Thomas Garm Pedersen
Thomas G. Pedersen, Professor, PhD
Dept. of Materials and Production
Aalborg University
Skjernvej
4A
DK-9220 Aalborg East
Denmark
Tel: +45 9940 9228
Fax: +45 9940 9235
Web: http://homes.nano.aau.dk/tgp/
Mail: tgp@nano.aau.dk
Research activities:
My
present research interests are mainly focussed on six subjects:
·
Nanostructured graphene: optical, electronic and
spintronics applications. See the Center for Nanostructured Graphene web page
·
Linear and nonlinear optical properties of quantum
systems. See the QUSCOPE web page
·
Excitons in carbon nanotubes: Linear and nonlinear
optical properties. See the Nanotube web page
·
Plasmonics for nanostructured solar cells. See the PLATOS
web page
·
The microscopic description of light interacting with
confined electronic systems.
·
Optical and electronic properties of semiconductor
nanocrystals for LED applications..
Teaching:
Lecture notes on
Electric, Optical and magnetic Properties of Nanostructures: HERE
Youtube
Channel: Here
Lecture plan for PhD course “Optics at the
Nanoscale”: Here
Lectures for PhD course “Optics at the
Nanoscale”: KP1, TGP1, TGP2,
TGP3, HC1, HC2, TS1,
TS2, TS3, TS4, TS5,
TS6, TS7,
TS8
Lecture plan for PhD course “Simulation
and Characterization at the Nanoscale”: Here
Lectures for PhD course “Simulation and
Characterization at the Nanoscale”: TGP1, TGP2
Lecture plan for PhD course “Excited
States and Optical Response Theory”: Here
Note and Matlab
code on dipole operator from atoms to crystals: here
and: here
Brochure Nanotechnology Study at AAU: here
1. Student project for 4. semester
Nanotechnology: here
2. Student project for 4. semester
Nanotechnology: here
1. Student project for 5. semester
Nanotechnology: here
1. Student project for 6. semester
Nanotechnology: here
2. Student project for 6. semester
Nanotechnology: here
1. Student project for 7. semester
Nanotechnology: here
2. Student project for 7. semester
Nanotechnology: here
PowerPoint presentation: Plastics and
Quantum Mechanics: here
Lectures in Quantum Mechanics: here
Lectures in Statistical Mechanics: here
Popular accounts
1. T. Garm Pedersen,
"Nanoledningers optiske egenskaber", Aktuel Naturvidenskab p. 10,
Nov. 1999. (in Danish)
2. T.
Garm Pedersen, T.B. Lynge,
P.M. Johansen and K. Jespersen, "Electro-optic polymers",
DOPS-NYT 2, p. 34 (2002).
3. K. Pedersen, T.
Garm Pedersen, T.B. Kristensen, P. Morgen, Z. Li and S.V. Hoffmann,
"Nonlinear optics and photoemission in metallic quantum wells”, DOPS-NYT
2, p. 30 (2002).
4. P.K. Kristensen, T.
Garm Pedersen and P.M. Johansen, "Polymer light emitting
diodes”, DOPS-NYT 2, p. 9 (2003).
5. K. Pedersen, S.I. Bozhevolnyi and T.
Garm Pedersen, “Nano Optik”, Kvant (2004) (in Danish).
6. T.
Garm Pedersen, "Optical properties of conjugated
polymers and nanotubes", DOPS-NYT 1, p. 11 (2005).
7. T. Garm Pedersen "Organiske
nanolysdioder” i Nanoteknologi - 12 historier om den nyeste danske
nanoforskning (http://www.inano.dk/fileadmin/inano/iNANO-system/gymnasieinfo/gymnasiehaefte-final-260506.pdf), p. 38 (2006).
8.
T. Garm
Pedersen,
"Tynd, tyndere, graphen", Aktuel
Naturvidenskab p. 22, Jul. 2009. (in Danish)
1.
O. Keller and T.
Garm, "Local field calculation for a spherical quantum dot with
parabolic confinement", Phys. Scripta T54, 115 (1994).
2.
O. Keller and T.
Garm, "Retarded Electromagnetic response of a spherical quantum dot: A
self-consistent field calculation", Phys. Rev. B52, 4670 (1995).
3.
O. Keller and T.
Garm, "Self-consistent local field formalism for quantum dots and
quantum dot arrays", Coherence and Quantum Optics VII, Eds. J. Eberly, L.
Mandel and E. Wolf (Plenum, NY, 1996) p. 621.
4.
T.
Garm, "Exciton states in spherical parabolic GaAs
quantum dots", J. Phys.: Condens. Matter 8, 5725
(1996).
5.
O. Keller and T.
Garm, "Intraparticle and interparticle radiative coupling in quantum
dot arrays: influence of a magnetic field", J. Opt. Soc. Am. B13, 2121
(1996).
6.
T.
Garm Pedersen and P.M. Johansen, "Mean-field theory of
photoinduced molecular reorientation in azobenzene liquid crystalline
side-chain polymers", Phys. Rev. Lett. 79, 2470 (1997).
7.
T.
Garm Pedersen, P.M. Johansen, N.C.R. Holme,
P.S. Ramanujam, and S. Hvilsted,
"Mean-field theory of photoinduced formation of surface reliefs in
side-chain azobenzene polymers", Phys. Rev. Lett. 80, 89 (1998).
8.
T.
Garm Pedersen, P.M. Johansen, N.C.R. Holme,
P.S. Ramanujam, and S. Hvilsted,
"Theoretical model of photoinduced anisotropy in liquid crystalline
azobenzene side-chain polyesters", J. Opt. Soc. Am. B15, 1120 (1998).
9.
T.
Garm Pedersen and P.M. Johansen, "Mean-field theory of optical
storage in liquid crystalline side-chain polymers", Opt. Mat. 9, 212
(1998).
10. P.M.
Johansen, H.C. Pedersen, T. Garm
Pedersen, and J. Wyller, "Cascading solution
of the space-charge field problem in ac field biased photorefractive
media", J. Opt. Soc. Am. B15, 1168 (1998).
11. T. Garm Pedersen,
P.S. Ramanujam, P.M. Johansen, and S. Hvilsted, "Quantum theory and experimental studies of
absorption spectra and photoisomerization of azobenzene polymers" J. Opt.
Soc. Am. B15, 2721, (1998).
12. K.
Pedersen, T. Garm Pedersen, T.B.
Kristensen, and P. Morgen, "Second-harmonic generation spectroscopy on
quantum wells: Au on Si(111)", Appl. Phys. B68, 637 (1999).
13. T.B.
Kristensen, K. Pedersen, and T. Garm
Pedersen, "Optical second-harmonic generation from a Au wedge on
Si(111)", Phys. Stat. Sol. 175, 195 (1999).
