Aggregation of Amphiphilic Molecules Into Micelles,
Bilayers, Vesicles And Biological Membranes
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Equilibrium considerations of amphiphilic structures

» Amphiphilic molecules?

- Can associate into a variety of structures in aqueous solutions

- Can change from one form to the other according to the exterior
conditions, e.g pH or electrolyt concentration

- ¢.g. surfactants, lipids, copolymers, proteins

» Amphiphilic molecules
- thermodynamics of self-assembly
- intra-aggregate forces
- inter-aggregate forces
=> Equilibrium structures of the system



Equilibrium considerations of amphiphilic structures

Equilibrium structures?
- reference to Gibbs phase rule
Amphiphilic structures can be:
hard and solid-like
soft or fluid like
molecules in thermal motion
1. No definite size or shape
1. No definite size

Surfactant concentration X

Distribution
above the CMC
: Miielies

At the CM(

L Below the CMC

M N —

2. Only distribution about some mean value

3. Equilibrium distribution to peak at more than one value of N

(aggregation number)




Equilibrium considerations of Amphiphilic Structures

» Equilibrium distribution can peak at more than one N value
» Small aggregates = micelles

» Thermodynamic equilibrium with larger structures

» Vesicles or liposomes

» Not a separate phase

» Structure size does not play a role in the thermodynamic definit
ion of a separate phase

» Two and three phase systems can occur when
» Monomers, micelles, and vesicles separate out in equilibrium

» This can take a very long time



Optimal headgroup areca

» The major force : hydrophobic attraction
(at the hydrocarbon-water interface)

Two ‘opposing forces’ Chydrophotic

atiraction

- attraction : between hydrocarbon
- repulsion : between head-group
Acting region : interfacial region

» Interfacial area A /molecule
- attractive force
; decrease Interfacial area A /molecule
- repulsive force

; increase Interfacial area A /molecule




Optimal head-group area

» Attractive interation
- hydrophobic or interfacial tension
- positive interfacial free energy per unit area
( hydrocarbon — water interface y = 50mJ/m )
( headgroup — water interface y = 20mJ/m )
( C=C bonds — water interface y = 50mJ/m" )

» Total interfacial free energy(y°)
- attractive interfacial free energy contribution : ya (y = 20~50mJ/m" )
- repulsive interfacial free enetgy contribution : K/a
- Too difficult to formulate explicitly

steric contribution, hydration force contribution (mobile headgroups),
electrostatic double-layer contribution charged headgroups

- two-dimensional van der Waals equation of state

=> the first term in any energy expansion o« 1/surface area
occupied per headgroup a (cf. pressure oc 1/a%)



Optimal head-group area

» Total interfacial free energy per molecule in an aggregate can be written

to first order as,
uy =ya+K/a (17.1)
» Minimum energy

ty (min)=2ya,, a,=+k/y (172)

(a, : optimal surface area per molecule )

ty =2y aﬁ%(a—ao)z (17.3)

( Unknown constant K : eliminated )
(v and a, : measurable parameters )
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Attractive energy « va

Repulsive energy « K'/a

Surface area per molecule, a




Optimal head-group area

> a,:optimal surface area per molecule
= total interfacial energy per lipid molecule is minimum

» optimal area should not strongly depend on the chain length or chain
number ( in fluid hydrocarbon )

» lipid interaction energy between lipids
- minimum at optimal surface area
- parabolically vary

» (Eql7.3) ignore three second-order effects
1. Specific head-group interactions such as ionic bridging

2. Specific chain-chain interactions (never perfectly fluid
hydrocarbon)

3. The effect of surface curvature on pi°



Geometric packing considerations

» Geometry or Packing properties
1. Optimal area : a,
2. Volume of hydrocarbon chain or chains : v
3. Critical chain length : 1

»  Critical chain length 1,
- How far the chains can extend; smaller extensions are allow?
- Semi-empirical parameter
- Saturated hydrocarbon chain (carbon number = n) (by Tanford)
1.<1 ..~(0.154+0.1265n) nm
v =(27.4+26.9n) x 10> nm

