Self-Assembly

Lecture 7
Dynamical Self-Assembly

Dynamic Self-Assembly

The biological example of writing information on a small scale has inspired me to think of something that should be possible. Biology is not simply writing information; it is doing something about it. A biological system can be exceedingly small. Many of the cells are very tiny, but they are very active; they manufacture various substances; they walk around; they wiggle; and they do all kinds of marvelous things - all on a very small scale. Also, they store information. Consider the possibility that we too can make a thing very small which does what we want - that we can manufacture an object that maneuvers at that level! R.Feynman

Complexity (Ilya Prigogine)

- "simple" processes (newtonian laws of motion, perfect gas etc.) – deterministic behaviour, future and past play the same role (time reversibility)
- "complex" processes: irreversible and stochastic (biological, climate changes, oscillating chemical reactions).

Bénard instability

 Spontaneous self-organization in a liquid due to vertical temperature gradient

Bénard instability

I.Prigogine: "A characteristic feature of **far-from-equilibrium** conditions is the possibility of **bistability**. For given boundary conditions, there may be more than one stable solution"

Bénard instability

Symmetry breaking

The world is uniform. Space is everywhere the same. A little observer has no notion of space.

The world is patterned.
Space is heterogeneous. A little observer has the possibility to say where she is

The interactions between the water molecules have a range of about 10⁻¹⁰meter. The structures we observe are of the size of 10⁻³metres.

10²¹molecules have to move in a correlated manner!

Dynamic self-assembly

- States to achieve are not in thermodynamic equilibrium.
- The system dissipates energy.
- Interactions between components are not constant, but may change between attraction and repulsion.
- Remain ordered only so long as the system continue to dissipate energy

Dynamic self-assembling wires

Example: self-assembly of aluminium particles "Pelesko chain"

- structured particles: Aluminium disks
- binding force: electrostatic force. Presence of electric field and electrodes causes formation of chain and oscillation
- environment: viscous liquid, gravity and lift forces

Dynamic self-assembling wires

Self-assembly of large and small particles. V_{applied}~19.8 kV

The approach described above can be scaled down

Dielectrophoretically driven assembly can be used to create

contacts on a microscale

Experimental conditions:

 Gap between electrodes: 2mm-1cm

- Voltage 50-250Vac; 50-200Hz
- Field ~250V/cm

K.Hermanson et al, Science 294, 1082 (2001)

- the wire starts to propagate immediately when nanoparticles are added
- typical propagation speed ~50µm/s

Calculation shows that DEP forces are not sufficient to assemble particles, how then it works?

- growth mechanism:
 collective effect:
 upconcentration in front of
 the growing wire
- smaller particles lead to slower growth and more fractal wire morphology
- electrolyte concentration increase, makes aggregation faster
- composite wires of Au-NP and polystyrene spheres can be created
- wires are self-repairing
- wires show linear ohmic behaviour
- resistance changes if e.g. thiols are added

Conductivity and self-repair of the wires

Summary of parameters affecting micro-wire growth

Parameter	Range	Growth rate	Branching	Thickness
Voltage ↑	$23 \frac{\text{v}}{\text{mm}} < \text{slow} > 40 \frac{\text{v}}{\text{mm}}$ $\text{fast} > 45 \frac{\text{v}}{\text{mm}}$	1	\	↓
Frequency ↑	10 Hz $<$ $>$ 150 Hz	\downarrow	\uparrow	\downarrow
Particle concentration ↑	> 0.13%	1	Constant	\uparrow
Particle size ↑ (constant weight %)	15–30 nm	\downarrow	\downarrow	Constant
Particle size ↑ (constant particle concentration)	15–30 nm	1	\downarrow	1
Electrolyte concentration \uparrow	(0–3) $ imes$ 10 $^{-4}$ M NaCl	↑	Constant	\uparrow

Self-assembling nanowire

- 1D nanoparticles arrays are expected to exhibit unusual electical behaviour
- Question: how to arrange nanoparticles into a device

Experiment:

- Cr-microelectrodes on SiO₂/Si
- 40Vdc through 1GOhm resistor
- 30nm graphite nanoparticles suspended in toluene

Self-assembling nanowire

• IV-characteristics of nanowires show threshold voltage at lower temperature (72K and below).

Magnetically driven dynamic systems

 rotating magnetic field draws particles to the center while hydrodynamic forces counteract the movement

Fluid-filled tray containing magnetic

particles

Mechanically driven dynamic systems

 Mechanical vibration of particle suspension in liquid can lead to dynamic self-assembly due to interplay of mechanical and hydrodynamic forces

Experiment:

 cornstarch or class microspheres in liquid are oscillated vertically with frequency with 50-180 Hz

Cross section of a hole:

Mechanically driven dynamic systems

Phase diagram for the hole formation

Self-propelled systems

 Many complex systems can both move and interact with each other

plates can move autonomously for several hours due to catalytic evolution of O₂ from H₂O₂ solution on Pt-covered fin

Whitesides et al, Angew. Chem. 41, 652 (2002)

Self-propelled systems

- Particles are chiral (left-right symmetry is broken). Single plate rotates in the direction determined by its chirality
- Two pairs configuration are possible: the same or opposite chirality

Observed: Pair formation that slows down in time due to decrease in amount of available partners. No preference for pairs of same or opposite chirality

 The question: How many autonomous components required to observe emergence in a system?

Whitesides et al, Angew. Chem. 41, 652 (2002)

 The "structured particles" discussed before are dumb ©, biological particles are smart, they can change the interaction depending on the environment

Static self-assembling system:

- the lowest energy state corresponds to hexagons
- due to local minima the other shapes are produced, but their concentration will drop in time

From reaction point of view:

$$P_{1} + P_{1} \rightarrow P_{2}$$

$$P_{1} + P_{2} \rightarrow P_{3}$$

$$\frac{dp_{1}}{dt} = -kp_{1}^{2} - kp_{1}p_{2}$$

$$\frac{dp_{2}}{dt} = kp_{1}^{2} - kp_{1}p_{2}$$

$$\frac{dp_{3}}{dt} = kp_{1}p_{2}$$

 If we need to stabilize, say dimers, we can add a programmed reaction pathway:

$$\frac{dp_1}{dt} = -kp_1^2 - kp_1p_2$$

$$\frac{dp_2}{dt} = kp_1^2 - kp_1p_2 + k_pp_3$$

$$\frac{dp_3}{dt} = kp_1p_2 - k_pp_3$$

 $P_3 \rightarrow P_1 + P_2$

 Breakup of P₃ will lead to desired P₂! But to do this the particles need to know if they are part of P₂ or P₃.

 Embodied process control: a particle can take decision based on its state and the state of the neighbours (Pfeifer: "a part of the computation necessary to fulfill a given mechanical

task can be outsourced to the body").

Each particle contains: three controllable magnetic latches, three infrared tranceivers and a logical circuit

Fig. 1. Four programmable parts partially assembled into a triangle. The parts bind upon random collisions and communicate via IR, deciding whether to remain bound or to detach. A graph grammar stored on the microcontroller of each part determines the ultimate global structure that will emerge. The parts are not self-motive but instead are "mixed" on an air table by overhead oscillating fans.

Eric Klavins and Nils Napp, 2005

Dynamic self-assembly: conclusion

- For dynamic self-assembly to occur out-ofequilibrium conditions with energy flow are required
- Competitive and cooperative efforts of various forces lead to formation of spatial and temporal structures
- Use of external driving forces may be avoided by creating self-propelling particles
- Embodied process control may be a relevant source for design principles for dynamic self-assembly.
- Dynamic self-assembly, where systems dissipate energy, is only at its beginning.