14. T. Garm Pedersen,
K. Pedersen, and T.B. Kristensen, "Optical second-harmonic generation from
Ag quantum wells on Si(111): Experiment and theory", Phys. Rev. B60, R13997 (1999).
15. T. Garm Pedersen,
K. Pedersen, and T.B. Kristensen, "Optical second-harmonic generation as a
probe of quantum well states in ultrathin Au and Ag films deposited on
Si(111)", Thin Solid Films 364, 86 (2000).
16. T. Garm Pedersen,
K. Pedersen, and T.B. Kristensen, "Theory of optical second-harmonic
generation from quantum well states in ultrathin metal films on
semiconductors", Phys. Rev. B61, 10255 (2000).
17. T.
Garm Pedersen, P.M. Johansen, and H. C. Pedersen,
"Characterization of azobenzene chromophores for reversible optical
data storage: molecular quantum calculations" J. Opt. A: Pure Appl. Opt.
2, 272 (2000).
18. T.
Garm Pedersen, P.M. Johansen, and H. C. Pedersen,
"Particle-in-a-box model of one-dimensional excitons in conjugated
polymers" Phys. Rev. B61, 10504 (2000).
19. T.
Garm Pedersen, "Particle-in-a-box model of exciton absorption
and electroabsorption in conjugated polymers", Phys.
Rev. B62, 15424 (2000).
20. T.
Garm Pedersen, K. Jespersen, and P.M. Johansen, "Rotational
diffusion model of orientational enhancement in AC field biased photorefractive
polymers", Opt. Mat. 18, 95 (2001).
21. K. Pedersen,
T.B. Kristensen, T. Garm Pedersen, P. Morgen, Z. Li, and S.V. Hoffmann,
" Optical second harmonic generation and photoemission from quantum well
states in thin Ag films on Si(111)", Surf. Sci. 482-485, 735 (2001).
22. T.
Garm Pedersen, K. Pedersen, and T.B. Kristensen, "Optical
matrix elements in tight-binding calculations", Phys. Rev. B63, 201101(R) (2001).
23. E.
V. Podivilov, B. I. Sturman, P. M. Johansen, and T.
Garm Pedersen, "On description of the photorefractive response in
polymers", Opt. Lett. 26, 226 (2001).
24. H.C.
Pedersen, P.M. Johansen, and T. Garm Pedersen, "Analytical modeling of two beam coupling during grating translation in
photorefractive polymers", Opt. Commun. 192, 377
(2001).
25. J. Wyller, T. Garm Pedersen, and P.M. Johansen, "Mathematical properties of the
rotational diffusion equation" J. Phys. A. 34, 6531 (2001).
26. T.
Garm Pedersen and T.B. Lynge,
"Free-carrier and exciton Franz-Keldysh theory
for one-dimensional semiconductors", Phys. Rev. B65, 085201 (2002).
27. K.
Pedersen, T.B. Kristensen, T. Garm
Pedersen, P. Morgen, Z. Li, and S.V. Hoffmann, "Thin noble metal films
on Si(111) investigated by optical second-harmonic generation and
photoemission", Appl. Phys. B74, 677 (2002).
28. K.
Pedersen, T. B. Kristensen, T. Garm Pedersen, T. Jensen, P. Morgen, Z.
Li, and S.V. Hoffman, “Photoemission and optical
second-harmonic generation from Ag quantum wells on Si(111)7x7”, Phys. Scripta
T101, 110 (2002).
29. T.
Garm Pedersen, K. Jespersen, P.M. Johansen, and J. Wyller, "DC and AC electro-optic response of
chromophores in a viscoelastic polymer matrix: analytical model", J. Opt.
Soc. Am. B19, 2622 (2002).
30. T.
Garm Pedersen and T.B. Lynge,
"Analytic Franz-Keldysh effect in
one-dimensional polar semiconductors", J. Phys.: Condens.
Matter
15, 3813 (2003).
31. T.
Garm Pedersen, K. Pedersen, P.K. Kristensen, J. Rafaelsen,
N. Skivesen, Z. Li, and S.V. Hoffman, "Theoretical
and experimental studies of photoemission from Al quantum wells on
Si(111)", Surf. Sci. 516, 127, (2002).
32. K.
Pedersen, T. B. Kristensen, T. Garm Pedersen, P. Morgen, Z. Li, and S.V.
Hoffman, “Optimum Cu buffer layer thickness for growth of metal overlayers on
Si(111)”, Phys. Rev. B66, 153406 (2002).
33. K.
Pedersen, T. B. Kristensen, T. Garm Pedersen, T. Jensen, P. Morgen, Z.
Li, and S.V. Hoffman, “Characterisation of Au films
on Si(111) root(3) x root(3)–Au by photoemission and optical second-harmonic
generation”, Surf. Sci. 523, 21 (2003).
34. T.
Garm Pedersen and T.B. Lynge,
"Self-consistent model of high-field electro-optics in conjugated
polymers", Mat. Sci.
35. T. Garm Pedersen
and T.B. Lynge, "Ab initio tight-binding study
of exciton optical and electro-optic properties of conjugated polymers",
Comp. Mat. Sci. 27, 123 (2003).
36. T.B.
Lynge and T. Garm Pedersen, "Analytic and
numerical electro-optic models of poly(para-phenylene)", Synth.
Met. 138, 329 (2003).
37. T.B.
Lynge and T. Garm Pedersen, "Analytic
expressions for linear optical susceptibilities of conjugated polymers",
Phys. Rev. B67, 075206 (2003).
38. T.
Garm Pedersen, "Variational approach to excitons in carbon
nanotubes", Phys. Rev. B67, 073401 (2003).
39. T.
Garm Pedersen, "Analytic calculation of the optical properties
of graphite", Phys. Rev. B67, 113106 (2003).
40. K.
Pedersen, P. Morgen, T. Garm Pedersen, Z. Li, and S.V. Hoffman, “Epitaxial
growth of thin Ag and Au films on Si(111) using copper silicide buffer layers”,
J. Vac. Sci. Technol. A21, 1431 (2003).
41. K.
Jespersen, T. Garm Pedersen, and
P.M. Johansen, "Electro-optic response of chromophores in a viscoelastic
polymer matrix to a combined DC and AC poling field", J. Opt. Soc. Am. B20,
2179 (2003).
42. K.
Pedersen, P.K. Kristensen, J. Rafaelsen, N. Skivesen, T. Garm Pedersen, P. Morgen, Z. Li, and
S.V. Hoffman, "Second-harmonic generation and photoemission
from Al quantum wells on Si(111)", Thin Solid Films, 443, 78 (2003).
43. D. Apitz, C. Svanberg, K.G.
Jespersen, T. Garm Pedersen,
and P.M. Johansen, “Orientational dynamics in dye-doped organic electro-optic
materials”, J. Appl. Phys. 94, 6263 (2003).
44. T.
Garm Pedersen, “Density-functional-based tight-binding calculation
of excitons in conjugated polymers”, Phys. Rev. B69, 075207 (2004).
