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1 A formal proof of the Feshbach formula

Although the main reference is Feshbach’s original article [F], the presentation in these notes is
more general and considerably less mathematically inconsistent.

Let H be a Hilbert space (a vector space with an inner-product), and let H be a self-adjoint
Hamilton operator. The example to bear in mind is

H = H0 − V (1)

where H0 is a ”known”, solvable model, while −V is a perturbation.
Let IΠeff be an orthogonal projector which commutes with H0, and define IΠ⊥ := 1 − IΠeff .

Then the Hilbert space admits a decomposition H = Heff ⊕H⊥.
We are interested in writing H and its resolvent (H − ξ)−1 as matrices of operators according

to the above decomposition. With obvious notations:

H =
(
Heff Heff,⊥
H⊥,eff H⊥,⊥

)
=
(

Heff −Veff,⊥
−V⊥,eff H⊥,⊥

)
,

where we used the fact that only V contributes to the off-diagonal parts.

The Feshbach formula. The resolvent is given by:

(H − ξ)−1 =
(

SW SWV R
RV SW R+RV SWV R

)
(2)

with

R(ξ) := [IΠ⊥(H − ξ)IΠ⊥]
−1, W (ξ) = −IΠeffV R(ξ)V IΠeff , SW := (Heff +W (ξ)− ξ)−1. (3)

We stress that R(ξ) is the inverse of IΠ⊥(H − ξ)IΠ⊥ as an operator in H⊥.

Remark. Before proving the formula, let us explain what is the physical idea behind it. First,
the resolvent contains all the physical information of the system: the numbers z where it becomes
singular must lie in the spectrum. Second, if we know that the system is close to a ”pure” state
given by IΠeff , then the Feshbach formula provides us with a quantitative method of focusing on
a certain spectral region. It is thus enough to solve a non-linear, effective problem, where the
influence of the ”rest of the world” modeled by IΠ⊥ enters as a so-called self-energy W (ξ).

Proof. Let

A =
(
Heff 0

0 H⊥,⊥

)
,

and

B =
(

0 Heff,⊥
H⊥,eff 0

)
=
(

0 −Veff,⊥
−V⊥,eff 0

)
,

where clearly H = A+B. Note that B is off-diagonal. Let us introduce some simplifying notation:

(A− ξ)−1 =
(

(Heff − ξ)−1 0
0 (H⊥,⊥ − ξ)−1

)
=:
(
a 0
0 R

)
.

From the simple equality

H − ξ = A− ξ +B = [1 +B(A− ξ)−1](A− ξ)

we can write (using the geometric series in the second identity):

(H − ξ)−1 = (A− ξ)−1[1 +B(A− ξ)−1]−1 =
∑
n≥0

(−1)n(A− ξ)−1[B(A− ξ)−1]n. (4)
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The whole idea of the proof is to re-sum the above series in the form given in (2).
We start by summing separately with respect to even n and then odd n:

(H − ξ)−1 =
∑
p≥0

(A− ξ)−1[B(A− ξ)−1]2p −
∑
p≥0

(A− ξ)−1[B(A− ξ)−1]2p[B(A− ξ)−1]. (5)

Let us show that the first series contributes only to the diagonal terms in (2), while the second
series generates the off-diagonal terms. The explanation is simple. We will show that B(A− ξ)−1

is off-diagonal, but raised at an even power will become diagonal. At an odd power becomes again
off-diagonal.

