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Surfactant self-assembly

-m : ig i
5- i
& S "
Adsorption L
surfactants \ Desortion dE
e residence time .

]
Sele =2t
N =S o

« At low concentrations surfactants form adsorbed Iayérs of
air/solution and solid/solution interfaces

o Atcritical micellization concentration (cmc) the surfactant
starts self-assembling into micelles

— driven by hydrophobic interaction
— spontaneous and reversible cooperative transition




LB Trough

The trough Is usually made of single piece solid

"eflon

"horough cleaning of the bath (H2S0O4,HNO3/HCI

etc.), only inorganic cleaning is allowed.
 NoO organic vaour in the lab
* Filtered subphase based on DI water

« Hydrophilic substrates: Si, glass, quartz, mica, Al, Cr,
Sn and their oxides, Au and Ag. Hydrophobic
substrate: silanized Si (e.g. with OTS)



LB Trough

* Double-bath (KSV5000) allows transfer of two

different layers A and B —
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LB transfer

 The monolayer state in the meniscus area is different
from the bulk subphase

e one-to-one transfer between the water and the
substrate cannot be assumed
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LB transfer

« Shaefer technique (horizontal lifting): good for
deposition of very rigid films (2D-solid)

* In many cases, as lifting disrupts the
meniscus, the monolayer from water-air
Interface Is sucked in forming Y-type transfer

 Advantages:

— horizontal deposition rate Is not reduced due to
VISCOSIty

— non-centrosymmetric X-films can be formed
— organic superlattices can be constructed



Self-Assembled monolayers

 Molecular assemblies that formed spontaneously
by iImmersion of appropriate substrates into a
solution of an active surfactant

 Major SA forming molecules:

— organosilicons on hydroxylated surfaces (SiO,, Al,O,, glass
etc.)

— alkanethiols on Au, Ag, Cu

— dialkyl sulfides on Au

— dialkyl disulfides on Au

— alcohols and amines on Pt

— carboxylic acids on Al,O; and Ag



Self-Assembled Monolayers

Surface group
ﬁ Alkyl, or derivatized-
« alkyl group

Interchain van der Waals and
electrostatic interactions ~ &— =

Chemisorption

Surface-active headgroup at the surface

— head substrate interaction ~10kcal/mol (e.qg.
thiolates on Au ~40-45 kcal/mol)

—van der Waals forces between alkyl chains
~1kcal/mol

— electrostatic interaction between the surface groups



Kinetics of SAM

» Stearic acid (C,-H;:COOH) on  S——
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Kinetics of SAM
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Octyltrichlorosilane (OTS) on Si
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Tetradecyltrichlorosilane (TTS) on Si



SA multilayer

7
HYDROXYLATED SURFACE

 |If a monolayer on surface can be
modified to bear hydroxyl groups
(e.g. reduction of surface ester 7
group) a multilayer can be created = Jolol...




Structure of Siloxane SAM

« oligomers of siloxane adsorb faster from a solution than
monomers

e two major trimer configurations are possible
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Structure of Siloxane SAM

 alkylsilanes SAMs are inhererently more disordered and less

closely packed that alkanethiols due to more limited freedom
to move and re-arrange

e measured thickness of OTS on Si ~25A, tilt 14°.
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Alkanethiol SAMs

« usually produced by immersion of a substrate into mM
solution.

e Immersion time is typically ~1h for alkanethiols, several days
for disulfides and sulfides
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Kinetics of SAM formation on gold

» Kkinetics is faster for longer
chains due to stronger van der
Waals interaction

* In case of phenyl rings present,
the kinetic still depends only on
the length of alkane chain,
phenyl position closer to thiol is
preferred

« two Kkinetics are observed:
adsorption (fast) and re-
arrangement (slow)
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Structure of alkanethiol SAMs

* most probably, the alkanethiols shorter than n=9 form

liquid-like structure
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Structure of alkanethiol SAMs

e Chemisorption mechanism on Au
— dialkylsulfides

RS —SR+ Au’ ——>2RS — Au* + Au’
— thiols (not established yet)

RS—H+Au°—>RS‘—Au++%H2+Au°

RS —H + Au’ + oxidant ——> RS~ — Au* +%H20+ Au’



Structure of alkanethiol SAMs

 on Au(111) bonding has both ¢ and
7t character

e S...Sdistance 4.99A, area 21.4 A2.
* hexagonal symmetry
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e S...Sdistance 4.56A, area 21.4 A2
* Dbased-centered square symmetry

Au (100)



Applications

 Nonlinear optics — interaction of light with matter
that produces new light field different in wavelength
or phase

+NH;,
p=a-E+B-E +yE+.. @ ¢
2nd rank tensor 3" rank tensor N

e absence of centre of symmetry is required for second-order
polarizability
* molecules with conjugated bonds possess large o and v.



Applications

e conseqguences of non-linear susceptibllity:
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Applications

e Dielectric layers
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