45. T.
Garm Pedersen, "Exciton effects in carbon nanotubes",
Carbon 42, 1007 (2004).
46. T.
Garm Pedersen, "Tight-binding theory of Faraday rotation in
graphite", Phys. Rev. B68, 245104 (2003).
47. T.B.
Lynge and T. Garm Pedersen,
“Density-functional-based tight-binding approach to phonon spectra of
conjugated polymers”, Phys. Stat.
Sol. (b) 241, 1005 (2004).
48. H. Cornean, P. Duclos, and T.Garm
Pedersen, “One dimensional models of excitons in carbon nanotubes”, Few
Body Systems 34, 155 (2004).
49. T.B.
Lynge and T. Garm Pedersen,
“Density-functional-based tight-binding approach to polarons in conjugated polymers”,
Comp. Mat. Sci. 30, 212 (2004).
50. T.
Garm Pedersen, T.B. Lynge, P.K.
Kristensen, and P.M. Johansen, “Theoretical study of conjugated porphyrin
polymers”, Thin Solid Films 182, 477 (2005).
51. T.
Garm Pedersen, "Biexcitons in carbon nanotubes", Fullerenes,
Nanotubes and Carbon Nanostructures, 13, 33 (2005).
52. T.
Garm Pedersen, K. Pedersen, H. Cornean,
and P. Duclos, "Stability and signatures of biexcitons in carbon
nanotubes", Nano Lett. 5, 291 (2005).
53. T.
Garm Pedersen, "Quantum size effects in ZnO
nanowires", Phys. Stat. Sol. (c) 2, 4026 (2005).
54. P.K.Kristensen, J.Rafaelsen, T. Garm Pedersen, and K. Pedersen, "Diffusion voltage in polymer light
emitting diodes measured with electric field induced second harmonic generation
", Phys. Stat. Sol. (c) 2, 3993 (2005).
55. H.D.
Cornean, G. Nenciu, and T.
Garm Pedersen, “The Faraday effect revisited: General theory”, J. Math.
Phys. 47, 013511 (2006).
56. P.A.
Baeza, K. Pedersen, J. Rafaelsen,
T.Garm Pedersen, P. Morgen, and Z. Li,
“Epitaxial growth of Al on Si(111) with Cu buffer layer”, Surf. Sci. 600, 610
(2006).
57. T.
Garm Pedersen, "Optical excitations in C60/PPV
composites", J. Non-cryst. Solids, 352, 2488
(2006).
58. K.
Pedersen, T. Garm Pedersen,
and P. Morgen, “Surface and interface resonances in second harmonic generation
from metallic quantum wells on Si(111)”, Phys. Rev. B73,
125440 (2006).
59. A. Zarifi and T. Garm Pedersen
"Analytic approach to the linear susceptibility of zigzag carbon
nanotubes”, Phys. Rev. B. 74, 155434 (2006).
60. P.K.
Kristensen, T. Garm Pedersen, K. Zhu,
and D. Yu, ”Energy transfer from poly-fluorene based Polymer to Europium
Complex”, Eur. Phys. J. Appl. Phys. 37,
57 (2007).
61. T.
Garm Pedersen "Exact polarizability of low-dimensional
excitons", Solid State Commun. 141, 569 (2007).
62. T.
Garm Pedersen and H. Cornean,
"Optical second harmonic generation from Wannier
Excitons", Europhysics Letters 78, 27005 (2007).
63. A. Zarifi, C. Fisker, and T.
Garm Pedersen, "Theoretical study of the quadratic
electro-optic effect in semiconducting zigzag carbon nanotubes”, Phys. Rev.
B76, 45403 (2007).
64. H.D.
Cornean, T.
Garm Pedersen, and B. Ricaud, “Perturbative vs. variational methods in the study
of carbon nanotubes”, Cont. Math. 447, 45 (2007).
65. A. Zarifi and T. Garm Pedersen
"Theoretical analysis of the Faraday effect in semiconducting zigzag
carbon nanotubes”, Phys. Rev. B. 77, 85409 (2008).
66. D.
Yu, K. Zhu, P.K. Kristensen, T. Garm
Pedersen, and R. Wimmer
”Poly(p-phenylenevinylene) derivatives containing electron-transporting 1,10-phenanthroline
segments”, Polymer Preprints 48, 105 (2008).
67. C. Fisker and T. Garm
Pedersen "Quantised electron states in nearly depleted
hexagonal nanowires”, Nanotechnology 19, 115704 (2008).
68. K. Pedersen, C. Fisker,
and T. Garm Pedersen "Second-harmonic generation from ZnO nanowires”, Phys. Stat. Sol. (c) 5, 2671 (2008).
69. T. Garm Pedersen, C. Flindt, J. Pedersen, N.A.
Mortensen, A-P. Jauho,
and K. Pedersen “Graphene antidot lattices - designed defects and spin qubits”,
Phys. Rev. Lett. 100, 136804 (2008).
70. A. Zarifi and T. Garm Pedersen “Linear optical and quadratic electro-optic response of
carbon nanotubes: universal analytic expressions for arbitrary chirality”, J.
Phys.: Condens. Matter 20, 275211 (2008).
71. T.
Garm Pedersen,
C. Flindt, J. Pedersen, A-P. Jauho,
N.A. Mortensen, and K. Pedersen “Optical properties of graphene antidot
lattices”, Phys. Rev. B. 77, 245431 (2008).
72. C. Fisker and T. Garm
Pedersen "Density functional based tight binding
modelling of ZnO structures”, Phys. Stat. Sol. (b)
246, 354 (2009).
73. T. Garm Pedersen and
K. Pedersen, ”Systematic tight-binding study of optical second harmonic
generation in carbon nanotubes”, Phys. Rev.
B. 79, 035422 (2009).
74. T. Garm Pedersen,
A-P. Jauho,
and K. Pedersen “Optical response and excitons in gapped graphene”, Phys. Rev.
B. 79, 113406 (2009).
75. T. Garm Pedersen,
P. Modak, K. Pedersen, N. E. Christensen, M. M.
Kjeldsen, and A. Nylandsted Larsen, ”Ab initio
calculation of electronic and optical properties of metallic tin”, J. Phys.: Condens. Matter 21, 115502 (2009).
76. T.F.
Rønnow, T.
Garm Pedersen, and H. Cornean “Stability
of singlet and triplet trions in carbon nanotubes”,
Phys. Lett. A. 373, 1478 (2009).
77. K.
Pedersen and T. Garm Pedersen,
“Spectroscopic second harmonic generation from Silicon on Insulator wafers”, J.
Opt. Soc. Am. B26, 917 (2009).
78. J.
A. Fürst, T.
Garm Pedersen, M. Brandbyge, and A-P.
Jauho
“Density functional study of graphene antidot lattices: Roles of geometrical
relaxation and spin”, Phys. Rev. B. 80, 115117 (2009).
