Self-Assembly Lecture 4 Surfactants Self-Assembly ## Surfactant self-assembly - At low concentrations surfactants form adsorbed layers of air/solution and solid/solution interfaces - At critical micellization concentration (cmc) the surfactant starts self-assembling into micelles - driven by hydrophobic interaction - spontaneous and reversible cooperative transition ## LB Trough - The trough is usually made of single piece solid Teflon - Thorough cleaning of the bath (H2SO4,HNO3/HCI etc.), only inorganic cleaning is allowed. - No organic vaour in the lab - Filtered subphase based on DI water - Hydrophilic substrates: Si, glass, quartz, mica, Al, Cr, Sn and their oxides, Au and Ag. Hydrophobic substrate: silanized Si (e.g. with OTS) # LB Trough Double-bath (KSV5000) allows transfer of two different layers A and B ### LB transfer - The monolayer state in the meniscus area is different from the bulk subphase - one-to-one transfer between the water and the substrate cannot be assumed ### LB transfer - Shaefer technique (horizontal lifting): good for deposition of very rigid films (2D-solid) - In many cases, as lifting disrupts the meniscus, the monolayer from water-air interface is sucked in forming Y-type transfer - Advantages: - horizontal deposition rate is not reduced due to viscosity - non-centrosymmetric X-films can be formed - organic superlattices can be constructed ### Self-Assembled monolayers - Molecular assemblies that formed spontaneously by immersion of appropriate substrates into a solution of an active surfactant - Major SA forming molecules: - organosilicons on hydroxylated surfaces (SiO₂, Al₂O₃, glass etc.) - alkanethiols on Au, Ag, Cu - dialkyl sulfides on Au - dialkyl disulfides on Au - alcohols and amines on Pt - carboxylic acids on Al₂O₃ and Ag ## Self-Assembled Monolayers - Typical energies involved: - head substrate interaction ~10kcal/mol (e.g. thiolates on Au ~40-45 kcal/mol) - van der Waals forces between alkyl chains - ~1kcal/mol - electrostatic interaction between the surface groups ### Kinetics of SAM - Stearic acid (C₁₇H₃₅COOH) on Al₂O₃ and glass - time required to form a monolayer decreases with the concentration - substrate dependent: assembly on Al2O3 is faster than on glass - can be described by Langmuir equation (i.e. limited by adsorption kinetics) $$\frac{d\theta}{dt} = \frac{k_a}{N_0}c(1-\theta) - \frac{k_d}{N_0}\theta \implies \theta_{eq} = \frac{k_ac}{k_ac + k_d} = \frac{c}{c + K}$$ $$K = \frac{k_d}{k_a} \propto \exp\left(\Delta G_a / RT\right) \implies \Delta G_a(Al_2O_3) \approx -9.2kcal / mol$$ ## Kinetics of SAM - Octyltrichlorosilane (OTS) on Si - Tetradecyltrichlorosilane (TTS) on Si ## SA multilayer HYDROXYLATED SURFACE #### Structure of Siloxane SAM - oligomers of siloxane adsorb faster from a solution than monomers - two major trimer configurations are possible corresponds to experimentally observed 15° tilt ### Structure of Siloxane SAM - alkylsilanes SAMs are inhererently more disordered and less closely packed that alkanethiols due to more limited freedom to move and re-arrange - measured thickness of OTS on Si ~25Å, tilt 14°. #### Alkanethiol SAMs - usually produced by immersion of a substrate into mM solution. - immersion time is typically ~1h for alkanethiols, several days for disulfides and sulfides Adsorption of alkanes with various terminal groups on gold | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\theta_a(H_2O)^a$ | $\theta_{a}(HD)^{b}$ | Thickness (Å)
Obsd ^c Calcd ^d | | | |--|---|--|--|---|--|--| | CH ₃ (CH ₂) ₁₅ OCS ₂ Na 108 45 21 24-26 | CH ₃ (CH ₂) ₁₆ OH
CH ₃ (CH ₂) ₁₆ CO ₂ H
CH ₃ (CH ₂) ₁₆ CONH ₂
CH ₃ (CH ₂) ₁₆ CN
CH ₃ (CH ₂) ₂₁ Br
CH ₃ (CH ₂) ₁₄ CO ₂ Et
[CH ₃ (CH ₂) ₉ C=Cl ₂ Hg
[CH ₃ (CH ₂) ₁₅] ₃ Pe
CH ₃ (CH ₂) ₁₅ SH ^f
[CH ₃ (CH ₂) ₁₅ SH ^f
[CH ₃ (CH ₂) ₁₅ Sl ₂
[CH ₃ (CH ₂) ₁₅] ₂ Sg | 95
92
74
69
84
82
70
111
102
112
110 | 33
38
18
0
31
28
0
44
28
47
44
45 | 9
7
7
3
4
6
4
21
30
20
23
20 | 21-23
22-24
22-24
22-24
28-31
h
17-19
21-23
29-33
22-24
22-24
22-24 | | Only S and P form dense monolayers on gold Advancing contact and h. ## Kinetics of SAM formation on gold - kinetics is faster for longer chains due to stronger van der Waals interaction - in case of phenyl rings present, the kinetic still depends only on the length of alkane chain, phenyl position closer to thiol is preferred - two kinetics are observed: adsorption (fast) and rearrangement (slow) ### Structure of alkanethiol SAMs most probably, the alkanethiols shorter than n=9 form liquid-like structure thickness vs. # of carbons ellipsometric thickness and adv.angle vs. # of carbons #### Structure of alkanethiol SAMs - Chemisorption mechanism on Au - dialkylsulfides $$RS - SR + Au^0 \longrightarrow 2RS - Au^+ + Au^0$$ thiols (not established yet) $$RS - H + Au^0 \longrightarrow RS^- - Au^+ + \frac{1}{2}H_2 + Au^0$$ $$RS - H + Au^0 + oxidant \longrightarrow RS^- - Au^+ + \frac{1}{2}H_20 + Au^0$$ ### Structure of alkanethiol SAMs - on Au(111) bonding has both σ and π character - S...S distance 4.99Å, area 21.4 Å². - hexagonal symmetry - S...S distance 4.56Å, area 21.4 Å². - based-centered square symmetry Au (111) Au (100) ## Applications Nonlinear optics – interaction of light with matter that produces new light field different in wavelength or phase - absence of centre of symmetry is required for second-order polarizability - molecules with conjugated bonds possess large α and γ . ### **Applications** consequences of non-linear susceptibility: # **Applications** Dielectric layers