=> Largern, v/ 1.~ 0.21 nM = constant > minimum cross-
sectional area



Geometric packing considerations

» Optimal surface area a,, hydrocarbon chain volume v, critical length 1,
are determine their packing structures

v" These parameters can be satisfied by a variety of different structures

v For all these structures p° same. ( since a, is the same)

v" Entropy favors structure with the smallest aggregation number N=M
this structure is unique!

v' Larger structure will be entropically unfavored

v' Smaller structures , packing constraints force a above a,
energetically unfavoured
» Packing parameter (or shape factor) - v/ a,l,
el v/ ayl. < 1/3 ) : spherical micelles
v (1/3 < v/a,l, < 1/2) : non-spherical micelles
v (12 < v/ayl, < 1) :vesicles or bilayers
¥ Gl viaglh ) : ‘inverted’ structure

» All structures have minimum sized aggregation



Spherical micelles

» Spherical micelles
v" Optimal surface area (a,) sufficiently large

v Hydrocarbon volume v sufficiently small
v" Radius of micelle, R <1,

» From simple geometry we have
» For a spherical micelle
» With Radius R and a
» Mean aggregation number M
M=4xR*/a,=47R’/3V
v 1

R=3v/a,, —<-—
gilc 7D



Spherical micelles

» Example) SDS(12-carbon chain sodium dodecyl sulphate surfactant)
v Mx74
vV n1=12->v=0.3502nm ,a,~0.57nM ,I.~1.67nm R = 1.84 nm
v v/a,l,~037 > 1/3
—> Just cannot pack into spheres , slightly non-spherical

Standard deviation can be obtained at N = M , where a= a,

1Y =ty +§ (a-a,)

N=4rR*/a =47 R*/3v=367Vv’/3q’
oy =ty =/1(N—M)2, A=ya,/IM?
o =+/(9KT /2y a,)M

(y = 20~50mJ/m" ), a,~ 0.06 nm

~/M




Non-spherical and cylinderical micelles

» Most spherical micelles forming lipid — charged head-group (since
large head-group area a,

» Add salt to Charged head-group lipid
-> partially screens the electrostatic inter-headgroup repulsion
->reduce headgroup area : 1/3 < v/a,l. < 1/2
-> cannot pack into spherical micelles

-> can form cylindrical (rod —like) micelles

» Rod-like aggregate — unusual properties
1. Large and polydisperse
2. <N >=2,Cge% above CMC
=> due entirely to ‘end effects’



Non-spherical and cylinderical micelles

> End effects

v' At each end the lipids are forced to pack into hemispherical caps with a
headgroup area a determined by v/ a,1,=1/3 , so that a> a; since v/ a1, >
1/3.

v' The unfavourable energy of these end lipids determines the magnitude of
the interaction parameter a in < N >= 2./C g“

» Cylindrical micelles
v" Sensitive to
" temperature changing
* chain length
= jonic strength (for ionic lipids)

» Toroidal micelles (experimentally not observed yet)
- 2D vesicle , end effect minimum



Bilayers
» Bilayer forming lipids
Ve 1/ 2N a g L 5
v’ small a,
v" too bulky hydrocarbon chain
v' tow chain lipids — almost same a,, 1_but v is twice

v' Twice chain lengths
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Bilayers

» Doubling of the chains affects other aggregate properties
1. increase hydrophobicity -> decrease CMC
- ( biologically very important )
- common micelle forming lipids CMC ( 10->~10->M)
- bilayer forming lipids CMC ( 10-°~10-1M)
2. increasing ‘lifetimes* (or residence times) t,
- 7. (micelles) ~ 55 x 10°/10 ~ 10*s
- 7. (bilayer) ~ 55 x 107/10-10~ 10** s

- suggests exchange rates should fall a factor of about 4-10 per two
CH, groups added to the chain

- residence times depend on the individual molecules and not on the
structures

3. ‘transbilayer lipid exchange’