Indeed,

B(A− ξ)−1 =
(

0 Heff,⊥
H⊥,eff 0

)(
a 0
0 R

)
=
(

0 Heff,⊥R
H⊥,effa 0

)
, (6)

while

[B(A− ξ)−1]2 =
(
Heff,⊥RH⊥,effa 0

0 H⊥,effaHeff,⊥R

)
. (7)

Clearly, for any integer p ≥ 0:

[B(A− ξ)−1]2p =
(

[Heff,⊥RH⊥,effa]p 0
0 [H⊥,effaHeff,⊥R]p

)
, (8)

thus introducing it in the first series of (5) we get:

∑
p≥0

(A− ξ)−1[B(A− ξ)−1]2p =
(∑

p≥0 a[Heff,⊥RH⊥,effa]p 0
0

∑
p≥0R[H⊥,effaHeff,⊥R]p

)
. (9)

Now in analogy with (5) we see that:∑
p≥0

a[Heff,⊥RH⊥,effa]p = [Heff − ξ −Heff,⊥RH⊥,eff ]−1

= [Heff − ξ +W ]−1 = SW . (10)

For the other diagonal element, we need one trick more. We write:∑
p≥0

R[H⊥,effaHeff,⊥R]p = R+
∑
p≥1

R[H⊥,effaHeff,⊥R]p

= R+
∑
p≥1

R [H⊥,effaHeff,⊥R] · [H⊥,effaHeff,⊥R] . . . [H⊥,effaHeff,⊥R]︸ ︷︷ ︸
p factors

= R+RH⊥,eff

∑
p≥1

a [Heff,⊥RH⊥,effa] . . . [Heff,⊥RH⊥,eff]a]︸ ︷︷ ︸
p− 1 factors

Heff,⊥R

= R+RH⊥,eff

∑
p≥0

a[Heff,⊥RH⊥,effa]pHeff,⊥R

= R+RH⊥,effSWHeff,⊥R. (11)

Thus we have proved (see (8)):∑
p≥0

(A− ξ)−1[B(A− ξ)−1]2p =
(
SW 0
0 R+RH⊥,effSWHeff,⊥R

)
. (12)
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Now looking at the second series in (5) we realize that to compute it is enough to multiply the
above series with the off-diagonal operator in (6). Thus:

−
∑
p≥0

(A− ξ)−1[B(A− ξ)−1]2p+1 =
(

0 −SWHeff,⊥R
−RH⊥,effa−RH⊥,effSWHeff,⊥RH⊥,effa 0

)
.

(13)

Now we are done with three terms in (2), and we only miss the one from bottom left. This last
term would be obtained too, provided we could prove the following identity:

a+ SWHeff,⊥RH⊥,effa = SW . (14)

Exercise. Prove (14) using (10).

2 Perturbation theory: eigenvalues and resonances

We will now use the Feshbach formula in order to study how a possibly degenerate eigenvalue is
perturbed by a ”small” potential. The mathematical rigor will be minimal.

Let H be a Hilbert space, and H0 a self-adjoint Hamilton operator. We assume that H0 has
discrete and continuous spectrum, and we can write:

H0 =
∑
k≥1

Ek|ψk〉〈ψk|+
∫
σac

E|φE〉〈φE |dE. (15)

Here ψk denotes a normalized eigenfunction belonging to H, {Ek}k≥1 are the possibly degenerate
isolated eigenvalues, σac is the (absolutely) continuous spectrum, while φE denotes a generalized
eigenfunction.

The resolvent of H0 can be expressed as:

(H0 − z)−1 =
∑
k≥1

1
Ek − z

|ψk〉〈ψk|+
∫
σac

1
E − z

|φE〉〈φE |dE. (16)

We can see that the resolvent is singular as a function of z when z hits the spectrum of H0.
We are interested in what happens with a discrete eigenvalue of H0 when we perturb H0 with

a potential λV , where λ is a small coupling constant.
Define Hλ := H0 + λV , and choose an eigenvalue Υ of H0 having degeneracy n. This means

that there exist n orthogonal eigenfunctions {ψ(0)
k }nk=1 such that

H0ψ
(0)
k = Υψ(0)

k , k = 1, . . . , n.

