
 15. Nanoparticle Optics in the Electrostatic Limit  
 
 
In the previous chapter, we were restricted to nanospheres because a full solution of 
Maxwell’s equation was needed. Such an analytic calculation is only possible for very 
simple geometries. However, if particles become sufficiently small so that the spatial 
variation of the electromagnetic field can be simplified, more complicated shapes can be 
applied. Hence, in this chapter, we adopt the “electrostatic limit” that is equivalent to 
ignoring the spatial variation of the incident electric field inside the particle.  
 
 
 
 
 
 
 
 
 
 
 

Figure 15.1 Geometry of metal nanoparticle having a dielectric constant ε  embedded in a 
homogeneous medium with a dielectric constant . 1ε

 
We consider a nanoparticle such as the one depicted in Fig. 15.1 and apply the electrostatic 
method presented in Ref. [1]. In the electrostatic picture, an electric field only induces 
charges on the surface of the particle. Hence, the total electrostatic potential ( )Φ r  is the 
sum of an incident part  and the contribution generated by the surface charges. If the 
surface charge density is , the potential is given by 
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where the integral is over the entire surface of the particle. We can now use this to 
compute the electric field via the relation ( ) ( )=−∇ΦrE r

r

. In particular, we wish to 
compute the electric field on the surface. In this situation, case has to be taken because the 
normal component is discontinuous. The normal component is given by 

, where  is the outward unit normal vector at position ( ) ( )=− ⋅∇Φn nr eE ne r . The 
discontinuity means that the normal component just outside the particle  is related to 
the one just inside  via the relation  
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Using these relations, we find that 
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where + and – go with the fields outside and inside the particle, respectively. Also, 0E  is 
the (constant) incident field and g denotes the so-called Green’s function 
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However, we also know that the normal components are related via the dielectric 
constants, i.e. . This means that with a bit of rearrangement, Eq. (3) can be 
reformulated as 
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where . This formulation is very convenient because it allows us to 
compute the distribution of surface charges from a single equation.  

1( )/(λ ε ε ε ε= − + 1 )

 
 
15.1 Cylindrical nanoparticles 
 
The framework above applies to nanoparticles of completely general shape. It even works 
for collections of nanoparticles if the surface is taken as the sum of surfaces. In practice, 
however, Eq. (15.2) is difficult to solve in the general case. Fortunately, many important 
cases are much simpler. In particular, many relevant nanoparticle geometries have 
cylindrical symmetry, i.e. they have a rotational symmetry axis as illustrated in Fig. 15.2. 
In this case, the general problem can be reduced significantly.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.2 Cylindrically symmetric nanoparticle. 
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Using the geometry of Fig. 15.2, we can without loss of generality choose to keep the 
incident field   in the (x,z)-plane. The x- and z-axes are the horizontal (h) and vertical (v) 

directions, respectively, and so we decompose 
0E

0 0 0= +h v
xeE E E ze

z

′
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θ
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. Due to the superposition 
principle we can, in fact, treat the horizontal and vertical cases separately. We then benefit 
significantly from the simple angular dependence of these cases. 
 
In a cylindrical geometry, we may express the geometrical vectors using polar angles in a 
simple manner, Hence,  
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where  are all function of  and  is a function of θ . It follows that  is 

 and  in the horizontal and vertical cases, respectively. It is then readily 
shown that the surface charge follows exactly the same dependence on the angle ϕ . Due 
to the symmetry, the surface area element dS must be independent of ϕ  and we may write 

. We will return to the θ
 
dependence later. We also need the following 

relations to reduce the Green’s function: 
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The simplest case is that of vertical polarization, for which  is independent of ϕ .  We 
wish to prove that the surface charge is a function of θ  only and so we write . 
The charge balance Eq.(15.2) therefore reduces to 
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Performing the integral using the geometrical relations we then find 
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with  and introducing the functions 2 2 2 cos cos , 2 sin sinθ θ θ θ′ ′ ′ ′= + − =−x r r rr y rr ′
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The first few of these functions are 
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where K and E are elliptic integrals. Higher terms can be generated using 

. The fact that these functions depend only on θ  and  
completes the proof.  
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For the horizontal case, we proceed in almost complete analogy but now the surface 
charge is found to follow the  behaviour of . Hence, we write  
in this case and using elementary mathematical manipulations (rewriting  as 

 and doing the integral before taking the real part) find that  
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can be expressed as 
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15.2 Oblate Spheroids 
 
As a relatively simple but still technologically important example we will consider oblate 
spheroids: “pancake” shaped particles obtained by flattening spheres along one direction. 
Such a particle is illustrated in Fig. 15.3. 
 
 
 
 
 
 
 
 
 
 

Figure 15.3 Cross section of an oblate spheroid. 
 
The geometry of the spheroid is taken such that the thickness of the “pancake” is unity 
and the radius is d. Hence, all distances are actually measured in units of half the particle 
height. A particular point on the surface obeys the ellipse parameterization 
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Also, the surface normal is calculated from the requirement that . Hence, 
differentiating and ensuring normalization it is found that 
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In general, the surface areal function 

 
is to be calculated as  and in 

the spheroid case we have . 
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To solve equations like Eq.(15.5) and Eq.(15.7) numerically we need to discretize the angle 

. On the interval θ  we therefore select N discrete values  with separations 
 (for i = N we take ). Hence, the equations are reformulated as 
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where the appropriate Green’s function and normal vector component should be chosen 
for the two polarizations. Equations of this sort are easily converted into a tractable form 
by introducing vectors  
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as well as a matrix 
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In terms of these quantities, the discretized equation reads as 
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Thus, the unknown surface charges in vector σ  are found by inverting a matrix and 
multiplying onto a known vector. Furthermore, it is realized that certain eigenmodes of the 
surface charge can be found whenever the determinant 1λ− −U G  vanishes. This is 

because this condition corresponds to a situation, in which a surface charge exists even 
with a vanishingly small incident field. This is clearly a mathematical abstraction but the 
significance is that in actual calculations, resonances in absorption or scattering cross 
sections may appear near these eigenmodes. From the form of the matrix it is also evident 
that eigenmodes are found whenever  is an eigenvalue of 1λ− G . In practice, the matrix G  
is slightly problematic because the diagonal elements diverge!  By clever usage of the 
general properties of the Green’s function, however, appropriate values of the diagonal 
elements can be found (see the exercise). If the dielectric constant of the metal nanoparticle 
is assumed to be of the lossless Drude form ε ω  the relation between 
eigenvalue and resonance frequency is given by  
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As an example, we now take Ag sphero ε∞ 9.3p = eV)  embedde i 
( 1 12ε = ) . For a particular geometry, the spheroid is characterized by  

ids ( d in S
 its ellipticity

6= , ω

21 1/= −e d , which ranges between 0 for a sphere and 1 for a plane. In Fig. 15.4, results 
for the resonance wavelengths in this case are depicted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.4 Resonance wavelengths of Ag spheroids embedded in Si. Solid and dashed curves  
illustrate vertical and horizontal resonances versus nanoparticle ellipticity. 

 
 
The present technique can be extended in several directions. Primarily, based on solution 
of the inhomogeneous equation Eq.(15.10), the absorption cross section is calculated via 
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where p is the induced dipole moment that is easily calculated using the formulas 
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In addition, the nanoparticles positioned on a surface of embedded in thin layers can be 
handled by proper modifications to the Green’s functions [2]. 
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xercise: Properties of the Green’s function 

) Using Gauss’ theorem, show that 
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