79. J.
A. Fürst, J.G. Pedersen, C. Flindt,
N.A. Mortensen, M. Brandbyge, T. Garm Pedersen, and A-P. Jauho
“Electronic structure of graphene antidot lattices”, New J. Phys. 11, 095020
(2009).
80. R.
Petersen and T. Garm Pedersen
“Quasiparticle properties of graphene antidot lattices”, Phys. Rev. B. 80,
113404 (2009).
81. A. Zarifi and T. Garm Pedersen “Universal analytic expression of electric dipole matrix elements
for carbon nanotubes”, Phys. Rev. B. 80, 195422 (2009).
82. T. Garm Pedersen, C. Fisker, and R.V.S. Jensen, ”Tight-binding parameterization
of -Sn quasiparticle band structure”, J. Phys. Chem.
Solids. 71, 18 (2010).
83. R.
Balog, B. Jørgensen, L. Nilsson, M. Andersen, E.
Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B.
Hammer, T. Garm Pedersen, P. Hofmann,
and L. Hornekær, “Band Gap Opening in Graphene
Induced by Patterned Hydrogen Adsorption”, Nature Materials 9, 315 (2010).
84. J.
Jung, T. Garm Pedersen, T. Søndergaard, K. Pedersen, A. Nylandsted
Larsen, and B. Bech Nielsen ”Electrostatic plasmon
resonances of metal nanospheres in layered geometries”, Phys. Rev. B. 81,
125413 (2010).
85. S.V.
Goupalov, A. Zarifi, and T. Garm Pedersen ”Calculation of optical matrix elements in carbon
nanotubes”, Phys. Rev. B. 81, 153402 (2010).
86. T.F.
Rønnow, T.
Garm Pedersen, and H. Cornean “Correlation
and dimensional effects of trions in carbon
nanotubes”, Phys. Rev. B. 81, 205446 (2010).
87. M.
M. Kjeldsen, J. L. Hansen, T. Garm
Pedersen, P. Gaiduk, and A. Nylandsted
Larsen ”Tuning the plasmon resonance of metallic tin nanocrystals in Si-based
materials”, Appl. Phys. A. 100, 31, (2010).
88. T.
Garm Pedersen, "Excitons on the surface of a sphere",
Phys. Rev. B. 81, 233406 (2010).
89. J.
Jung, T. Garm Pedersen, T. Søndergaard, K. Pedersen, A. Nylandsted
Larsen, and B. Bech Nielsen ”On localized surface
plasmons of metallic tin nanoparticles in silicon”, Phys. Stat. Sol. RRL 4, 292 (2010).
90. T.F.
Rønnow, T.
Garm Pedersen, and H. Cornean “Dimensional
and correlation effects of charged excitons in low-dimensional semiconductors”,
J. Phys. A. 43, 474031 (2010).
91. Y.-W.
Lu, B. Julsgaard, M.C. Petersen, R.V.S. Jensen, T. Garm Pedersen, K. Pedersen, and A. Nylandsted Larsen, “Erbium diffusion in silicon dioxide”,
Appl. Phys. Lett. 97, 141903 (2010).
92. T. Søndergaard, J. Gadegaard, P.K. Kristensen, T. Kari Jensen, T. Garm
Pedersen, and K. Pedersen, ”Guidelines for 1D-periodic
surface microstructures for antireflective lenses”, Opt. Express. 18, 26245
(2010).
93. R.
Petersen, T. Garm Pedersen, and
A.-P. Jauho, “Clar sextet analysis
of triangular, rectangular and honeycomb graphene antidot lattices”, ACS Nano
5, 523 (2011).
94. J.
Jung, T. Søndergaard, T. Garm Pedersen, K. Pedersen, A. Nylandsted
Larsen, and B. Bech Nielsen ”Dyadic Green’s functions
of thin films: applications within plasmonic solar cells”, Phys. Rev. B. 83,
085419 (2011).
95. T. Garm Pedersen, J. Jung, T. Søndergaard, and K. Pedersen, ”Nanoparticle plasmon
resonances in the near-static limit”, Opt. Lett. 36, 713 (2011).
96. R.V.S.
Jensen, T. Garm Pedersen, and K.
Pedersen ”Optical properties and size/shape dependence of -Sn nanocrystals by tight binding”, Phys. Stat. Sol.
C. 8, 1002 (2011).
97. T.F.
Rønnow, T.
Garm Pedersen, B. Partoens,
and K. K. Berthelsen, “Variational quantum monte carlo
study of charged excitons in fractional dimensional space”,
Phys. Rev. B. 84, 035316 (2011).
98. M.
H. Schultz, A.-P. Jauho, and T. Garm Pedersen, “Screening in graphene antidot lattices”, Phys. Rev.
B. 84, 045428 (2011).
99. T. Kari, J. Gadegaard,
D. T. Jørgensen, T. Søndergaard,
T. Garm Pedersen, and K. Pedersen, “Compact
lens with circular spot profile for square die LEDs in multi-LED projectors”,
Appl. Opt. 50, 4860 (2011).
100. B. Julsgaard, Y.-W. Lu, R.V.S. Jensen, T. Garm Pedersen, K. Pedersen, J. Chevallier,
P. Balling, and A. Nylandsted Larsen, “Er
sensitization by a thin Si layer: Interaction-distance dependence”, Phys. Rev.
B. 84, 085403 (2011).
101. R.V.S.
Jensen, T. Garm Pedersen, and
A. Nylandsted Larsen,
”Quasiparticle electronic and optical properties of the Si-Sn system”,
J. Phys.: Condens. Matter 23, 345501 (2011).
102. B. Johansen,
C. Uhrenfeldt, A. Nylandsted
Larsen, T. Garm Pedersen, H. U. Ulriksen, P. Kjær Kristensen, J.
Jung, T. Søndergaard, and K. Pedersen, “Optical
transmission through two-dimensional arrays of -Sn nanoparticles”, Phys. Rev. B. 84, 113405 (2011).
103. J.
G. Pedersen and T. Garm Pedersen,
“Tight-binding study of the magneto-optical properties of gapped graphene”,
Phys. Rev. B. 84, 115424 (2011).
104. T. Kari, J. Gadegaard, T. Søndergaard, T.
Garm Pedersen, and K. Pedersen, ”Reliability of point source approximations
in compact LED lens designs”, Opt. Express 19, A1190 (2011).
105. J.
Jung, M.L. Trolle, K. Pedersen, and T. Garm Pedersen, “Indirect near-field absorption mediated by
localized surface plasmons”, Phys. Rev. B. 84, 165447 (2011).
106.
J. Jung and T.
Garm Pedersen, “Exact
polarizability and plasmon resonances of partly buried nanowires”, Opt.
Express. 19, 22775 (2011).
107.