Denote by

IΠeff :=
n∑
k=1

|ψ(0)
k 〉〈ψ

(0)
k |, IΠperp := 1− IΠeff . (17)

We have two immediate identities:

IΠeffH0IΠeff = ΥIΠeff ,

R0(z) := [IΠperp(H0 − z)IΠperp]−1 =
∑
Ek 6=Υ

1
Ek − z

|ψk〉〈ψk|+
∫
σac

1
E − z

|φE〉〈φE |dE. (18)

Now let us go back to (2) and (3), and identify the different quantities. Remember that we
want to determine the singular ξ values for which the resolvent of Hλ does not exist. If V is a
so-called regular perturbation, then the spectrum of Hλ near Υ will remain discrete, consisting
of exactly n (possibly degenerate) eigenvalues νk(λ). According to the Feshbach formula, these
eigenvalues are precisely those numbers ξ for which the n dimensional matrix

(Υ− ξ)IΠeff + λIΠeffV IΠeff − λ2IΠeffV [IΠperp(H0 − ξ + λV )IΠperp]−1V IΠeff (19)

is NOT invertible.
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2.1 The non-degenerate case

Assume that n = 1. Then IΠeff = |ψ(0)
1 〉〈ψ

(0)
1 | is one dimensional, thus the unknown perturbed

eigenvalue ν1(λ) must be the unique solution near Υ of the nonlinear equation in ξ:

ξ = Υ + λ〈ψ(0)
1 , V ψ

(0)
1 〉 − λ2〈V ψ(0)

1 , [IΠperp(H0 − ξ + λV )IΠperp]−1V ψ
(0)
1 〉. (20)

This equation can be solved in the following way. The general theory insures the fact that ν1(λ) is
analytic in λ near λ0 = 0 thus can be written as an absolutely convergent power series

∑
m≥0 amλ

m.
if λ is small enough. We can determine the coefficients am by inserting the series in (20). For
example, a0 must be Υ. Then a1 = 〈ψ(0)

1 , V ψ
(0)
1 〉. Also, we get for free:

a2 = −〈V ψ(0)
1 , R0(Υ)V ψ(0)

1 〉

= −
∑
Ek 6=Υ

|〈V ψ(0)
1 , ψk〉|2(Ek −Υ)−1 −

∫
σac

dE|〈V ψ(0)
1 , ψE〉|2(E −Υ)−1. (21)

The third order correction becomes a bit more complicated. From (20), we see that it can only
come from the term:

−λ2〈V ψ(0)
1 , [IΠperp(H0 −Υ− a1λ+ λV )IΠperp]−1V ψ

(0)
1 〉

where we have to identify the coefficient of λ3. For that, note the identity:

[IΠperp(H0 −Υ− a1λ+ λV )IΠperp]−1 = R0(Υ) + λa1R0(Υ)2 − λR0(Υ)V R0(Υ) +O(λ2). (22)

Thus:

a3 = −a1〈V ψ(0)
1 , R0(Υ)2V ψ

(0)
1 〉+ 〈V ψ(0)

1 , R0(Υ)V R0(Υ)V ψ(0)
1 〉. (23)

Therefore we see that we can determine all coefficients in a recursive way. This method is in fact
the most efficient in computing the Rayleigh-Schrödinger series of a perturbed eigenvalue. It also
provides an elegant proof of the so-called linked diagram theorem of Goldstone [G].

Exercise. Compute a4.

2.2 The case of an embedded eigenvalue

Now assume that Υ is an eigenvalue immersed in the continuous spectrum of H0. The main
question is the following: does the eigenvalue survive after turning on the perturbation λV , or
does it disappear?

The generic fact in this case is that the eigenvalue disappears. Let us argue why, although the
argument below lacks any reference to the Limiting Absorption Principle.

As before, if there exists a eigenvalue for Hλ near Υ, it must solve equation (20) and must be
real. We do the following trick: for complex numbers of the form x+ iε with x near Υ and ε > 0
we define the map:

F (x+ iε) = Υ + λ〈ψ(0)
1 , V ψ

(0)
1 〉 − λ2〈V ψ(0)

1 , [IΠperp(H0 − x− iε+ λV )IΠperp]−1V ψ
(0)
1 〉. (24)

Now if we expand this in powers of λ up to the second order we obtain:

F (x+ iε) = Υ + λ〈ψ(0)
1 , V ψ

(0)
1 〉 − λ2〈V ψ(0)

1 , [IΠperp(H0 − x− iε)IΠperp]−1V ψ
(0)
1 〉+O(λ3), (25)

where one can show that for ”nice” V ’s the remainder is uniform in ε > 0. By ”nice” we mean for
example rapid decay.

