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 9. Models of Excitons 
 
 
At this point, one might wonder about the accuracy of the optical response calculated in 
the previous chapters. So far, we have been treating the electrons as independent particles 
and the question is to what extent this is sufficient. For bulk semiconductors, the single-
particle calculations predict an absorption edge that is essentially a square root, c.f. Fig. 
8.1. As a classic example of the failure of this prediction, Fig. 9.1 shows a comparison 
between experimental spectra [1] and theoretical single-particle spectra computed from 
Eq.(7.4) for the wurtzite semiconductor ZnO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1 Measured spectra (left panel) and calculated single-particle spectra (right panel) for ZnO. 
The ordinary and extraordinary spectra correspond to light polarized perpendicular and parallel to the 

crystal c-axis, respectively. 
 
It is obvious that single-particle theory fails miserably in this case. In most materials, 
however, the discrepancy is less pronounced but still noticeable. The aim of this chapter is 
to describe a method for the inclusion of effects beyond the single-particle response. It 
involves a much more accurate calculation of many-body excited states usually referred to 
as excitons. In subsequent chapters, the effects of excitons in low-dimensional 
semiconductors will be investigated. We will demonstrate that excitons are even more 
important for those cases. 
 
Applying the single-particle approximation means, in effect, approximating all-electron 
wave functions by Slater determinants. To demonstrate this fact, we turn to the more 
general expression for the optical susceptibility 
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This expression differs from the single-particle result Eq.(7.4) in that the sum is over all 
excited states exc  with excitation energy excE , i.e. energy measured relative to the ground 
state 0 . The prefactor of 2 (rather than 4) is used because the summation also covers spin. 
Also, the operator ˆ

zP  is the many-body momentum operator, which for a system with 2N 
electrons is given as the sum of single-electron operators 
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where ,ˆ /z n np i d dz=−  operates on the n’th electron coordinate only. The ground state is a 
Slater determinant 
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with all single-electron valence states occupied by spin-up and –down electrons. The total 
spin of the ground state is zero and since optical excitations don’t flip spins we look for 
excited states with vanishing spin. These are so-called singlet states. To construct them, we 
first examine two types of singly-excited states  
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in which a single occupied spin-up or –down orbital is replaced by unoccupied 
(conduction) states with similar spin. Neither of these states have definite total spin. 
However, the combination { }) ) ) )( ( ( ( / 2i j i j i jv c v c v c→ ↑ → ↑ ↓ → ↓≡ +  is a singlet with 

total spin S = 0. We now use the rules for matrix elements between Slater determinants [2] 
to calculate for the momentum  
 
 ˆ ˆ0 2z i j i z jP v c v p c→ = . 
 
Moreover, the energy difference between the singlet and the ground state is simply 

j ic vE E− . Hence, Eq.(9.1) reduces exactly to Eq.(7.4) in this case. 

 
We now wish to be somewhat more accurate. To this end, we write the excited states as 
linear combinations of the singlets above, i.e. 
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where ijΨ  are unknown expansion factors. The problem is how to find matrix elements of 
the total Hamiltonian for any two singlets 
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The total Hamiltonian is given by 
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where ˆ

nh  is the single-electron Hamiltonian. As a start we look at the energy of the ground 
state 
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Note that the additional factors of 2 appear because the spin-summation has already been 
performed. Next, we look at the diagonal elements for the state ) )( (i jv c↑ → ↑ . Compared to 
the ground state, iv  should be replaced by jc . It follows that 
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We now introduce the quasi-particle energies 
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Note that there is no restriction on the summations, i.e. all valence states are summed. In 
terms of these quantities we have 
 
 ) ) ) )ˆ ˆ( ( ( ( 0 0

j ii j i j c v i j i j i j j iv c H v c H E E v c V v c v c V c v↑ → ↑ ↑ → ↑ = + − − + , 
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where the last two terms serve to correct the unrestricted summations in the quasi-particle 
energies. The exact same expression is obtained if the spin-down Slater determinant is 
considered. The cross-term yields 
 
 ) ) ) )ˆ( ( ( (i j i j i j j iv c H v c v c V c v↑ → ↑ ↓ → ↓ = . 
 
Combining, we find the full diagonal matrix element for the singlet excitation 
 
 ˆ ˆ0 0 2

j ii j i j c v i j i j i j j iv c H v c H E E v c V v c v c V c v→ → = + − − + .  