- “flip-flop’ of molecules from one side to the another

- diffusive exchange process

- diffusion of lipids around the walls transient pores




Bilayers

» Bilayer is elastically stretched
v’ elastic energy

: 1 2
elastic energy = 5 ka(a-a,) /2
v" Compressibility modulus k,

k.=~2y per monolayer, ~ 4y per bilayer
» Elastic bending or curvature modulus, k;

v" K, Curved bilayer vesicle

» Fluid-like properties
v' Assume that hydrocarbon chains in micelles and bilayers are in the
fluid state

v" Fluid at Room temperature
* almost micelle forming single-chain surfactant
= bilayer forming double-chain lipid
v" Fluid at lower temperature : unsaturated or branched chained lipid



* Chain Melting Temperatures T,

TasLe 17.1 Chain melting {phase transition) temperatures, T, of some common double-
chained lipid bilayers in water (at PH 7} in order of increasing T,
Melting point
Headgroup type® of n-alkkane
Lipid - andchain melting temperature,® T_({°C) with same
(giving number of : - rnumber of
carbons per chain) PC PG™ PS "~ PE carbon atoms
Saturated . . :
Dilauroyl (12) . | 0 13 30 . Z9
Dimyristoyl (14} = = - 230 - 24 36 49 - 5.9
Dipalmitoy[ (e) .~ -~ 41 . 4 . 52 - o4 - 18.2
Distearoyl (18) = .~ 55 - 55 68 . 74 . 282
Unsaturated {cis) o |
Dioleoyt (18) . -2 =18 -7 -~16 ~ ~30
*PC: phosphatidylcholine {zwittevionick; PG ~: #Iosplnﬁdy!glweq-oq.{negauvew charged); PS™
phosphatidylserine (negatively charged); PE _ idylethanolamine (zwitterionic),
* Compiled from Ceve and Marsh (1987) and Marsh {1990),




* Structure of Vesicle

Bilayer Vesicle
(Closed Uni-Lamellar)

Phospholipid

Interior "Ei)

Aqueous ' Phospholipid
Solution Bilayer
A1 Chain o
I

C —(sz
C—CH O
HZ Chain Il |

Hydrophobic Tail Characterizing group

Hydrophilic Head Group




Vesicles

» Driving force for vesicle formation: elimination of the energetically
unfavorable edges a
0

» What determines the radii of vesicles?
v' Packing parameter: v/a,l,

= 1 bilayer I,

= <] = vesicles

» >] - inverted micellar structure/precipitation
v’ Critical radius by geometric consideration for 1/2 < v/ayl. <1

| 3+43(4V/al.—1) | .
| 6(1-v/a,l.)

Rcz (7o
(l_V/aolc)

v’ Aggregation number

N z47Z'{R§-I—(RC—t)2‘/aO here, t ~2v/a,

Bilayer hydrocarbon thickness



Vesicles

Tasie 17.2 Mean (dynamic) packing shapes of lipids and the structures they form

Lipid

Critical
packing
parameter
viayl.

Critical
packing shape

Structures
formed

Single-chained lipids
(surfactants) with large
head-group areas:

SDS in low salt

<13

Spherical micelles

Single-chained lipids

with small head-group
areas:

SDS and CTAB in high salt,
nonionic lipids

1/3-1/2

Cylindrical
micelles ¢

Double-chained lipids with
large head-group areas, fluid
chains:

Phosphatidy! choline (lecithin),
phosphatidyl serine,
phosphatidyl glycerol,
phosphatidyl inositol,
phosphatidic acid,
sphingomyelin, DGDG?,
dihexadecyl phosphate,
dialky! dimethy! ammonium
salts

1/2-1

Truncated cone

0

Flexible bilayers,
vesicles

Double-chained lipids

with small head-group

areas, anionic lipids in high
salt, saturated frozen chains:
phosphatidy! ethanolamine,
phosphatidyl serine + Ca™

=1

Cylinder

6

Planar bilayers

(e
éHLﬁ U(h bl

Double-chained lipids with

small head-group areas,

nonionic lipids, poly fcis)
unsaturated chains, high 7:

unsat. phosphatidyl ethanolamine,
cardiolipin + Ca**

phosphatidic acid + Ca**
cholesterol, MGDG®

>1

Inverted
truncated cone
or wedge

0§

Inverted \‘\S , '1

micelles

* DGDCG, digalactosyl diglyceride, diglucosyl diglyceride.
® MGDG, monogalactosyl diglyceride, monoglucosyl diglyceride.




