas, nonionic lipids, poly (cis) unsaturated chains, high T: unsat. phosphatidy! ethanolamine, cardiolipin + Ca ²⁺ phosphatidic acid + Ca ²⁺ cholesterol, MGDG ^b	>1	Inverted truncated cone or wedge	Inverted micelles

Hydrophobic core, little penetration by water Electrical double layer shell

Negative or reversed curvature

Pa

Water-in-oil

Oil-soluble micelles

Zero or planar curvature P - 1 Bicontinuous

Positive or normal curvature

b.v.

Water-soluble micelies.

Oil-in-water microemulations

Factors affecting the surfactant parameter a₀

- Size of polar group
- · Solvation (temperature)
- Salt concentration

Factors affecting the surfactant parameter v/l_c

- · Number of carbon atoms in chain
- · Structure and mobility of chain
- · Number of chains

- The micelle oily core is in a quasi-liquid state
- very rapid movement of the chain
- very low viscosity
- extensive chain looping
- rapid fluctuation of micellar shape (10⁻³ 10⁻¹⁰ s)

Formation of giant thread-like micelles in gemini surfactant 12-2-12 solution observed by cryo-SEM, the concentration 0.74 wt% (D), 1wt% (E) and 1.5wt% (F and G)

Micelle is a dynamic object

Molecular Relaxation time (exchange)

Relaxation Time for Aggregate Dissolution

CMC

- CMC value slightly depends on the experimental technique used
- Mainly determined by the nature of surfactant and the length of the chain
- Decreases exponentially with the chain length increase

$$\log cmc = b - a \cdot m$$

CMC is increased with branching (increased solubility)

CMC

 CMC Decreases upon increasing concentration of an added electrolyte that has a common ion with surfactant

$$\log cmc = A - B \cdot \log(cmc_0 + C_0)$$

Explanation:

 lons produce electrostatic
 screening. This allow the
 head groups to get closer

CMC

Effect of counter ion

	mmol/L
	_
Li Dodecyl sufate	9
K Dodecyl sufate	8
Ca Dodecyl sufate	3
Tetrabutyl-ammonium Dodecyl sufate	1

Increase in the degree of ion binding decrease the CMC.

For a given hydrophobic tail and anionic head group, the CMC decreases as:

$$Li^+ > Na^+ > K^+ > Cs^+ >$$
 $N(CH_3)_4^+ > N(CH_2CH_3)_4^+ > Ca^{+2} = Mg^{+2}$
Large binding low cmc

For cationic series such as the dodecyltrimethylammonium halides, the CMC decreases in the order

Note that varying counterion valency produces a significant effect.

Solubilized systems

Generally, all said about micelles holds for solubilized systems

- Short chain alcohols (methanol propanol) reduce micelle size and transform them into spherical ones
- Medium chain alcohols (butanolhexanol) reduce micelle size at lower concentration and increase at high concentration
- High chain alcohols increase the size of the micelles and change the shape

Water soluble polymers/surfactant system

- Water-soluble polymers lower CMC and aggregation number
- form "necklace bearing beads"

Microemulsions

- First discovered by Hoar and Schulman in 1943: they found that is alcohol is added to benzene emulsion the system is clarified
- Significant interest after oil crisis in 1975 in attempt to improve iol recovery
- Surface tension at oil-water interface can be reduced down to 10⁻⁴ mN/m²

water/n-octane/C₁₂E₅ microemusion

spherical micelles

bicontinuous phase

Vesicles

- Vesicles in water are commonly observed with phospholipids and other two chain surfactants with 10 or more carbons
- Commonly prepared by:
 - solubilizing the amphiphile in organic solvent
 - evoporating the solution on glas surface
 - exposing the film to water
 - sonification, extrusion etc further used to reduce the vesicles into unilamellar
 - usually unstable
- Stable vesicles can be prepared by mixing two surfactants

vesicles in 12-20-12 gemini surfactant

Vesicles

"Onion phase" (multilamellar vesicles)

Vesicles

Bilayer structures:

- preparation difficult because solubility of monomers is extremely low
- strong, closed structures
- slow dynamics
- compartmentization

Detection:

- DSC (differential scanning calorimetry)
- freeze fracture electron microscopy
- fluorescence spectroscopy

Liquid crystal phases

 As the surfactant concentration increases, repulsive intermicelle interaction induce micelle ordering

- For spherical micelles (P<1/3):
 Sperical micelles → cubic phase → hexagona phase → lamellar phase
- For elongated (1/3<P<1/2) or disklike (1/2<P<1)
 Disordered elongated micelles→ hexagonal phase → lamellar phase
 Disordered disklike micelles→ lamellar phase
- As the system tries to keep intermicelle distance as large as possible, the micelle might coarsened before:

Sperical micelles →cubic phase → hexagonal phase → lamellar phase

Disordered elongated micelles→ hexagonal phase → lamellar phase

Liquid crystal phases

Commonly encountered mesophases

Liquid crystal phases

 Dependence between the phase structure and the structure of surfactant

Phase diagram for sodium tetradecanoate (myristate)/water system

L1 = micellar solution,

S = solid,

E = hexagonal,

D = lamellar liquid crystalline phase.