Self-Assembly

Lecture 4
Surfactants Self-Assembly

Surfactant self-assembly

- At low concentrations surfactants form adsorbed layers of air/solution and solid/solution interfaces
- At critical micellization concentration (cmc) the surfactant starts self-assembling into micelles
 - driven by hydrophobic interaction
 - spontaneous and reversible cooperative transition

LB Trough

- The trough is usually made of single piece solid Teflon
- Thorough cleaning of the bath (H2SO4,HNO3/HCI etc.), only inorganic cleaning is allowed.
- No organic vaour in the lab
- Filtered subphase based on DI water
- Hydrophilic substrates: Si, glass, quartz, mica, Al, Cr, Sn and their oxides, Au and Ag. Hydrophobic substrate: silanized Si (e.g. with OTS)

LB Trough

 Double-bath (KSV5000) allows transfer of two different layers A and B

LB transfer

- The monolayer state in the meniscus area is different from the bulk subphase
- one-to-one transfer between the water and the substrate cannot be assumed

LB transfer

- Shaefer technique (horizontal lifting): good for deposition of very rigid films (2D-solid)
- In many cases, as lifting disrupts the meniscus, the monolayer from water-air interface is sucked in forming Y-type transfer
- Advantages:
 - horizontal deposition rate is not reduced due to viscosity
 - non-centrosymmetric X-films can be formed
 - organic superlattices can be constructed

Self-Assembled monolayers

- Molecular assemblies that formed spontaneously by immersion of appropriate substrates into a solution of an active surfactant
- Major SA forming molecules:
 - organosilicons on hydroxylated surfaces (SiO₂, Al₂O₃, glass etc.)
 - alkanethiols on Au, Ag, Cu
 - dialkyl sulfides on Au
 - dialkyl disulfides on Au
 - alcohols and amines on Pt
 - carboxylic acids on Al₂O₃ and Ag

Self-Assembled Monolayers

- Typical energies involved:
 - head substrate interaction ~10kcal/mol (e.g. thiolates on Au ~40-45 kcal/mol)
 - van der Waals forces between alkyl chains
 - ~1kcal/mol
 - electrostatic interaction between the surface groups

Kinetics of SAM

- Stearic acid (C₁₇H₃₅COOH) on Al₂O₃ and glass
 - time required to form a monolayer decreases with the concentration
 - substrate dependent: assembly on Al2O3 is faster than on glass
- can be described by Langmuir equation (i.e. limited by adsorption kinetics)

$$\frac{d\theta}{dt} = \frac{k_a}{N_0}c(1-\theta) - \frac{k_d}{N_0}\theta \implies \theta_{eq} = \frac{k_ac}{k_ac + k_d} = \frac{c}{c + K}$$

$$K = \frac{k_d}{k_a} \propto \exp\left(\Delta G_a / RT\right) \implies \Delta G_a(Al_2O_3) \approx -9.2kcal / mol$$

Kinetics of SAM

- Octyltrichlorosilane (OTS) on Si
- Tetradecyltrichlorosilane (TTS) on Si

SA multilayer

HYDROXYLATED SURFACE

Structure of Siloxane SAM

- oligomers of siloxane adsorb faster from a solution than monomers
- two major trimer configurations are possible

corresponds to experimentally observed 15° tilt

Structure of Siloxane SAM

- alkylsilanes SAMs are inhererently more disordered and less closely packed that alkanethiols due to more limited freedom to move and re-arrange
- measured thickness of OTS on Si ~25Å, tilt 14°.

Alkanethiol SAMs

- usually produced by immersion of a substrate into mM solution.
- immersion time is typically ~1h for alkanethiols, several days for disulfides and sulfides

Adsorption of alkanes with various terminal groups on gold

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\theta_a(H_2O)^a$	$\theta_{a}(HD)^{b}$	Thickness (Å) Obsd ^c Calcd ^d		
CH ₃ (CH ₂) ₁₅ OCS ₂ Na 108 45 21 24-26	CH ₃ (CH ₂) ₁₆ OH CH ₃ (CH ₂) ₁₆ CO ₂ H CH ₃ (CH ₂) ₁₆ CONH ₂ CH ₃ (CH ₂) ₁₆ CN CH ₃ (CH ₂) ₂₁ Br CH ₃ (CH ₂) ₁₄ CO ₂ Et [CH ₃ (CH ₂) ₉ C=Cl ₂ Hg [CH ₃ (CH ₂) ₁₅] ₃ Pe CH ₃ (CH ₂) ₁₅ SH ^f [CH ₃ (CH ₂) ₁₅ SH ^f [CH ₃ (CH ₂) ₁₅ Sl ₂ [CH ₃ (CH ₂) ₁₅] ₂ Sg	95 92 74 69 84 82 70 111 102 112 110	33 38 18 0 31 28 0 44 28 47 44 45	9 7 7 3 4 6 4 21 30 20 23 20	21-23 22-24 22-24 22-24 28-31 h 17-19 21-23 29-33 22-24 22-24 22-24	

Only S and P form dense monolayers on gold

Advancing contact and h.

Kinetics of SAM formation on gold

- kinetics is faster for longer chains due to stronger van der Waals interaction
- in case of phenyl rings present, the kinetic still depends only on the length of alkane chain, phenyl position closer to thiol is preferred
- two kinetics are observed: adsorption (fast) and rearrangement (slow)

Structure of alkanethiol SAMs

 most probably, the alkanethiols shorter than n=9 form liquid-like structure

thickness vs. # of carbons

ellipsometric thickness and adv.angle vs. # of carbons

Structure of alkanethiol SAMs

- Chemisorption mechanism on Au
 - dialkylsulfides

$$RS - SR + Au^0 \longrightarrow 2RS - Au^+ + Au^0$$

thiols (not established yet)

$$RS - H + Au^0 \longrightarrow RS^- - Au^+ + \frac{1}{2}H_2 + Au^0$$

$$RS - H + Au^0 + oxidant \longrightarrow RS^- - Au^+ + \frac{1}{2}H_20 + Au^0$$

Structure of alkanethiol SAMs

- on Au(111) bonding has both σ and π character
- S...S distance 4.99Å, area 21.4 Å².
- hexagonal symmetry

- S...S distance 4.56Å, area 21.4 Å².
- based-centered square symmetry

Au (111)

Au (100)

Applications

 Nonlinear optics – interaction of light with matter that produces new light field different in wavelength or phase

- absence of centre of symmetry is required for second-order polarizability
- molecules with conjugated bonds possess large α and γ .

Applications

consequences of non-linear susceptibility:

Applications

Dielectric layers