T.F. Rønnow, T. Garm Pedersen, and B. Partoens, “Biexciton binding energy in fractional dimensional
semiconductors”, Phys. Rev. B 85, 045412 (2012).
108.
J. G. Pedersen and T. Garm Pedersen, “Dirac model of an isolated graphene antidot in a
magnetic field”, Phys. Rev. B 85, 035413 (2012).
109.
J. Jung and T.
Garm Pedersen, “Polarizability of
nanowires at surfaces: Exact solution for general geometry”,
Opt. Express 20, 3663 (2012).
110.
T.F. Rønnow, T. Garm Pedersen,
and H. Cornean, “Optical absorption of charged
excitons in semiconducting carbon nanotubes”, Physica
E. 44, 936 (2012).
111.
R. Petersen, T.
Garm Pedersen, and A.-P. Jauho, “Clar sextets in square graphene antidot lattices”, Physica E. 44, 967 (2012).
112. M.L.
Trolle and T.
Garm Pedersen, “Indirect optical
absorption in silicon via thin-film surface plasmon”, J. Appl. Phys.
112, 43103 (2012).
113.
J. G. Pedersen and T. Garm Pedersen, “Band gaps in graphene via
periodic electrostatic gating”, Phys. Rev. B 85, 235432 (2012).
114.
C. Fisker, M.L. Trolle and T. Garm
Pedersen, “Modelling amorphous silicon with
hydrogenated defects: GW treatment of the ST12 phase”, J. Phys.: Condens.
Matter 24, 325803 (2012).
115. J.
Jung and T. Garm Pedersen,
“Polarizability of supported metal nanoparticles: Mehler-Fock
approach”, J. Appl. Phys. 112, 64312 (2012).
116.
T.
Garm Pedersen and J. G. Pedersen, “Transport in
graphene antidot barriers and tunneling devices”, J. Appl.
Phys. 112, 113715 (2012).
117. J.
G. Pedersen, T. Gunst, T. Markussen,
and T. Garm Pedersen, “Graphene
antidot lattice waveguides”, Phys. Rev. B. 86, 245410 (2012).
118. J.
G. Pedersen, M.H. Brynildsen, H. Cornean, and T. Garm Pedersen, “Optical Hall
conductivity in bulk and nanostructured graphene beyond the Dirac
approximation”, Phys. Rev. B. 86, 235438 (2012).
119.
Y.-C. Tsao, T. Søndergaard, E. Skovsen, L. Gurevich, K. Pedersen, and T. Garm Pedersen, “Pore
size dependence of diffuse light scattering from anodized aluminum solar cell
backside reflectors”, Opt. Express. 21, A84 (2013).
120. C. Fisker and T. Garm Pedersen,
“Optimization of imprintable nanostructured a-Si
solar cells: FDTD study”, Opt.
Express 21, A208 (2013).
121. C. Uhrenfeldt, T. F. Villesen, B.
Johansen, T. Garm Pedersen, and A. Nylandsted Larsen, “Tuning plasmon resonances for light
coupling into silicon: a rule of thumb for experimental design”, Plasmonics 8,
79 (2013).
122.
J. Jung and T.
Garm Pedersen, “Analysis of plasmonic properties of heavily doped semiconductors
using full band structure calculations”, J. Appl. Phys. 113, 114904 (2013).
123. T. Garm Pedersen and J. G.
Pedersen, ”Self-consistent tight-binding model of B- and
N-doping in graphene”, Phys. Rev. B. 87, 155433 (2013).
124. J.
G. Pedersen and T. Garm Pedersen,
“Hofstadter butterflies and magnetically induced band gap quenching in graphene
antidot lattices”, Phys. Rev. B. 87, 235404 (2013).
125. M.L.
Trolle and T.
Garm Pedersen, “Second harmonic generation
in carbon nanotubes induced by transversal electrostatic field”, J. Phys.: Condens. Matter. 25, 325301 (2013).
126. C. Uhrenfeldt, T. F. Villesen, B.
Johansen, J. Jung, T. Garm Pedersen,
and A. Nylandsted Larsen, “Diffractive coupling and
plasmon-enhanced photocurrent generation in silicon”, Opt. Express. 21, A774
(2013).
127. M.L.
Trolle, U.S. Møller, and
T. Garm Pedersen, “Large and stable band gaps in spin-polarized graphene
antidot lattices”, Phys. Rev. B. 88, 195418 (2013).
128. Y.-C.
Tsao, C. Fisker, and T. Garm Pedersen,
“Optical absorption of amorphous silicon on anodized aluminium
substrates for solar cell applications”, Opt. Commun.
315, 17 (2014).
129. Y.-C.
Tsao, C. Fisker, and T. Garm Pedersen, “Nanoimprinted backside reflectors for a-Si:H thin-film solar cells:
Critical role of absorber front textures”, Opt. Express. 22, A651 (2014).
130. X.
Zhu, W. Wang, W. Yan, M.B. Larsen, P. Bøggild, T. Garm Pedersen, S. Xiao, J. Zi, and
N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and
antidot arrays fabricated by nanosphere lithography”, Nano Lett. 14, 2907
(2014).
131. S.J.
Brun, M. Thomsen, and T. Garm Pedersen, “Electronic
and optical properties of graphene antidot lattices: Comparison of Dirac and
tight-binding models”, J. Phys.: Condens. Matter 26,
265301 (2014).
132.
M.L. Trolle, G. Seifert, and
T. Garm Pedersen, “Theory of excitonic second harmonic generation in
monolayer MoS2”, Phys. Rev. B. 89, 235410 (2014).
133.
M. Thomsen, S.J. Brun, and T. Garm Pedersen,
“Dirac model of electronic transport in graphene
antidot barriers”, J. Phys.: Condens. Matter 26,
335301 (2014).
134.
T. Søndergaard, Y.-C. Tsao,
P.K. Kristensen, T. Garm Pedersen,
and K. Pedersen, “Light-trapping in guided modes of
thin-film-silicon-on-silver waveguides by scattering from a nanostrip“, J. Opt. Soc. Am. B. 31, 2036 (2014).
135.
T. Søndergaard, Y.-C. Tsao, T.
Garm Pedersen, and K. Pedersen,
“Light-trapping in thin-film solar cells: the role of guided modes“, Proc. SPIE 9177 (2014).
136.
T. Garm Pedersen, “Self-consistent model of edge doping in
graphene”, Phys. Rev. B. 91, 085428 (2015).
137. M.
Thomsen, S.J. Brun, and T. Garm Pedersen, “Stability and magnetization
of free-standing and graphene-embedded iron membranes”, Phys. Rev. B. 91,
125439 (2015).
138. R. Petersen and T. Garm Pedersen, “Bandgap scaling in bilayer graphene
antidot lattices”, J. Phys.: Condens. Matter. 27, 225502 (2015).
139. S.J.
Brun and T. Garm Pedersen, “Intense and tunable second-harmonic
generation in biased bilayer graphene”, Phys. Rev. B. 91, 205405 (2015).