Factors Affecting Changes from One Structure
to Another

[. Headgroup area: small headgroup areas (high v/ayl,)=> large vesicles, less-
curved bilayers, or inverted micellar phases

[I. Chain packing: chain branching and unsaturation = reduction of |, >

increase of v/a,l,

[II. Temperature: T =>affecting both a, and |,

v' increase of T = reduction of |, by the hydrocarbon chain motion

v" increase of T = hydrophobic group: decrease of a,, hydrophilic
group: increase of a,

I'V. Lipid mixture: The size of vesicles can be conveniently modulated by

adding another component (cosurfactant).



Curvature Elasticity of Bilayers & Membranes

» More delicate treatment

v" Headgroup repulsion ‘ Additional curvature dependence

v" Chain repulsion of 4/, onR

AE =-21D/R*=k,/2R> per unit area

= Bending modulus k,
headgroup repulsion: k, <0

chain repulsion: k, > 0



Positive Curvature Modulus (k, > 0)

» Interaction energy per vesicle of large radius R (R>R))

NluoN = N,uooo+(kb/R2)47z R> = N,ufo+27zkb

Mean aggregation number M = ,/C g% = ¢™®/¥T4/C
vesicle distribution X /N =Const.e "'V

» In case of dilute lipid concentration C = 10-* moldm-3
v' k, > 2* 10-2° J - vesicles will be large (M > 10,000), polydisperse,
and Roc C/4,
v' k, <2* 10-2° J & small and monodisperse (No significant effect
due to low bending modulus)



Negative Curvature Modulus (k, < 0)

» Bending of a bilayer right from the start

» Smaller vesicles

» For large repulsive headgroups and shorter hydrocarbon chains = smaller
vesicles

» Below a certain chain length = cylindrical or spherical micelles
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Biological Membranes

» The most common cellular

structure in both animals and plants

» Various function such as mobility,

food entrapment, energy
transduction, immunological

recognition, nerve conduction, and

biosynthesis

Photoreceptor membranes
Plant cell membranes —_—
e

——1
<= Thylakoids —_—

)

== Vertebrate

Invertebrate rods
microvilli

/;v e membranes @

Myelin
@ (Schwann cell)
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Membrane Lipids

» Double-chained phospholipids or glycolipids with 16 to 18 carbons per
chain

» Properties
v" Self-assembly of biological lipids into thin bilayer membranes

v’ Extremely low CMC
v" Fluid state at physiological temperatures by unsaturation or branching

(a) (b)

» Mixture of two different lipids
Phosphatidylcholine (PC): son] Ty Pp
cone-shaped (v/ayl < 1)

Phosphatidylethanolamine
(PE): wedg-shaped (v/a,l.> 1)

RL )




Membrane Proteins and Membrane Structure

» Membrane proteins are long-chained polypeptide polymers consisting of a
long string of amino acid residues.

» Protein structures
v' Primary: residue sequence
v' Secondary: a-helical or B-pleated sheets
v' Tertiary: globule

» Incorporation of proteins into a lipid bilayer—> stress induction (Boundary
lipids)

» Consideration of proteins within
a fluid membrane: coexistence of
attractive and repulsive forces




Membrane proteins and Membrane Structures

» Both the lipids and the proteins move about rapidly in the plane of the

membrane.

» Heterogeneous domains and local clustering of lipids and proteins

a INTERMIXING

b PHASE-SEPARATION

c PORE

d INTEGRAL PROTEIN

¢ PERIPHERAL PROTEIN

cyfochnome ¢

Mean packing
conformations of mixed
lipid and lipid-protein
membranes, showing how
local packing stresses may
cause clustering of specific
lipids and/or non-bilayer
shapes.
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