Now let us compute the imaginary part of F (x+ iε) in the limit ε↘ 0. If it is non-zero, then
no real x can solve (20), thus the eigenvalue must disappear.
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We compute:

Im(F (x+ iε)) = −λ2Im
∫
σac

dE|〈V ψ(0)
1 , ψE〉|2(E − x− iε)−1 +O(λ3)

= −λ2

∫
σac

dE|〈V ψ(0)
1 , ψE〉|2

ε

(E − x)2 + ε2
+O(λ3). (26)

By taking ε to zero, we obtain the identity:

lim
ε↘0

Im(F (x+ iε)) = −πλ2|〈V ψ(0)
1 , ψx〉|2 +O(λ3). (27)

Thus if 〈V ψ(0)
1 , ψx〉 6= 0, i.e. if V couples the eigenfunction ψ(0)

1 with the generalized eigenfunctions
corresponding to the continuous spectrum near Υ, then no real x can solve (20). In fact, it is enough
to have 〈V ψ(0)

1 , ψΥ〉 6= 0 in order to be sure that (20) has no real solution.
One can solve (20) by searching complex solutions. It is sometimes possible to show that there

exists a unique such complex solution, called resonance, which has a negative imaginary part.

3 Excitons on the surface of a cylinder

We start with the model that one can find in [CDR, KCM, P]. Let C := R×rS1 denote the cylinder
of radius r; we mean the surface. The Hilbert space L2(C) will be represented in the trivial chart
by H := L2(Ω) with Ω := R×(−πr, πr), with periodic boundary conditions, ψ(x, πr) = ψ(x,−πr),
( all x ∈ R), whenever ψ is continuous. We consider the Hamiltonian

H := −∆
2
− V, H0 = −∆

2
, V (x, y) = V r(x, y) :=

1√
x2 + 4r2 sin2( y2r )

(28)

acting in L2(Ω); H denotes the self-adjoint realization characterized by its quadratic form domain1

Q(H) :=
{
ψ,∈ H1(Ω), ψ(·, πr) = ψ(·,−πr)

}
.

Next we consider that H0 = H0,l ⊗ 1 + 1 ⊗ H0,t, with H0,l = − 1
2∂

2
x with domain H2(R) and

H0,t = − 1
2∂

2
y with domain {u ∈,H2((−πr, πr)), u(πr) = u(−πr), u′(πr) = u′(−πr)}. The spectral

decomposition of H0,t is:

H0,t =
⊕
n∈Z+

n2

2r2
Πr
n (29)

where Z+ := {0, 1, 2, . . .} and Πr
n denotes the eigenprojector on the span of

χrn(y) :=
1√
2πr

e±iny
1
r .

Notice that Πr
0 is one dimensional. We then have the following decomposition of H:

H := Heff ⊕H⊥, with Heff := Ran 1⊗Πr
0

and we want to consider the effective Hamiltonian

Hr
eff := IΠeffHIΠeff , IΠeff := 1⊗Πr

0.

There are several questions one could address:

Questions.
1Hs(Ω) denotes the usual Sobolev space on the open set Ω. Q(T ) will always denote the quadratic form domain

of T , for T s.a.
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1. Does one know that Hr has always, i.e. for every r > 0, one negative bound state?

2. What is the deviation of Hr
eff from H?

3. What is the ”limit” of Hr
eff as r → 0? These are the natural models we are looking for!

4. Comparison of the natural models with the truncated coulomb model: (|x| + a(r))−1. How
can one choose the best a(r)?

5. What are the informations we can extract on the spectral properties of H from the ones of
these models?

6. Study the resonances of H coming from the other effective Hamiltonians obtained by pro-
jecting on higher transverse modes.