140. Y.-C.
Tsao, T. Søndergaard, P. K. Kristensen, R. Rizzoli,
K. Pedersen, and T. Garm Pedersen,
“Rapid fabrication and trimming of nanostructured backside reflector for
thin-film amorphous silicon solar cells”, Appl. Phys. A. 120, 417 (2015).
141. T.
Garm Pedersen, “Analytical models of
optical response in one dimensional semiconductors”, Phys. Lett. A. 379, 1785
(2015).
142. S.K. Ram, R. Rizzoli, D.
Desta, B.R. Jeppesen, M. Bellettato, I. Samatov, Y.-C. Tsao, P.T. Neuvonen,
S.R. Johannsen, P.B. Jensen, J.L. Hansen, T.
Garm Pedersen, R.N. Pereira, K. Pedersen, P. Balling, and A.N. Larsen, “Directly
patterned TiO2 nanostructures for efficient light harvesting in thin
film solar cells”, J. Phys. D. 48, 365101 (2015).
143.
M.L. Trolle and T. Garm
Pedersen, “Excitonic lifetimes and optical response of carbon nanotubes
modulated by electrostatic gating”, Phys Rev. B. 92, 085431 (2015).
144. H. Mera, T. Garm Pedersen, and B.K. Nikolic, “Nonperturbative quantum physics from low-order
perturbation theory”, Phys. Rev. Lett. 115, 143001 (2015).
145.
M.L. Trolle, Y.-C.
Tsao, K. Pedersen, and T. Garm Pedersen,
“Observation of excitonic resonances in the second harmonic spectrum of MoS2”,
Phys. Rev. B. 92, 161409(R) (2015).
146.
M.
R. Thomsen, M. Ervasti, A. Harju, and T. Garm Pedersen, ”Spin relaxation in
hydrogenated graphene”, Phys. Rev. B. 92, 195408 (2015).
147. T.
Garm Pedersen, “Intraband effects in
excitonic second harmonic generation”, Phys. Rev. B. 92, 235432 (2015).
148. T.
Garm Pedersen, H. Mera, and B.K. Nikolic, “Stark effect in
low-dimensional hydrogen”, Phys. Rev. A. 93, 013409 (2016).
149.
J. Gadegaard,
T.K. Jensen, D.T. Jørgensen, P.K. Kristensen, T. Søndergaard, T. Garm
Pedersen, and K. Pedersen, “High output LED-based light-engine for profile lighting
fixtures with high color-uniformity using free-form reflectors”, Appl. Opt. 55,
1356 (2016).
150. S.J.
Brun, V.M. Pereira, and T. Garm Pedersen,
“Boron and nitrogen doping in graphene antidot lattices”, Phys. Rev. B. 93,
245420 (2016).
151. R.
Petersen, T. Garm Pedersen, M. N. Gjerding, and K. S. Thygesen,
“Limitations of effective medium theory in multilayer graphite/hBN
heterostructures”, Phys. Rev. B. 94, 035128 (2016).
152. T. Garm Pedersen, S. Latini, K. S. Thygesen, H. Mera, and B.K.
Nikolic, ”Exciton ionization in multilayer transition-metal
dichalcogenides”, New J. Phys. 18, 073043 (2016).
153. M.
R. Thomsen, S. Power, A.-P. Jauho, and T. Garm Pedersen, ”Magnetic edge states
and magnetotransport in graphene antidot barriers”,
Phys. Rev. B. 94, 045438 (2016).
154. F.
Hipolito, T. Garm Pedersen, and V.M.
Pereira, “Non-linear photocurrents in two-dimensional systems based on graphene
and boron-nitride”, Phys. Rev. B. 94, 045434 (2016).
155. T. Garm Pedersen, ”Exciton
Stark shift and electroabsorption in monolayer
transition-metal dichalcogenides”, Phys. Rev. B. 94, 125424 (2016).
156. H. Mera, T. Garm Pedersen, and B.K. Nikolic, “Hypergeometric resummation of self-consistent sunset
diagrams for steady-state electron-boson quantum many-body systems out of
equilibrium”, Phys. Rev. B. 64, 165429 (2016).
157. M.
L. Trolle, T.
Garm Pedersen, and V. Veniard, “Model dielectric
function for 2D semiconductors including substrate screening”, Sci. Rep. 7,
39844 (2017).
158. D. Dimitrovski, L. B. Madsen, and T. Garm Pedersen, ”High-order harmonic generation from gapped
graphene: perturbative response and transition to non-perturbative regime”,
Phys. Rev. B. 95, 035405 (2017).
159. F. Bonabi and T. Garm
Pedersen, ”Linear and nonlinear Franz-Keldysh
effect in one-dimensional semiconductors”, J. Phys.: Condens.
matter. 29, 165702 (2017).
160. T. Garm Pedersen, ”Stark
effect in finite-barrier quantum wells, wires, and dots”, New J. Phys. 19,
043011 (2017).
161. J.
Have, H. Kovarik, T. Garm Pedersen, and H. D. Cornean, “On
the existence of impurity bound excitons in one-dimensional systems with zero
range interactions”, J. Math. Phys. 58, 052106 (2017).
162. T.
Garm Pedersen, “Nonlinear optical response of relativistic energy
bands: Application to phosphorene”, Phys. Rev. B. 95, 235419 (2017).
163. D. Dimitrovski, T. Garm
Pedersen, and L. B. Madsen, ”Floquet-Bloch shifts
in two-band semiconductors interacting with light”, Phys. Rev. A. 95, 063420
(2017).
164. M.
R. Thomsen and T. Garm Pedersen,
”Analytical Dirac model of graphene rings, dots, and antidots in magnetic
fields”, Phys. Rev. B. 95, 235427 (2017).
165. M. Gjerding, R. Petersen, T.
Garm Pedersen, N. A. Mortensen, and K. S. Thygesen,
“Layered van der Waals crystals with hyperbolic light dispersion”, Nature Commun. 8, 320 (2017).
166. S.
R. Power, M. R. Thomsen, A-P. Jauho, and T. Garm Pedersen, “Electron
trajectories and magnetotransport in nanopatterned
graphene under commensurability conditions”, Phys. Rev. B. 96, 075425 (2017).
167. T. Garm Pedersen, “Stark effect and polarizability of graphene
quantum dots”, Phys. Rev. B. 96, 115 432 (2017).
168. F. Bonabi, S. J. Brun, and T. Garm Pedersen, “Excitonic optical response of carbon chains
confined in single-walled carbon nanotubes”, Phys. Rev. B. 96, 155419 (2017).
169. A. Taghizadeh, F. Hipolito, and T. Garm Pedersen, “Linear and nonlinear optical response of
crystals using length and velocity gauges: Effect of basis truncation”, Phys.
Rev. B. 96, 195413 (2017).