 
It can be shown that coupling between singly excited states and the ground state is 
identically zero, i.e. that ˆ0 0i jH v c→ =  [3]. The non-zero off-diagonal terms follow in 
much the same style as the diagonal ones 
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As ˆ0 0H  is the ground state energy, which we use as a zero-point of energy, we finally 
find 
 
 , 2

j iij kl c v ik jl j k l i j k i lH E E c v V c v c v V v cδ δ⎡ ⎤= − − +⎢ ⎥⎣ ⎦ . (9.1) 

 
The matrix problem then reads as 
 
 ,ij kl kl exc ij

kl
H EΨ = Ψ∑ , 

 
from which exciton wave functions and energies are computed. In turn, the exciton 
momentum matrix elements become 
 
 ˆ ˆ0 2z ij i z j

ij
P exc v p c= Ψ∑ . (9.2) 

 
We now specialize to periodic solids for which orbitals are labeled by a band index (v or c) 
and a wave vector k . In an optical process, the only relevant excitations are those that 
preserve k  (neglecting the small momentum lost/gained by the photon). Thus, the 
singlets are of the type vck vk ck→≡ . In turn, the sought matrix elements are 
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where Coulomb and exchange matrix elements are defined as 
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In a more rigorous derivation [4], it turns out that the Coulomb interaction should be 
screened by surrounding charges, so that introducing the dielectric constant ε  we find 
 

 3 31 ( ) ( ) ( ) ( ) ( )C ck c k vk v k
vck V v c k r r V r r r r d rd rψ ψ ψ ψ

ε
∗ ∗

′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′= −∫∫ . 

 
This full matrix equation (using the screened Coulomb interaction) is known as the Bethe-
Salpeter equation. 
 
 
9.1 Wannier model 
 
The framework above is terribly complicated and extremely difficult to handle 
numerically. Fortunately, a much simplified version can be applied in many cases 
provided the Coulomb interaction is not too strong. To derive this “Wannier” model we 
first note that the eigenstates of a periodic solid can be written as 
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vk
u  is the lattice-periodic part normalized so that  
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with the integral taken over the unit cell volume UCΩ . We first turn to the Coulomb matrix 
element. The product ( ) ( ) ( )

vk v k
r r V r rψ ψ∗

′ ′
′ ′ ′−  has a rapidly varying periodic part and slow 

part. In analogy with chapter 7, we will approximate the integral 
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Making a similar approximation for the r-integration, we then find 
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In a completely analogous manner, the exchange integral becomes 
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Now, at k k′=  we have 
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this case, we find the much simpler approximations 
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Hence, the bands decouple and we can focus on a single pair v and c. The Hamiltonian 
matrix elements become 
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where we have skipped the band indices on the matrix elements. Also, the unknown 
expansion coefficients can be re-labeled according to ij k

Ψ → Ψ . It follows that the exciton 
eigenvalue problem is now 
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Here, the k′  summation can be turned into an integral, i.e. 
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The final approximation of the Wannier model consists in applying the effective mass 
dispersion for both bands so that 
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In this way, the k-space eigenproblem can be transformed into physical space by means of 
a simple inverse Fourier transform: 
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The Ω  factors are inserted to ensure that ( )exc rΨ  is normalized. Moreover, the Coulomb 
term above is simply the convolution between the wave function and the Coulomb 
potential and, hence, we finally find 
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It is apparent that this so-called Wannier equation is mathematically similar to the 
Schrödinger equation for the hydrogen atom. The differences are that ehm  replaces the 
reduced electron-nucleus mass and that ε  screens the Coulomb term. The physical 
interpretation is that the positive hole and negative electron interact via an attractive 
Coulomb potential. We note that only the relative motion of the electron-hole pair is 
present in the problem, so that the states have a vanishing centre-of-mass momentum. 
This is a consequence of our retaining only vk ck→  excitations in the expansion, i.e. 
neglecting photon momentum. Hence, the centre-of-mass momentum must vanish both 
before and after the photon is emitted/absorbed. 
 
To eventually calculate the optical properties, we need the momentum matrix element 
Eq.(9.2), which now reads as 
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As a simplification, we make take the single-electron momentum matrix element 
independent of k  so that ˆ z vcvk p ck p≈ , which means that  
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where (0)excΨ  is the exciton wave function in physical space evaluated at the origin. This 
leads to a simple expression for the optical response 
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In this approximation, only exciton states that are finite at the origin (“s-type”) contribute 
to the response. In the following, we evaluate the imaginary part in the limit of vanishing 
broadening 
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for bulk and low-dimensional cases. 
 
Exercise: Natural exciton units 
 
The Wannier equation Eq.(9.4) is formulated in SI units and it is advantageous to switch to 
more natural units. 
 
a) Show that using 2 2

04 /B eha m eπεε∗ =  as the unit of length and 2 2/2 eh BRy m a∗ ∗=  as the 
energy unit, the Wannier equation reduces to 
 

 ( )2 2( ) ( ) ( )g exc exc exc excE r r E r
r

−∇ Ψ − Ψ = Ψ . 

 
b) Show that 0.529Å /B eha m mε∗ = ⋅  and 213.6eV /ehRy m mε∗ = ⋅  (m is the free electron mass) 
and evaluate both for GaAs: 0.066 , 0.5  (heavy hole), 12.9e hm m m m ε= = =  and for ZnO:  

0.28 , 0.59  (heavy hole), 6.7 (incl. eff. phonon contribution)e hm m m m ε= = = . 
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