3.1 Hr
eff and its ”limit”

3.1.1 Definition of Hr
eff

Since Πr
0 is the projection on constant functions (with respect to the y variable), we know at once

that IΠeffH0IΠeff is unitarily equivalent to H0,l, and IΠeffV IΠeff is unitarily equivalent, with the
same unitary operator to V reff acting on L2(R) with

V reff(x) =
∫ πr

−πr
V (x, y)χr0(y)2dy =

1
2πr

∫ πr

−πr

dy√
x2 + 4r2 sin2( y2r )

(30)

=
1

2πr

∫ π
2

−π2

dy√(
x
2r

)2 + sin2(y)

=
1
2r
V

1
2

eff

( x
2r

)
.

It follows with r = α that
2αV αeff(2αx) = V

1
2

eff (x)

and therefore:
∀α > 0, V reff(x) =

α

r
V αeff

(αx
r

)
This last equality is useful for what we are aiming for: this is a scaling property reminiscent from
the homogeneous character of the Coulomb potential. We shall consider the particular case α = 1
in the sequel:

∀r > 0, ∀x ∈ R, V reff(x) =
1
r
V 1

eff

(x
r

)
. (31)

It turns out that V 1
eff may be computed in terms of special functions:

V 1
eff(x) =

2K(− 4
x2 )

π|x|

where K denotes the complete elliptic integral of the first kind 2. It has the following asymptotic
expansion at +∞ (done with Mathematica):

V 1
eff(x) =

1
x
− 1
x3

+O(x−4).

Exercise. Show that the behavior of Veff at 0 is logarithmic. We shall see that:

V 1
eff(x) x→0= − log |x|

π
+

log 2π
π

+O(x2) (32)

2K(m) =
R 1
0 ((1− t2)(1−mt2))−

1
2 dt
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We conclude from the properties which are announced in the above exercise that Hr
eff is unitarily

equivalent to − 1
2∆ − Veff acting in L2(R) with operator domain H2(R). We also denote by Hr

eff

this operator:

Hr
eff = −1

2
∆− V reff , domHr

eff = H2(R). (33)

3.1.2 The delta model

Let H0 := − 1
2∆ and Hδ := H0 − gδ. Let

τ : H1 → H−1, τψ := ψ(0).

Then
Hδ = H0 − gτ?τ.

So with the resolvent equation we get

Rδ = R0 + gR0τ
?τRδ

so that
Rδ = R0 +

g

1− gτR0τ?
R0τ

?τR0

which is the Krein’s formula. To recover the ground state wave function ϕδ we use the equation

1− gτR0(Eδ)τ? = 0 (34)

and proceed as follows

1− gτR0(ζ)τ? = 1− gτR0(ζ)τ? − (1− gτR0(Eδ)τ?)
= gτ(R0(Eδ)−R0(ζ))τ?

= g(Eδ − ζ)τR0(Eδ)R0(ζ)τ?

so that

Rδ(ζ) = R0(ζ) +
1

Eδ − ζ
R0(ζ)τ?τR0(ζ)
τR0(Eδ)R0(ζ)τ?

which shows that the eigenprojector on ϕδ is

Pδ =
R0(Eδ)τ?τR0(Eδ)

τR0(Eδ)2τ?
.

and therefore ϕδ may be identified with

ϕδ ∼
R0(Eδ)τ?√
τR0(Eδ)2τ?

or
τR0(Eδ)√
τR0(Eδ)2τ?

.

One has finally:

ϕδ(x) =
G0(x, 0;Eδ)√
∂ζG0(0, 0;Eδ)

(35)

since R0(ζ)2 = ∂ζR0(ζ) where G0(x, x′; ζ) denotes the Green’s function of H0:

G0(x, x′; ζ) :=
e−
√
−2ζ|x−x′|
√
−2ζ

.