170. R.
Petersen, T. Garm Pedersen, and F. Javier
García de Abajo, “Nonlocal plasmonic response of doped and optically pumped
graphene, MoS2, and black phosphorus”, Phys. Rev. B. 96, 205430
(2017).
171. E.
J. H. Skjølstrup, T. Søndergaard,
K. Pedersen, and T. Garm Pedersen,
“Optics of multiple grooves in metal: transition from high scattering to strong
absorption”, J. Nanophoton. 11, 046023 (2017).
172. F.
Hipolito and T. Garm Pedersen, “Optical
third harmonic generation in black phosphorus”, Phys. Rev. B. 97, 035431
(2018).
173. T. Garm Pedersen, “Sum rules for zeros and intersections of
Bessel functions from quantum mechanical perturbation theory”, Phys. Lett. A.
382, 1837 (2018).
174. J.
Have and T. Garm Pedersen, “Magneto-excitons and Faraday rotation in
single-walled carbon nanotubes and graphene nanoribbons”, Phys. Rev. B. 97,
115405 (2018).
175. E.
J. H. Skjølstrup, T. Søndergaard,
and T. Garm Pedersen, “Quantum
spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance
from ultrasharp groove arrays”, Phys. Rev. B. 97, 115429 (2018).
176. M. Massicotte, F. Vialla, P.
Schmidt, M. Lundeberg, S. Latini, S. Haastrup, M. Danovich, D. Davydovskaya, K. Watanabe, T. Taniguchi, V. Fal'ko, K. Thygesen, T. Garm Pedersen, and F. H. L. Koppens, “Dissociation of two-dimensional excitons in
monolayer WSe2”, Nature Commun. 9, 1633
(2018).
177. A. Taghizadeh and T.
Garm Pedersen, “Gauge invariance of excitonic linear and nonlinear optical
response”, Phys. Rev. B. 97, 205432 (2018).
178. H. Mera, T. Garm Pedersen, and B.K. Nikolic, “Fast summation of divergent series and resurgent
transseries in quantum field theories from Meijer-G approximants”, Phys. Rev.
D. 97, 105027 (2018).
179. T. Garm Pedersen, “Linear and nonlinear optical and
spin-optical response of gapped and proximitized graphene”, Phys. Rev. B. 98,
165425 (2018).
180. F.
Hipolito, A. Taghizadeh, and T. Garm Pedersen, “Nonlinear optical response of doped mono- and
bilayer graphene: Length gauge tight-binding model”, Phys. Rev. B. 98, 205420
(2018).
181. F. Bonabi and T. Garm
Pedersen, “Franz-Keldysh effect and electric
field-induced second harmonic generation in graphene: From one-dimensional
nanoribbons to two-dimensional sheet”, Phys. Rev. B. 99, 045413 (2019).
182. J.
Have, G. Catarina, T. Garm Pedersen,
and N. M. R. Peres, “Monolayer transition metal dichalcogenides in strong
magnetic fields: Validating the Wannier model using a
microscopic calculation”, Phys. Rev. B. 99, 035416 (2019).
183. B.
S. Jessen, L. Gammelgaard, M. R. Thomsen, D. M. A.
Mackenzie, J. D. Thomsen, J. M. Caridad, E. Duegaard,
K. Watanabe, T. Taniguchi, T. J. Booth, T.
Garm Pedersen, A.-P. Jauho, and P. Bøggild, “Lithographic band structure engineering of
graphene”, Nature Nanotech. 14, 340 (2019).
184. T. Garm Pedersen, “Yukawa model of screening in
low-dimensional excitons: Diagonalization, perturbation, variation, and
resummation analysis”, J. Phys.: Commun. 3, 035021
(2019).
185. F. Vialla, M. Danovich, D.
Ruiz-Tijerina, M. Massicotte, P. Schmidt, T.
Taniguchi, K. Watanabe, R. J. Hunt, M. Szyniszewski,
N. Drummond, T. Garm Pedersen, V. Fal'ko, and F. Koppens, “Tuning
of impurity-bound interlayer complexes in a van der Waals heterobilayer”,
2D Mater. 6, 035032 (2019).
186. E.
J. H. Skjølstrup, T. Søndergaard,
and T. Garm Pedersen, “Quantum
spill-out in nanometer-thin gold slabs: Effect on the plasmon mode index and
the plasmonic absorption”, Phys. Rev. B. 99, 155427 (2019).
187. F.
Hipolito, D. Dimitrovski, and T. Garm Pedersen, “Iterative approach to arbitrary nonlinear optical
response functions of graphene”, Phys. Rev. B. 99, 195407 (2019).
188. H.
U. Ulriksen, T. Søndergaard,
T. Garm Pedersen, and K. Pedersen,
“Plasmon enhanced light scattering into semiconductors by aperiodic metal
nanowire arrays”, Opt. Express. 27, 14308 (2019).
189. T. Garm Pedersen, “Stark
effect in spherical quantum dots”, Phys. Rev. A. 99, 063410 (2019).
190. A. Taghizadeh and T.
Garm Pedersen, “Nonlinear optical selection rules of excitons in monolayer transition
metal dichalcogenides”, Phys. Rev. B. 99, 235433 (2019).
191. J.
Have, N. M. R. Peres, and T. Garm
Pedersen, “Excitonic magneto-optics in monolayer transition metal
dichalcogenides: From nanoribbons to two-dimensional response”, Phys. Rev. B.
100, 045411, (2019).
192. H.
C. Kamban and T.
Garm Pedersen, “Field-induced dissociation of two-dimensional excitons in
transition metal dichalcogenides”, Phys. Rev. B. 100, 045307, (2019).
193. T. Garm Pedersen, “Giant Stark
effect in coupled quantum wells: Analytical model”, Phys. Rev. B. 100, 155410
(2019).
194. A. Taghizadeh and T.
Garm Pedersen, “Plasmons in ultra-thin gold slabs with quantum spill-out:
Fourier modal method, perturbative approach, and analytical model“, Opt.
Express. 27, 36941 (2019).
195. A. Taghizadeh and T. Garm
Pedersen, “Nonlinear excitonic spin Hall effect in monolayer transition
metal dichalcogenides”, 2D Mater. 7, 015003 (2020).
196. H.
C. Kamban, S. S. Christensen, T. Søndergaard,
and T. Garm Pedersen,
“Finite-difference time-domain simulation of strong-field ionization: Perfectly
matched layer approach”, Phys. Stat. Sol. B 257, 1900467 (2020).
197. H.
C. Kamban and T.
Garm Pedersen, “Interlayer excitons in van der Waals heterostructures:
Binding energy, Stark shift, and field-induced dissociation”, Sci. Rep. 10, 5537
(2020).
198. A.
Rodríguez Echarri, E. J. H. Skjølstrup,
T. Garm Pedersen, and F. Javier
García de Abajo, “Theory of EELS in atomically thin metallic films”, Phys. Rev.