Since Eδ = − 1
2g

2 we get that G0(x, 0;Eδ) = e−g|x|

g . Then

∂ζG0(0, 0;Eδ) = g−3
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3.1.3 ”Limit” of Hr
eff : the leading term

We apply the general theorem of [BD1, BD3]. Assume that V has a Fourier transform in the sense
of tempered distributions V̂ such that

• (1) V̂ ∈ C0(R \ {0})

• (2) there exists a constant c0 such that

√
2πV̂ (p)

p→0
= −c0 log(|p|) +O(1)

• (3) V̂ ∈ L∞({|p| ≥ 1
2}).

then if Vλ(x) := λV (λx)

∀λ0, α0 > 0,∃C > 0,∀λ ≥ λ0,∀α > α0, ‖Vλ − log λc0δ‖2−1,1 ≤ C
(

log2(α)
α2

+
1
αλ

)
(36)

where ‖ · ‖−1,1 denotes the α dependent norm of operators X : H1 → H−1 defined by

‖X‖−1,1 := ‖(D2 + α2)−
1
2X(D2 + α2)−

1
2 ‖. (37)

Define
Hr
δ := −1

2
∆ + log r2 δ with Q(Hr

δ ) := H1(R);

we recall that if r < 1 then Hr
δ has a unique eigenvalue Eδ(r) := − 1

2 (log r2)2 with the associated
eigenvector

ϕrδ(x) := (2|Eδ(r)|)
1
4 e−
√

2|Eδ(r)| |x|. (38)

Thus we may state now the

theorem δ model. Let α(r) :=
√

2| log r2| and dδ(ζ) := dist (ζ, spectHδ). There exists rδ > 0
such that if dδ(ζ) ≥ cδα2 and 0 < r < rδ < 1 one has ζ ∈ ρ(Hr

eff) and

‖(Hr
eff − ζ)−1 − (Hδ − ζ)−1‖ ≤ Cδ

cδ

logα
α

1
dδ(ζ)

.

Here Cδ is a constant which depends only on V 1
eff .

As a consequence one gets that: for all 0 < r < rδ < 1, Eeff(r) := inf Hr
eff is an isolated

eigenvalue of Heff and moreover

Eeff(r)− Eδ(r) = O
(

log
1
r

log2

1
r

)
and ‖ϕreff − ϕrδ‖ = O

(
log2

1
r

log 1
r

)
if ϕreff denotes a properly chosen associated eigenvector of Hr

eff .

3.2 Feshbach reduction of H to Hr
eff

Let IΠ⊥ denote the orthogonal projection on H⊥ := H⊥eff :

IΠ⊥ := 1− IΠeff .

Theorem Feshbach 1. There exists r39 such that if ξ ≤ 0 and r ≤ r39 then ξ belongs the the
resolvent set of IΠ⊥HIΠ⊥. If in addition ξ 6∈ spectHeff +W then ξ is in the resolvent set of H and

‖(H − ξ)−1 − SW ⊕ 0.IΠ⊥‖ ≤
(

C40

dW (ξ)
+ 4r +

1
dW (ξ)

C2
40r

)
r.
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We have used the following notations: dW (ξ) := dist (ξ, spect (Heff +W )),

r39 :=
1
2
‖IΠ⊥H

− 1
2

0 V H
− 1

2
0 IΠ⊥‖−1 (39)

C40 := 2
√

2‖IΠeffV H
− 1

2
0 IΠ⊥‖ (40)

where the two last quantities are evaluated at r = 1.

Reduction to Heff . There exists r0, c0 and C0 which depend only on Veff such that if r < r0 and
ξ < 0 satisfy

β2(r) ≥ d0(ξ) ≥ c0rβ(r)

with β(r) := pl(r−1) then ξ ∈ ρ(H), and

‖(H − ξ)−1 − (Heff − ξ)−1 ⊕ 0 · IΠ⊥‖ ≤ C0
rβ(r)2

d0(ξ)2
.
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