Res. 2, 023096 (2020).
199. T. Garm Pedersen, ”Hypergeometric
resummation approach to dissociation and Stark effect in non-rigid dipolar
molecules”, J. Phys. B: At. Mol. Phys. 53, 175101 (2020).
200. A. Taghizadeh, U. Leffers, T. Garm Pedersen, and K. S. Thygesen, ”A library of ab
initio Raman spectra for automated identification of 2D materials”, Nature Commun. 11, 3011 (2020).
201. T. Garm Pedersen, ”Graphene
fractals: Energy gap and spin polarization”, Phys Rev. B. 101, 235427 (2020).
202. J.
C. G. Henriques, H. C. Kamban, T. Garm Pedersen, and N. M. R. Peres, ”Analytical quantitative
semi-classical approach to the LoSurdo-Stark effect
and ionization in 2D excitons”, Phys. Rev B. 102, 035402 (2020).
203. T. Garm Pedersen,
”Magnetoplasmon resonances in nanoparticles”, Phys. Rev. B. 102, 075410 (2020).
204. H.
C. Kamban, N. M. R. Peres, and T. Garm Pedersen, ”Anisotropic Stark shift, field-induced
dissociation, and electroabsorption of excitons in
phosphorene”, Phys. Rev. B. 102, 115305 (2020).
205. H. Cornean, H. Kovarik, and T. Garm Pedersen, “Impurity-bound excitons
in one and two dimensions”, J. Spectr. Theor. 10, 1103 (2020).
206. J.
C. G. Henriques, T. Garm Pedersen,
and N. M. R. Peres, “Ionisation rate and Stark shift
of a one-dimensional model of the Hydrogen molecular ion” Eur. J. Phys.
42, 025403 (2021).
207. T. Garm Pedersen, ”Plasmons
and magnetoplasmon resonances in nanorings”, Phys. Rev. B. 103, 085419 (2021).
208. A. Taghizadeh, K. S. Thygesen and T. Garm Pedersen, “Two-dimensional
materials with giant optical nonlinearities near the theoretical upper limit”,
ACS Nano 15, 7155 (2021).
209. M.
O. Sauer, C. E. M. Nielsen, L. Merring-Mikkelsen, and
T. Garm Pedersen, ”Optical emission from
light-like and particle-like excitons in monolayer transition metal
dichalcogenides”, Phys. Rev. B. 103, 205404 (2021).
210. M.
N. Gjerding, A. Taghizadeh,
A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, U. P. Holguin, N. R. Knøsgaard,
M. Kruse, A. H. Larsen, S. Manti, T.
Garm Pedersen, T. Skovhus, M. K. Svendsen, J. J.
Mortensen, T. Olsen and K. S. Thygesen, ”Recent
progress of the computational 2D materials database (C2DB)”, 2D Mater. 8,
044002 (2021).
211. J.
C. G. Henriques, H. C. Kamban, T. Garm Pedersen, and, N. M. R. Peres, “Calculation of the
nonlinear response functions of intra-exciton transitions in two-dimensional
transition metal dichalcogenides”, Phys. Rev. B. 103, 235412 (2021).
212. T. Garm Pedersen and A. Taghizadeh, “Excitonic two-photon absorption in monolayer
transition-metal dichalcogenides: Impact of screening and trigonal warping”,
Phys. Rev. B. 104, 085431 (2021).
213. T. Garm Pedersen, “Dynamic
polarizability of low-dimensional excitons”, Phys. Rev. B. 104, 155414 (2021).
214. H.
C. Kamban and T.
Garm Pedersen, “Efficient ionization of two-dimensional excitons by intense
single-cycle terahertz pulses”, Phys. Rev. B. 104, 235305 (2021).
215. T. Garm Pedersen, “An exact
and compact formula for the optical intersubband response of finite-barrier
quantum wells, wires and dots”, Phys. Lett. A. 423, 127821 (2022).
216.
M. O. Sauer and T.
Garm Pedersen, ”Exciton absorption, band structure, and optical emission in
biased bilayer graphene”, Phys. Rev. B. 105,
115416 (2022).
217.
H. Cornean, D. Krejcirik, T. Garm
Pedersen, N. Raymond, and E. Stockmeyer, “On the two-dimensional quantum
confined Stark effect in strong electric fields", SIAM J. Math. Anal. 54,
2114 (2022).
218. T. Garm Pedersen and H. Cornean, “Enhanced Stark
effect in Dirac materials”, J. Phys.: Condens.
matter. 34,
435301 (2022).
219. T. Garm Pedersen, H. Cornean, D. Krejcirik, N. Raymond, and E. Stockmeyer,
“Stark-localization as a probe of nanostructure geometry”, New J. Phys. 24, 093005
(2022).
220. A. J. H. Jones, L. Gammelgaard, M. O. Sauer,
D. Biswas, R. J. Koch, C. Jozwiak, E. Rotenberg, A.
Bostwick, K. Watanabe, T. Taniguchi, C. R. Dean, A.-P. Jauho,
P. Bøggild, T. Garm Pedersen, B. S. Jessen, S.
Ulstrup, “Nanoscale view of engineered massive Dirac
quasiparticles in lithographic graphene superstuctures”,
ACS Nano 16, 19354 (2022).
221. T. Garm Pedersen, “Coulomb-Zeeman-Stark problem in two
dimensions”, Accepted Phys. Rev. A.
222. M.
O. Sauer, A. Taghizadeh, U. Petralanda,
M. Ovesen, K. S. Thygesen,
T. Olsen, H. Cornean, and T. Garm Pedersen, “Shift
current photovoltaic efficiency of 2D materials”, Submitted.
223. T. Garm Pedersen, “Stark effect in non-hydrogenic
low-dimensional excitons”, Submitted.
Personal ½ marathon
best: 1.32.44 (Nov. 2011)
Europe: Kos 2013, Mallorca 2013, Kos 2014, Central Spain 2015, Kos 2018, Paleros 2021, Bulgaria 2021, Cyprus 2022
Americas: Mexico 2012, USA 2013, Florida 2014, Arizona 2014, Yellowstone 2015, Peruvian
Amazon 2015, Chile 2015, Costa Rica 2016, Canada
and Seattle 2016, New Orleans 2017, Mainland
Ecuador 2018, Galapagos 2018, Mexico 2019, Pantanal 2022
Africa: South Africa 2017, Uganda
and Rwanda 2019, Kenya 2022, Mozambique 2022
Asia: Bali 2013, Singapore 2013, Singapore 2015, India
2016, Singapore 2016, Southern
Thailand 2017, North-East India 2019, Vietnam
2019, Cambodia 2019, Jordan 2021, Oman
2022
Australia: Australia 2012, Australia 2014, Australia 2018
Pictures on Netfugl.dk
Last update: 20. Jan. 2023